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Abstract. As multi-core processors proliferate, it has become more im-
portant than ever to ensure efficient execution of parallel jobs on multi-
processor systems. In this paper, we study the problem of scheduling par-
allel jobs with arbitrary release time on multiprocessors while minimizing
the jobs’ mean response time. We focus on non-clairvoyant scheduling
schemes that adaptively reallocate processors based on periodic feed-
backs from the individual jobs. Since it is known that no deterministic
non-clairvoyant algorithm is competitive for this problem, we focus on
resource augmentation analysis, and show that two adaptive algorithms,
Agdeq and Abgdeq, achieve competitive performance using O(1) times
faster processors than the adversary. These results are obtained through
a general framework for analyzing the mean response time of any two-
level adaptive scheduler. Our simulation results verify the effectiveness
of Agdeq and Abgdeq by evaluating their performances over a wide
range of workloads consisting of synthetic parallel jobs with different
parallelism characteristics.

Key words: Malleable jobs, Mean response time, Non-clairvoyant al-
gorithm, Online scheduling, Resource augmentation analysis, Two-level
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1 Introduction

With the proliferation of multi-core computers and the increasing use of multi-
processor systems, more software developers have started programming in par-
allel and migrating the existing sequential applications to the parallel platforms.
One imminent challenge for the operating system is thus to schedule the parallel
applications to fully exploit the multiprocessor resources.

In this paper, we study the problem of scheduling a set of parallel jobs with
arbitrary release time on multiprocessors. The objective is to minimize the jobs’
mean response time, where the response time of a job is defined to be the duration
between its release and its completion. We consider malleable jobs [17] that
have changing degrees of parallelism and can execute with a varying number
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of allocated processors [12, 13, 18]. The task of the operating system scheduler
is to decide the number of processors allocated to each job at any time. Since
information about the jobs’ characteristics is generally unavailable to the system,
we assume that the schedulers are online non-clairvoyant, that is, they know
nothing about the job’s release time, work and future parallelism when making
scheduling decisions.

To date, many excellent results for online scheduling have been obtained us-
ing competitive analysis [9], in which the performance of a scheduling algorithm
is described in terms of its competitive ratio against the optimal scheduler. How-
ever, since it has been shown in [25] that any deterministic online non-clairvoyant
algorithm is Ω(n1/3)-competitive with respect to the mean response time even
for scheduling sequential jobs on a single processor, some recent studies along
this line have focused on resource augmentation analysis [21, 26], in which the
online algorithm is augmented with extra resources as compared to the adver-
sary, either in the form of faster processors or more processors. In this case,
the online algorithm is said to be s-speed c-competitive if its performance with
s times of extra resources is no worse than c times that of the optimal. The
rationale for resource augmentation is that the traditional competitive analysis
for an online algorithm can lead to a large competitive ratio because the online
algorithm, being non-clairvoyant, cannot recover from sometimes even a small
mistake made on certain worst-case job instances. The extra resources for the
online algorithm compensates for their non-clairvoyance on these worst-case sce-
narios. Hence, if an algorithm achieves competitive result with moderate increase
in processor resources, then it is likely to perform comparably to the optimal on
most practical workloads. The readers may wish to refer to [21, 26, 28, 27] for
more elaborate interpretations of resource augmentation. Basically, the goal is to
achieve competitive performance for an algorithm with minimal extra resources.

Perhaps the simplest online non-clairvoyant scheduler for parallel jobs is Equi
(Equi-Partitioning)[14, 13], which divides the total number of processors evenly
among all active jobs at any time. Using a sophisticated analysis, Edmonds [13]
proved that Equi is (2 + ϵ)-speed O(1)-competitive with respect to the mean
response time of any set of jobs. Recently, Edmonds and Pruhs [16] proposed
Laps (Latest Arrival Processor Sharing), a variant of Equi that divides the
total number of processors among a certain portion of the latest released jobs.
They showed that Laps is (1+ ϵ)-speed O(1)-competitive with sufficiently large
ϵ. The analysis of Equi and Laps employs a technique called amortized local
competitive argument, which bounds the amortized performance of an algorithm
at any local time through a carefully designed potential function, and it has
become a useful technique for analyzing scheduling algorithms (see, e.g. [28, 27,
5, 4, 23, 11]). In this paper, we extend the amortized local competitive argument
and provide a simple framework to analyze the mean response time for a set
of perhaps less well-known but also quite effective schedulers called two-level
adaptive schedulers [1, 18, 32].

The theoretical study of two-level adaptive schedulers was initiated by Agrawal,
et al. [1]. Unlike Equi, which allocates processors to jobs without considering
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the jobs’ utilization of the allocated resources, the two-level adaptive schedulers
take a corrective approach by collecting statistics from jobs’ past executions and
using them to guide the future processor allocations. Since no knowledge about
the future is assumed, they are also non-clairvoyant in nature. Specifically, the
scheduling of jobs by a two-level adaptive scheduler can be decomposed into
two parts: at the system level, an OS allocator decides the processor allocations
for jobs; at the job level, a task scheduler schedules the tasks of each job with
the allocated processors. In order to allocate processors more effectively, each
task scheduler provides feedback to the OS allocator indicating the job’s future
processor desire. The processors are reallocated periodically by the OS allocator
after each scheduling quantum based on the feedback from the jobs. The length
of the scheduling quantum is usually set to be long enough to amortize the over-
heads incurred by the processor reallocations and bookkeepings for scheduling,
but it should not be too long to make the feedback relevant.

Using the above two-level adaptive scheduling framework, Agrawal et al. [1]
proposed Ag (Adaptive Greedy) task scheduler, which calculates the processor
desire for a job in each scheduling quantum with a simple multiplicative-increase
multiplicative-decrease strategy based on the execution statistics of the job in the
immediate previous quantum. They analyzed the performance of Ag in terms of
an individual job’s running time and processor utilization. He et al. [18] combined
Ag task scheduler with Deq (Dynamic Equi-Partitioning) [33, 24] OS allocator,
which is a variant of Equi that never allocates more processors to a job than the
job’s processor desire. They called the resulting two-level scheduler Agdeq, and
showed that it is O(1)-competitive with respect to the mean response time of any
set of batched parallel jobs (i.e., all jobs are released at time 0). Furthermore,
they showed that Agdeq simultaneously guarantees O(1)-competitiveness for
the makespan of arbitrarily released jobs. Sun and Hsu [32] later proposed a
task scheduler Abg (Adaptive B-Greedy), which directly utilizes the job’s past
parallelism to calculate the processor desire and improves upon Ag in terms of
its desire stability. They also showed similar mean response time and makespan
performances for the two-level scheduler Abgdeq.

In this paper, we show that, for parallel jobs with arbitrary release time,
Agdeq and Abgdeq are competitive with respect to the mean response time
with O(1) times faster processors. Compared to Equi, which is competitive for
the mean response time [14, 13], but not competitive for the makespan [29],
the results of Agdeq and Abgdeq show that the two-level adaptive schedulers
achieve both fairness and efficiency for executing parallel applications on mul-
tiprocessor systems. Moreover, we provide a framework for analyzing the mean
response time of any algorithm that can be formulated as a two-level adaptive
scheduler. The analysis given in this paper and in [18] offers a convenient tech-
nique for analyzing the mean response time of a wide spectrum of scheduling
algorithms that utilize parallelism feedbacks from the jobs, while the analysis in
the previous results [13, 15, 29, 30, 16] are applied more specifically to Equi and
its variants.
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In addition, we also conduct simulations and compare the mean response
time ofAgdeq andAbgdeq with that of Equi. The simulation results verify the
effectiveness of the two-level adaptive schedulers over a wide range of workloads
consisting of synthetic parallel jobs with different parallelism characteristics.

The rest of this paper is organized as follows. Section 2 formally introduces
the job model and the objective function. Section 3 discusses two-level adaptive
scheduling in general, and describes Agdeq and Abgdeq algorithms in details.
Section 4 provides the mean response time analysis framework, and its applica-
tions to Agdeq and Abgdeq. Our simulation results are presented in Section 5.
Section 6 discusses some related work, and Section 7 concludes the paper.

2 Job Model and Objective Function

We adopt the job model used by Edmonds et al. [13, 16], which allows a paral-
lel job to have time-varying parallelism modeled by multiple phases of speedup
functions. However, unlike in [13, 16], where each phase of a job admits an arbi-
trary non-decreasing but sub-linear speedup, we consider a simpler model where
each phase has a linear speedup function up to a certain degree of parallelism,
beyond which no further speedup can be gained.3 Specifically, we consider a set
J = {J1, J2, . . . , Jn} of n jobs to be scheduled on P processors. Each job Ji
in the job set contains pi phases ⟨J1

i , J
2
i , . . . , J

pi

i ⟩, and each phase Jp
i has an

amount of work wp
i , and a linear speedup function Γ p

i up to a certain degree of
parallelism hp

i , where hp
i ≥ 1. The span lpi of phase Jp

i is therefore lpi = wp
i /h

p
i .

The phase is parallelizable if hp
i = ∞, and it is sequential if hp

i = 1. The total
work of job Ji is denoted by wi =

∑pi

p=1 w
p
i , and the total span of the job is

li =
∑pi

p=1 l
p
i . At any time t, suppose that job Ji is in its p-th phase and is

allocated ai(t) processors of speed s, the effective speedup or execution rate of
the job is thus given by Γ p

i (ai(t)) = ai(t) · s if ai(t) ≤ hp
i and Γ p

i (ai(t)) = hp
i · s

if ai(t) > hp
i .

A scheduling algorithm Alg for any set J of jobs specifies the number ai(t)
of processors allocated to each job Ji at any time t. In order for the schedule
to be valid, we require that at any time t the total processor allocation is not
more than the total number of processors, i.e.,

∑n
i=1 ai(t) ≤ P . Let ri denote

the release time of job Ji. Let c
p
i denote the completion time of the p-th phase

of job Ji, and let ci = cpi

i denote the completion time of job Ji. We also require
that a valid schedule must complete all jobs in finite amount of time and can not
begin to execute a phase of a job unless it has completed all its previous phases,

i.e., ri = c0i < c1i < . . . < cpi

i <∞, and
∫ cpi
cp−1
i

Γ p
i (ai(t))dt = wp

i for all 1 ≤ p ≤ pi.

The job Ji is said to be active at time t if it is released but not completed
at t, i.e., ri < t < ci. The response time Ri of the job is the duration between
the completion time and the release time of the job, i.e., Ri = ci − ri. The total
response time R(J ) of the entire job set J is thus given by R(J ) =

∑n
i=1 Ri,

or alternatively can be expressed as R(J ) =
∫∞
0

ntdt, where nt is the number of

3 See Section 7 for our discussion on the chosen job model.
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active jobs at time t. The mean response time R(J ) of the job set is therefore
R(J ) = R(J )/n.

Our objective is to minimize the mean response time R(J ) of the job set J ,
for which we use resource augmentation analysis [21, 26]. Specifically, we equip
the online algorithm Alg with processors of speed s, where s > 1, while the
optimal algorithm is only given processors of unit speed. In this case, Alg is
said to be s-speed c-competitive with respect to the mean response time if there
exists a constant b such that it satisfies RAlg(J ) ≤ c ·R∗(J ) + b for any job set

J , where R
∗
(J ) denotes the mean response time of the optimal scheduler.

Let l(J ) denote the total span of job set J , i.e., l(J ) =
∑n

i=1 li. Then a
simple lower bound for the total response time of job set J is its total span,
that is, R∗(J ) ≥ l(J ), since it takes at least li time to complete job Ji using
any scheduler on unit-speed processors.

3 Two-Level Adaptive Scheduling: from AGDEQ to
ABGDEQ and beyond

In this section, we present how two-level adaptive scheduling can be used to
schedule parallel jobs. We first introduce the basic concept of two-level adaptive
scheduling, followed by detailed descriptions of two specific two-level algorithms,
namely Agdeq and Abgdeq. We end this section with a remark on the general
applicability of two-level adaptive schedulers.

3.1 Two-Level Adaptive Scheduling

In two-level adaptive scheduling, the execution of jobs is decomposed into two
parts: a system-level OS allocator decides the processor allocations for jobs;
and a task scheduler for each job in the user level executes the job with the
allocated processors. The processors are reallocated by the OS allocator after
each scheduling quantum, which is usually set to be a fixed amount of time,
say L time units. In order for the OS allocator to allocate processors to jobs
more effectively, the task scheduler should provide feedback to the OS allocator
indicating the job’s processor desire for each quantum, typically based on the
execution statistics of the job in previous quanta. For a scheduling quantum q,
let di(q) and ai(q) denote the processor desire and the processor allocation for
job Ji, respectively. We assume that the task scheduler always executes the job
based on the model given in Section 2. Hence, as far as the task schedulers are
concerned, their only difference lies in the strategies for estimating the processor
desires. In [19], the interaction between task scheduler and the OS allocator is
referred to as the processor request-allocation protocol. At each quantum in this
protocol, we say that a job Ji is satisfied if its processor allocation is no less
than its processor desire, i.e., ai(q) ≥ di(q). Otherwise, the job is deprived if
ai(q) < di(q). In addition, the notions of satisfied and deprived are extended
from quantum to time. A job is said to be satisfied (deprived) at time t if t is
within a satisfied (deprived) quantum for the job. Finally, to ease our analysis,
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when a new job is released in the middle of a quantum, it is not scheduled until
the beginning of the next quantum.

3.2 AGDEQ

Agdeq (Adaptive-Greedy Dynamic Equi-Partitioning) is a two-level adaptive
scheduler proposed by He et al. [18] that combines the task scheduler Ag [1] and
the OS allocator Deq [33, 24]. In this subsection, we will describe the two parts
in detail.

The task scheduler Ag estimates the processor desire for a job in a schedul-
ing quantum based on the job’s execution characteristics in the immediate pre-
vious quantum. Specifically, let tq denote the time when quantum q starts,
then the work wi(q) completed for job Ji in quantum q is given by wi(q) =∫ tq+L

tq
Γ pt

i (ai(q))dt, where L is the length of the scheduling quantum and pt is

the phase job Ji is executing at time t. The execution of job Ji is said to be effi-
cient in quantum q if the work wi(q) completed is at least δ fraction of the max-
imum amount of work that can be done in the quantum, i.e., wi(q) ≥ δai(q)sL,
where 0 < δ < 1 is called the utilization threshold ; otherwise it is inefficient
if wi(q) < δai(q)sL. Based on the efficient and inefficient classification as well
as the satisfied and deprived classification for quantum q, the processor de-
sire for the next quantum q + 1 is calculated using a multiplicative-increase
multiplicative-decrease strategy as shown in Algorithm 1, assuming that the OS
allocator never allocates more processors than its desire.4

Algorithm 1 Ag(δ)

1: if wi(q) < δai(q)sL then
2: di(q + 1) = di(q)/2 //inefficient
3: else if ai(q) = di(q) then
4: di(q + 1) = di(q) · 2 //efficient and satisfied
5: else
6: di(q + 1) = di(q) //efficient and deprived

The rationale of the Ag algorithm is as follows [1]. If the allocated processors
in quantum q are not utilized efficiently, then the parallelism of the job may not
be as high. Therefore, the processor desire will be reduced by a factor of 2 for
the next quantum q+1 (line 1 and line 2). If the allocated processors are utilized
efficiently and the processor desire is satisfied, then the parallelism of the job

4 In this paper, we simplify Ag algorithm by setting its multiplicative factor to 2,
while in [1], a tuning parameter ρ is defined that can take on any value greater than
1. The simplification is justified by the fact that the multiplicative factor is mainly
related to the processor waste of the job in deductible quanta [1], which we show in
this paper is actually irrelevant to the jobs’ mean response time, provided that the
initial processor desire is set sufficiently high.
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could be even higher. Thus, the processor desire will be increased by a factor
of 2 (line 3 and line 4). Lastly, if the allocated processors are utilized efficiently
but the desire is deprived, then it is not known whether the processors could
still be efficiently utilized had the desire been satisfied. Therefore, the processor
desire is not changed for the next quantum (line 5 and line 6). The processor
desire for the initial quantum when the job is first scheduled is set to be the total
number P of processors.5 Following the terminologies in [1], a job is referred to
as accounted in quantum q if the job is both deprived and efficient. Otherwise,
the job is deductible.

Now, we describe the OS allocator Deq, which is a variants of Equi that
partitions the total number of processors equally among all active jobs. In Deq,
however, if a job desires for less processors than the equal share, it will not
be allocated more processors than its desire, and the remaining processors will
instead be given to the other jobs with higher desires. Let J (t) denote the set of
active jobs at time t when a new quantum begins. Based on the processor desires
from all jobs in J (t), Deq allocates the processors as shown in Algorithm 2.

Algorithm 2 Deq(J (t), P )

1: if J (t) = ∅ then
2: return
3: S = {Ji ∈ J (t) : di(t) ≤ P/ |J (t)|}
4: if S = ∅ then
5: for each Ji ∈ J (t) do
6: ai(t) = P/ |J (t)| //deprived jobs get current equal share
7: return
8: else
9: for each Ji ∈ S do
10: ai(t) = di(t) //satisfied jobs get their desires
11: Deq(J (t)− S, P −

∑
Ji∈S ai(t))

As can be seen in the pseudocode, if a job’s processor desire is not more
than the equal share P/ |J (t)| of processors, the job will be satisfied (line 3
and line 10). After that, the equal share will be recalculated excluding the jobs
already satisfied and the processors already allocated. The remaining processors
will then be allocated to the rest of the jobs by recursively calling the main
procedure (line 11) until all jobs’ processor desires are satisfied or they exceed

5 Note that in [1], the initial desire is set to be 1. This more conservative strategy is
to ensure that jobs do not waste a lot of processors, especially in deductible quanta,
which intuitively could affect the mean response time of the job set, since the wasted
processors of a job could have been well utilized by the other jobs to speed up their
executions [18]. However, we show in this paper that the mean response time of
the jobs is actually independent of their deductible waste. This phenomenon can
also be observed in the analysis of Equi, which fares poorly in terms of its processor
utilization, yet it still achieves good performance in terms of mean response time [13].
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the equal share. In the latter case, each remaining job will be deprived and get the
current equal share of processors (lines 4-7). As was shown in [12, 18], if there are
deprived jobs for a quantum, then all P processors must have been allocated by
Deq, and each deprived job will have the same number of allocated processors,
which is higher than the initial equal share P/ |J (t)|. Note that in this paper,
as in [12, 13, 18, 16], we assume that the number of processors allocated to a job
can be non-integral. The fractional allocation can be considered as time-sharing
a processor among the jobs.

3.3 ABGDEQ

Abgdeq (Adaptive B-Greedy Dynamic Equi-Partitioning) was proposed by Sun
and Hsu [32] and it combines OS allocator Deq with task scheduler Abg, which
directly calculates the average parallelism of the job in a quantum, and uses it
as the processor desire for the next quantum. Specifically, let tq denote the time
when quantum q starts, then the work wi(q) completed for job Ji in quantum q is

wi(q) =
∫ tq+L

tq
Γ pt

i (ai(q))dt, and the span li(q) reduced for job Ji in quantum q is

li(q) =
∫ tq+L

tq
Γ pt

i (ai(q))/h
pt

i dt, where L is the length of the scheduling quantum

and pt is the phase job Ji is executing at time t. Although the instantaneous par-
allelism of job Ji at any time during quantum q may vary, its average parallelism
Ai(q) in the quantum is given by Ai(q) = wi(q)/li(q). Abg directly sets the pro-
cessor desire for quantum q + 1 to the average parallelism of quantum q, i.e.,
di(q+1) = Ai(q).

6 This strategy makes the processor desire more representative
of the job’s average processor requirement, and eliminates the desire instability
problem of Ag when the parallelism of the job stays constant for sufficiently
long time (see Section 5). Again, the initial desire is set to be the total number
P of processors. In addition, job Ji is said to be under-allocated in quantum q
if the average parallelism is at least the processor allocation, i.e., Ai(q) ≥ ai(q),
otherwise it is over-allocated if Ai(q) < ai(q). Following the terminologies from
Ag, a job is accounted if it is both deprived and under-allocated, and otherwise
it is deductible.

3.4 Remark

Beyond Agdeq and Abgdeq, the general concept of two-level adaptive schedul-
ing can represent a rich class of scheduling algorithms with various other feed-
back mechanisms and allocation policies. For instance, Equi can be considered
as a special type of two-level adaptive scheduler with variable quantum length
(a quantum only expires if a job completes or a new job is released) and an
oblivious OS allocator (which always divides the processors equally among the

6 In [32], the processor desire for quantum q + 1 is set to be a linear combination
of the average parallelism and the processor desire of quantum q, i.e., di(q + 1) =
(1−v)Ai(q)+vdi(q), where v is called the convergence rate. In this paper, we set the
convergence rate to be v = 0, hence make the processor desire achieve one-quantum
convergence towards the job’s average parallelism when the latter is constant.
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active jobs regardless of each job’s processor desire). In the following section, we
will present a general framework for analyzing the mean response time on this
class of schedulers.

4 Mean Response Time Analysis

In this section, we present a general framework for the mean response time anal-
ysis of the two-level adaptive schedulers, and apply it to Agdeq and Abgdeq
algorithms. We begin this section by introducing a few concepts and notations.

4.1 Preliminaries

At any time t, a job Ji executed by the online algorithm can be characterized by
certain properties. For example, a job can be classified according to “satisfied”,
“deprived”, “accounted”, or “deductible” as described in the preceding section.
Our analysis relies on identifying two such properties A and B for the set of
active jobs. Let J (t) denote the set of active jobs at time t, and let JA(t)
and JB(t) denote the sets of active jobs at time t that satisfy property A and
property B, respectively. Throughout the execution of job Ji, let aA(Ji) denote
the total processor allocation when job Ji satisfies property A, i.e., aA(Ji) =∫∞
0

ai(t)s · [Ji(t) ∈ JA(t)]dt, and let tB(Ji) denote the total amount of time

when job Ji satisfies property B, i.e., tB(Ji) =
∫∞
0

s · [Ji(t) ∈ JB(t)]dt, where s
denotes the processor speed of the online algorithm and [x] is 1 if proposition x
is true and 0 otherwise. In addition, we also require the notion of total amount
of time for the entire job set J that satisfies property B, which is defined to be
tB(J ) =

∑n
i=1 tB(Ji). To simplify our notations, we let nt = |J (t)| denote the

number of active jobs at time t, and let nA
t = |JA(t)| and nB

t = |JB(t)| denote
the number of active jobs at time t that satisfy property A and property B,
respectively. As far as this paper is concerned, the two properties A and B are
chosen such that JA(t) and JB(t) are disjoint, i.e., JA(t)

∩
JB(t) = ∅, and they

cover the whole set of active jobs, i.e., JA(t)
∪
JB(t) = J (t). Hence, we have

nA
t + nB

t = nt.
We also introduce the notions of t-prefix and t-suffix for jobs to ease our

analysis. For an online algorithm, define the t-prefix Ji(
←−
t ) of job Ji to be the

portion of the job executed before time t, and the t-suffix Ji(
−→
t ) to be the

portion executed after time t. Specifically, if the online algorithm is execut-
ing the p-th phase of job Ji at time t, then Ji(

←−
t ) consists of the first p − 1

phases ⟨J1
i , J

2
i , . . . , J

p−1
i ⟩ of job Ji, followed by part of the p-th phase with

work
∫ t

cp−1
i

Γ p
i (ai(t))dt; and Ji(

−→
t ) begins with the rest of the p-th phase with

work
∫ cpi
t

Γ p
i (ai(t))dt, followed by the remaining phases ⟨Jp+1

i , Jp+2
i , . . . , Jpi

i ⟩ of
job Ji. In addition, we extend the definitions of t-prefix and t-suffix from a
job to a job set such that J (←−t ) = {J1(

←−
t ), J2(

←−
t ), . . . , Jnt

(
←−
t )} and J (−→t ) =

{J1(
−→
t ), J2(

−→
t ), . . . , Jnt

(
−→
t )}. We let J ∗(←−t ) = {J∗1 (

←−
t ), J∗2 (

←−
t ), . . . , J∗n∗

t
(
←−
t )}

and J ∗(−→t ) = {J∗1 (
−→
t ), J∗2 (

−→
t ), . . . , J∗n∗

t
(
−→
t )} denote the t-prefix and t-suffix of
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job set J executed by the optimal scheduler, respectively, where n∗t is the number
of active jobs at time t under the optimal scheduler.

4.2 Analysis Framework

Our analysis framework adopts the amortized local competitive argument [27],
which bounds the amortized performance of an online algorithm at any time
through a potential function. In addition, we also extend the two-step analysis
used in [18] for bounding the mean response time of batched parallel jobs (i.e.,
when all jobs arrive at time 0). In the case of two-level adaptive schedulers, we
first analyze the task scheduler by bounding two specific properties of it on an
individual job. We then apply the amortized local competitive argument to the
OS allocator. Finally, by combining the analysis of the task scheduler and the
OS allocator, we can obtain the mean response time performance of the two-level
algorithm. Specifically, our analysis develops as follows.

Step (1): For the task scheduler, choose two properties A and B. Then bound
the processor allocation aA(Ji) to any job Ji in terms of the total work wi of the
job, as well as the amount of time tB(Ji) for any job Ji in terms of the total span
li of the job, on processors of any speed s, where s > 0. That is, find coefficients
γ1, γ2 and constant γ3 such that

aA(Ji) ≤ γ1 · wi , (1)

tB(Ji) ≤ γ2 · li + γ3 . (2)

Step (2): For the OS allocator, with properties A and B chosen in Step (1)
in mind, find a potential function Φ(t), a processor speed s′, and coefficients c1
and c2 such that on processors of speed s = s′ + ϵ for any ϵ > 0, the execution
of the job set satisfies the following

- Boundary Condition: Φ(0) = 0 and Φ(∞) ≥ 0;
- Arrival Condition: Φ(t) does not increase when new jobs arrive;
- Completion Condition: Φ(t) does not increase when jobs complete;
- Running Condition:

dR(J (t))
dt

+
dΦ(t)

dt
≤ c1 ·

dR∗(J ∗(t))
dt

+ c2 ·
dtB(J (t))

dt
, (3)

where dR(J (t))
dt = lim∆t→0

R(J (
←−−−
t+∆t))−R(J (

←−
t ))

dt denotes the change of total re-
sponse time under the online algorithm in an infinitesimal interval of time ∆t,

and apparently we have dR(J (t))
dt = nt. Similarly, the change of total response

time under the optimal algorithm satisfies dR∗(J ∗(t))
dt = n∗t , and the change of

total amount of time for the job set satisfying property B under the online al-

gorithm is given by dtB(J (t))
dt = snB

t . In addition, dΦ(t)
dt = lim∆t→0

Φ(t+∆t)−Φ(t)
dt

denotes the change of potential function in interval ∆t. Note that we assume ∆t
is infinitesimally small such that no new job arrives, and no job completes, or
makes a transition between two phases, or experiences processors reallocation
under both the online algorithm and the optimal.
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The form of the potential function Φ(t) may not be unique, but it usually
depends on the processor allocation aA(Ji) and the coefficient γ1 given in In-
equality (1). In addition, coefficient γ1 can also affect the choice of processor
speed s′ for Inequality (3) to be satisfied. In the next subsection, we will provide
a concrete example on choosing the potential function and the processor speed
for the analysis of the OS allocator Deq. Now, combining the results of Step
(1) and Step (2), we can obtain the performance for the two-level algorithm.
First, summing over all jobs for Inequality (2), we get tB(J ) ≤ γ2 · l(J ) + γ3n.
Since l(J ) is a lower bound on the total response time of job set J , integrating
Inequality (3) over time, we have

R(J ) ≤ c1 ·R∗(J ) + c2 · tB(J )
≤ c1 ·R∗(J ) + c2γ2 · l(J ) + c2γ3n

≤ (c1 + c2γ2) ·R∗(J ) + c2γ3n .

The mean response time R(J ) thus satisfies R(J ) ≤ (c1 + c2γ2) · R
∗
(J ) +

c2γ3, which suggests that the two-level algorithm is (s′ + ϵ)-speed (c1 + c2γ2)-
competitive with respect to the mean response time for any job set J , provided
that c2 and γ3 are constants.

4.3 Performance of AGDEQ

We now apply the framework outlined in the preceding subsection to analyze the
mean response time of two-level adaptive scheduler Agdeq. We choose property
A and property B for Agdeq to be “accounted” and “deductible”, respectively.

We first focus on the task scheduler Ag, whose total accounted allocation and
the total deductible time have been bounded in [1] on unit-speed processors.
Using the same argument [1], we can show similar results for Ag on speed s
processors. The following lemma gives the performance bounds.

Lemma 1. Suppose that Ag schedules a job Ji with work wi and span li on speed
s processors. Then the total accounted allocation to the job satisfies aA(Ji) ≤
wi/δ, and the total deductible time of the job satisfies tB(Ji) ≤ 2li/(1− δ) + 2L,
where δ < 1 is Ag’s utilization threshold and L is the length of the scheduling
quantum.

Proof sketch. The total accounted allocation aA(Ji) to job Ji can be directly in-
ferred from the definition of accounted quantum. Specifically, since an accounted
quantum q for job Ji is also efficient, we have ai(q)sL ≤ wi(q)/δ. Let AC denote
the set of accounted quanta for the job. The total accounted allocation thus
satisfies aA(Ji) =

∑
q∈AC ai(q)sL ≤

∑
q∈AC wi(q)/δ ≤ wi/δ.

The total deductible time tB(Ji) of job Ji can be bounded by considering the
total inefficient time and the total efficient-and-satisfied time, separately. The
former is no more than li/(1− δ) by considering the reduction of the job’s span
in each inefficient quantum. The latter can be related to the former, because
there exists a correspondence between the set of inefficient quanta and the set of
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efficient-and-satisfied quanta due to the multiplicative-increase multiplicative-
decrease strategy [3]. By setting the initial processor desire to P , the total
efficient-and-satisfied time turns out to be no more than li/(1 − δ) + L. The
total deductible time of the job is thus bounded by summing up the two terms
as well as the additional waiting time of the job after its arrival, which is at most
the quantum length L. ⊓⊔

We now turn to the analysis of the OS allocator Deq using amortized local
competitive argument. We adopt the potential function used by Lam et al. [23]
in the context of online speed scaling and tailor it to suit the mean response
time analysis of two-level adaptive schedulers. Specifically, at any time t, let
nt(z) denote the number of jobs whose remaining accounted allocation is at

least γ1z under Agdeq, i.e., nt(z) =
∑nt

i=1[aA(Ji(
−→
t )) ≥ γ1z], and let n∗t (z)

denote the number of jobs whose remaining work is at least z under the optimal,

i.e., n∗t (z) =
∑n∗

t
i=1[w(J

∗
i (
−→
t )) ≥ z]. Apparently, nt(z) and n∗t (z) are staircase-like

decreasing functions of z, and Figure 1(a) shows an example of nt(z) and n∗t (z)
at a given time t. The potential function is defined to be

Φ(t) = η

∫ ∞
0

nt(z)∑
i=1

i

− nt(z)n
∗
t (z)

 dz , (4)

where η = 2γ1

ϵP . For convenience, define ϕt(z) =
(∑nt(z)

i=1 i
)
−nt(z)n

∗
t (z). We can

now check the four conditions for Step (2) of the analysis framework given in
the preceding subsection.

- Boundary Condition: at time 0, no job exists in the system. The terms
nt(z) and n∗t (z) are both 0 for all z. Therefore, we have Φ(0) = 0. At time ∞,
no job remains in the system, so again we have Φ(∞) = 0. Hence, the boundary
condition holds.

- Arrival Condition: suppose that a new job with work w′ arrives at time
t. Let t− and t+ denote the instances right before and after the job arrives.
Hence, we have n∗t+(z) = n∗t−(z) + 1 for z ≤ w′ and n∗t+(z) = n∗t−(z) for z > w′.
Similarly, nt+(z) = nt−(z) + 1 for z ≤ a′/γ1 and nt+(z) = nt−(z) for z > a′/γ1,
where a′ is the total accounted allocation to the job. Figure 1(b) illustrates the
changes of nt(z) and n∗t (z) in this case. Note that a′/γ1 ≤ w′ from Step (1) of
the analysis. Thus, it is obvious that for z > w′, we have ϕt+(z) = ϕt−(z). For
z ≤ w′, we consider two cases.

Case 1: for z ≤ a′/γ1, we have ϕt+(z)− ϕt−(z) =
(∑nt− (z)+1

i=1 i
)
−

(nt−(z) + 1)
(
n∗t−(z) + 1

)
−
(∑nt− (z)

i=1 i
)
+ nt−(z)n

∗
t−(z) = −n

∗
t−(z) ≤ 0.

Case 2: for a′/γ1 ≤ z ≤ w′, we have ϕt+(z) − ϕt−(z) =
(∑nt− (z)

i=1 i
)
−

nt−(z)
(
n∗t−(z) + 1

)
−

(∑nt− (z)
i=1 i

)
+ nt−(z)n

∗
t−(z) = −nt−(z) ≤ 0.

Hence, Φ(t+) = η
∫∞
0

ϕt+(z)dz ≤ η
∫∞
0

ϕt−(z)dz = Φ(t−), and the arrival
condition holds.

- Completion Condition: when a job completes under Agdeq or the optimal
algorithm, the potential function Φ(t) remains unchanged, because in such cases,
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Fig. 1. (a) An example of nt(z) and n∗
t (z) at a given time t. (b) The changes of

nt(z) and n∗
t (z) after a new job arrives. (c) The changes of nt(z) and n∗

t (z) in an
infinitesimally small interval of time ∆t.

nt(z) or n
∗
t (z) only reduces by 1 for z = 0. Hence, the completion condition also

holds.
At this point, the first three conditions hold true regardless of the OS allo-

cator used and the properties A and B chosen. It remains to check the running
condition, which typically depends on the specific OS allocator as well as the
properties A and B. The following lemma shows the running condition of Deq
with property A and property B being “accounted” and “deductible”, respec-
tively.

Lemma 2. Suppose that Deq schedules a job set J on speed s processors with
Ag. Then the running condition in Inequality (3) is satisfied with potential func-
tion in Equation (4), processor speed s = 2γ1 + ϵ, and coefficients c1 = 2s/ϵ and
c2 = 2/ϵ, provided that property A and property B are chosen to be “accounted”
and “deductible”, respectively.

Proof. As mentioned in Section 3.2, Deq ensures that accounted jobs, which
are deprived by definition, get at least P/nt processors at any time t. Also
because all accounted jobs share the same processor allocation, each one should
receive no more than P/nA

t processors at time t. In the worst case, these nA
t

accounted jobs have the most remaining accounted processor allocation among
the nt active jobs, while the optimal scheduler executes the job with the least
remaining work using all P processors. As a result, which can be seen from
Figure 1(c), each of the bottom nA

t horizontal stripes of nt(z) shrinks by a value
v, where v ∈ [sP∆t/(γ1nt), sP∆t/(γ1n

A
t )], and the top horizontal stripe of n∗t (z)

shrinks by P∆t in interval ∆t. The change of the potential function can then be
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bounded by

dΦ(t)

dt
=

η

∆t

∫ ∞
0

nt+∆t(z)∑
i=1

i

− nt+∆t(z)n
∗
t+∆t(z)−

nt(z)∑
i=1

i

+ nt(z)n
∗
t (z)

 dz

≤ η

∆t

∫ ∞
0

nt+∆t(z)∑
i=1

i

−
nt(z)∑

i=1

i

 dz

+
η

∆t

∫ ∞
0

[
nt(z)

(
n∗t (z)− n∗t+∆t(z)

)
+ n∗t (z) (nt(z)− nt+∆t(z))

]
dz

≤ 2γ1
ϵP∆t

(
−nA

t (n
A
t + 1)

2
· sP

γ1nt
∆t+ ntP∆t+ n∗t

sP

γ1nA
t

∆t · nA
t

)
≤ 2γ1

ϵ

(
1− x2

t s

2γ1

)
nt +

2s

ϵ
n∗t , (5)

where xt = nA
t /nt, and 0 ≤ xt ≤ 1. Since a job is either accounted or deductible,

we have nB
t = (1 − xt)nt. It can be easily verified that the running condition

holds for all values of xt by substituting Inequality (5), s = 2γ1 + ϵ, c1 = 2s/ϵ
and c2 = 2/ϵ into Inequality (3). ⊓⊔

Now, we can establish the mean response time performance of two-level adap-
tive scheduler Agdeq in the following theorem.

Theorem 1. Agdeq is ( 2δ + ϵ)-speed
(
2 + 4

δ(1−δ)ϵ

)
-competitive with respect to

the mean response time of any job set, where δ < 1 is Ag’s utilization threshold.

Proof. The theorem follows by combining the analysis given in Section 4.2 and
the results of task schedulers Ag in Lemma 1 and the result of OS allocator
Deq in Lemma 2. ⊓⊔

4.4 Performance of ABGDEQ

In this subsection, we show the mean response time of two-level adaptive sched-
uler Abgdeq. Again, we choose property A and property B to be “accounted”
and “deductible”, respectively.

The performance of task scheduler Abg relies on a certain characteristic of
the job, which is called transition factor in [32] and denoted as CL for a given
quantum length L. Roughly speaking, the transition factor of a job characterizes
how fast the job’s parallelism changes with time in the worst case, and hence
reflects the degree of difficulty to schedule it in an adaptive fashion. The following
lemma bounds the performance of Abg on speed s processors. The proof follows
closely that of Lemma 1 and can be found in [32].

Lemma 3. Suppose that Abg schedules a job Ji with work wi and span li
on speed s processors. Then the total accounted allocation to the job satisfies
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aA(Ji) ≤ 2wi, and the total deductible time of the job satisfies tB(Ji) ≤ (CL +
1)li + 2L, where CL is the transition factor of the job and L is the length of the
scheduling quantum. ⊓⊔

The following theorem gives the mean response time performance ofAbgdeq.

Theorem 2. Abgdeq is (4+ ϵ)-speed
(
2 + 10+2CL

ϵ

)
-competitive with respect to

the mean response time of any job set, where CL ≥ 1 is the maximum transition
factor of the jobs in the job set.

Proof. Since we can apply the analysis of Deq to Abgdeq as well, combining
the results of Lemma 3 and Lemma 2, the theorem follows. ⊓⊔

4.5 Discussions

As suggested in Section 3.4, we can formulate Equi as a two-level adaptive
scheduler, where Equi serves as the OS allocator itself that interacts with an
arbitrary task scheduler using variable quantum length. To analyze its mean
response time, we choose properties A and B as follows. At any time t, a job
Ji satisfies property A if its processor allocation is no more than the maximum
parallelism of the phase the job is currently executing, i.e., ai(t) ≤ hpt

i . Other-
wise, the job satisfies property B if ai(t) > hpt

i . In this case, we can easily show
that the coefficients γ1 and γ2 are both equal to 1, which when combined with
a similar analysis in Lemma 2, can lead to the mean response time performance
of (2 + ϵ)-speed (2 + 6

ϵ )-competitiveness. This demonstrates the generality of
two-level adaptive scheduling as well as the usefulness of our analysis frame-
work. Note that the results in this paper are obtained by augmenting the online
schedulers with extra-speed processors. Slightly larger competitive ratios can be
obtained by giving them extra number of processors as shown in [13, 16].

It is also worth noting that the extra resources required by Agdeq and
Abgdeq as well as their competitive ratios are more than that of Equi, which
implies that the two-level adaptive schedulers have inferior mean response time
performance in the worst case. The same phenomenon can be observed when
comparing the competitive ratios of Agdeq, Abgdeq and Equi for schedul-
ing batched parallel jobs [14, 18, 32]. The reason is because two-level adaptive
schedulers only utilize the history of the job to generate feedbacks and we as-
sume that the job’s future parallelism need not be correlated to its past. Hence,
in the worst case, the adversary can always make the future parallelism of the job
deviate from its processor desire, e.g., by forcing the job to have high parallelism
when its processor desire is low or vice versa. Thus, compared to Equi, the OS
allocator of Agdeq and Abgdeq can be tricked into making poorer decisions,
resulting in worse processor distributions.

In practice, however, the worst-case scenario is not likely to occur. There-
fore, we expect that Agdeq and Abgdeq should perform comparably to or even
better than Equi, especially when the parallelism of the job does not change fre-
quently, hence the correlation between the future parallelism and the past can
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be well exploited by the adaptive strategies of Agdeq and Abgdeq. Moreover,
the practical performances of the two-level adaptive schedulers may also depend
upon the specific parallelism characteristics of the jobs, the length of the schedul-
ing quantum selected and the amount of system overhead incurred, etc., which
are omitted in the theoretical analysis. We will evaluate the impacts of these
factors in the next section by carrying out simulations.

5 Simulations

In this section, we conduct simulations on two-level adaptive schedulers Agdeq
and Abgdeq using synthetic parallel jobs with various parallelism characteris-
tics. To better understand adaptive scheduling, we first study how task sched-
ulers Ag and Abg respond to these parallelism characteristics in terms of their
processor desire estimation. We then focus on the mean response time of Agdeq
and Abgdeq by comparing them with Equi on various workloads and by study-
ing the impacts of different quantum length and system overhead. Since resource
augmentation employed in the previous sections only serves as an analysis tool
for deriving the performance bound of an algorithm, for a fair comparison, we
assign unit-speed processors to all algorithms in our simulations instead of giving
them different extra-speed processors.

5.1 Synthetic Parallel Jobs

We construct synthetic parallel jobs with different types of parallelism character-
istics. Specifically, we identify five distinct parallelism variation curves, which are
specified by Step, Impulse, Ramp, Poly(I) and Poly(II) functions, respectively,
and they describe precisely how the parallelism changes with time. Figure 2(a)
shows these five parallelism variation curves with each one containing the same
underlining work and span, hence the same average parallelism. Among them,
the Step function can represent part of a data-parallel job that contains con-
stant and stable parallelism. The Impulse function, with drastically increased
parallelism after a sequential phase, can approximate part of an irregular par-
allel job containing transient and spiky parallelism profile. The Ramp, Poly(I)
and Poly(II) functions, which are constructed by polynomials of degree 1, 3 and
1/3 respectively in our simulation, can represent parts of a parallel job whose
parallelism increases at different levels of steepness. Since the exact parallelism
characteristics of the actual applications are generally unknown, we believe that
these types of parallelism variation curves can represent a wide range of paral-
lelism structures, which are useful for evaluating scheduling algorithms.

Besides the increasing parallelism curves as shown in Figure 2(a), we can also
have parallelism structures specified by the corresponding decreasing curves,
which together with the increasing curves form the basic building blocks for
our parallel job construction. In our simulations, each block contains a pair of
increasing and decreasing curves of the same type with the average parallelism
chosen uniformly from 1 to 200 and the length fixed at 250. In addition, to
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study the impacts of different parallelism variations on scheduling algorithms,
we only generate homogeneous jobs, where each job contains over 500 blocks of
the same type interconnected by sequential phases with the same length. Note
that the concept of a block used here should be distinguished from that of a
phase introduced in Section 2. While a block describes the parallelism structure
of a job over a period of time, a phase refers to a segment of the job in which
the parallelism is constant.

5.2 Transient Response

To better understand the behavior of two-level adaptive scheduling algorithms,
we first focus on task schedulers Ag and Abg in this subsection by studying
their transient response to different parallelism variation curves.7

Figures 2(b)-2(e) demonstrate the transient response of Ag and Abg on four
parallelism variations given in the previous subsection. (The response of the Im-
pulse function is similar to that of the Step function and is not shown.) The
length of the scheduling quantum is set to 100, which is scaled in the figure to
restore the original parallelism variation. We assume that the desires for both
schedulers start and end at a steady state with value of 1, and are satisfied by the
OS allocator at all time. As shown in these figures, both adaptive schedulers can
efficiently adjust the processor desires based on the parallelism changes, although
Ag and Abg exhibit different transient responses with respect to different par-
allelism variations. For the Step function, Ag is able to gradually catch up with
the parallelism change but suffers from desire instability even when the paral-
lelism remains constant. In contrast, Abg rapidly approaches the parallelism
within a quantum, and thereafter provides stable desires by directly utilizing
the average parallelism of the job. For the other functions, both Ag and Abg
respond gradually to the parallelism variations with Abg in general following
more closely the changes of the parallelism and thus taking shorter time to reach
steady state. This is due to Abg’s more effective processor desire calculation.

To confirm the quality of feedbacks observed in the transient responses, we
also measure the response time of Ag and Abg on five parallel jobs with the
same average parallelism but different parallelism variations. Figure 2(f) shows
the performances of Ag and Abg on each of the five jobs in terms of the job’s
response time normalized by its span. We can see clearly that Abg indeed out-
performs Ag for all parallelism variations. This is especially true on the Step
and Impulse functions, where Abg shows clear advantage over Ag with more
stable and efficient feedbacks.

7 The term “transient response” stems from electrical/control engineering, and often
refers to the response of a system to changes in the input signal from a steady state.
In this case, we use transient response to describe how a task scheduler responds to
different parallelism variations in terms of its processor desire estimation.
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Fig. 2. (a) Five different parallelism variation curves, represented by the Step, Poly(II),
Ramp, Poly(I) and Impulse functions. (b)-(e) Transient responses of Ag and Abg on
the Step, Poly(II), Ramp, and Poly(I) functions. (f) The response time ratios of Ag
and Abg on five parallel jobs with same average parallelism but different parallelism
variations.
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5.3 Mean Response Time

In this subsection, we study the mean response time of two-level adaptive sched-
ulers Agdeq and Abgdeq. We simulate a system with 1000 processors, and
generate a wide range of workloads by varying the number of jobs and their
parallelism variations. In each experiment, jobs are released according to the
Poisson process within the span of the first arrived job so that all jobs would be
released before any could complete. Hence, the load of the system will increase
with the number of jobs used for each experiment. As with [19], we define the
load of the system to be the sum of the average parallelism of all jobs normal-
ized by the total number of processors. In our simulations, the number of jobs is
varied from 1 to 100 for each parallelism variation. The mean response time of
Agdeq and Abgdeq are compared to that of Equi. In addition, we also study
the impacts of quantum length and system overhead on the performances of the
two-level adaptive schedulers.

(1) Performance comparison.
As can be observed in Figure 3, Agdeq and Abgdeq generally achieve bet-

ter performances than Equi on jobs with all parallelism variations. When the
system has light workload with a small number of jobs, Equi performs better
because in this case all jobs can be easily satisfied on the given processors. With
increased workload, however, both Agdeq and Abgdeq outperform Equi, and
eventually tend to converge to Equi at extremely heavy workloads, where each
job gets very few processors most of the time and hence the advantage of adap-
tive scheduling is diminished. This suggests that two-level adaptive scheduling is
more effective under moderate workloads with many parallel jobs competing for
but not overwhelmed by the limited processor resources. Moreover, Figure 3 also
shows that the performance of Abgdeq is always better than that of Agdeq,
which is again due to task scheduler Abg’s more effective processor desire feed-
backs.

(2) Impact of parallelism variations.
The impact of different parallelism variations on the performances of Agdeq,

Abgdeq, and Equi are shown in Figure 3(f), which gives the average perfor-
mances of the three algorithms over our entire workload range in terms of their
mean response time normalized by the theoretical lower bound. Roughly speak-
ing, the performances of all three algorithms are closely related to the degree at
which the parallelism varies. Specifically, the Impulse function contains the most
drastic parallelism variation and therefore incurs the worst performance for all
algorithms. The other functions present better performances for the algorithms
with smoother parallelism variations. Furthermore, we can also see that the per-
formance of Abgdeq is relatively insensitive to different parallelism variations,
while Equi is affected the most as the parallelism variations change from Step
to Impulse.

(3) Impacts of quantum length and overhead.
In the preceding simulations, we fixed the quantum length to 100 and ignored

the system overhead. However, in two-level adaptive scheduling, the length of
the scheduling quantum is an important system parameter, which together with
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Fig. 3. (a)-(e) Mean response time ratios of Equi over Agdeq and Equi over Abgdeq
on different workloads and parallel jobs with Step, Poly(II), Ramp, Poly(I), and Impulse
parallelism curves. (f) Average mean response time normalized by the theoretical lower
bound for Equi, Agdeq and Abgdeq over the entire workload range on jobs with the
five parallelism variations.
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the scheduling overhead can significantly affect the mean response time per-
formance. To better understand their impacts, we conduct a set of simulations
by changing the quantum length and the scheduling overhead. Specifically, the
quantum length is varied from 50 to 600 in steps of 50. The scheduling overhead
is changed from zero (i.e., OH= 0%) up to 36% in terms of the smallest quantum
length 50 at an increment of 4% each time. Figure 4 shows the simulation results
on medium to heavy workloads using jobs whose parallelism variation follows the
Step function. Similar outcomes are observed using jobs with the other types of
parallelism variations. We can see that as the scheduling overhead increases, both
Agdeq and Abgdeq have significantly worse performances when the quantum
length is small, while the impact of the overhead becomes less severe with larger
quantum length. When the quantum length is large enough, the performances of
Agdeq and Abgdeq become generally stable and are slightly worse than that of
Equi, which is hardly affected by the overhead. However, when the system has
relatively small overhead, both adaptive schedulers do outperform Equi with
suitably chosen quantum length. In this sense, two-level adaptive schedulers are
quite sensitive to the length of scheduling quantum and the amount of system
overhead. Hence, when implementing these algorithms on different platforms,
attentions should be paid to choosing an appropriate quantum length based on
the scheduling overhead of the system in order to offer desirable performances.

6 Related Work

The problem of scheduling a set of fully parallelizable jobs on multiprocessors
is equivalent to scheduling sequential jobs on a single processor. For the latter
problem, Motwani et al. [25] showed that, for batched jobs, Rr (Round Robin)
is (2 − 2/(n + 1))-competitive with respect to the mean response time. When
jobs can have arbitrary release time, however, they showed that every deter-
ministic non-clairvoyant algorithm is Ω(n1/3)-competitive and every random-
ized non-clairvoyant algorithm is Ω(log n)-competitive. Using resource augmen-
tation analysis, Kalyanasundaram and Pruhs [21] proved that the deterministic
non-clairvoyant algorithm Setf (Shortest Elapsed Time First) is (1 + ϵ)-speed
(1 + 1/ϵ)-competitive, which was later improved by Berman and Coulston [7]
to 2/s when s ≥ 2. Kalyanasundaram and Pruhs [22] also showed that the ran-
domized non-clairvoyant algorithm Rmlf (Randomized Multi-Level Feedback)
is O(log n log log n)-competitive against an adaptive adversary. Becchetti and
Leonardi [6] improved the competitive ratio of Rmlf to O(log n) when the ad-
versary is oblivious, hence matching the lower bound in this case. In addition,
it is well-known that the clairvoyant algorithm Srpt (Shortest Remaining Pro-
cessing Time) is optimal for this problem [10].

For parallel jobs with changing execution characteristics, Edmonds [13] proved
that Equi is (2 + ϵ)-speed O(1)-competitive with respect to the mean response
time of the jobs. Edmonds and Pruhs [16] recently proposed Laps (Latest Ar-
rival Processor Sharing), which in a sense combines Equi and Setf, and proved
that it is (1 + ϵ)-speed O(1)-competitive for sufficiently large ϵ, hence achieving
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Fig. 4. (a)-(b) Impacts of different quantum length and scheduling overhead on the per-
formances of Agdeq and Abgdeq. (c) Performance comparison among Equi, Agdeq,
and Abgdeq on medium to heavy workloads with and without overhead (36%) for
different quantum length.

almost fully scalable [28, 27], i.e., the least possible extra resources required to be
competitive. For the relatively easier case, where jobs are released in a batched
fashion, Edmonds et al. [14] showed that Equi is (2 +

√
3)-competitive. Deng

et al. [12] showed that Deq with jobs’ instantaneous parallelism as feedback is
2-competitive for parallel jobs with single phase and 4-competitive for multiple-
phase jobs. The latter ratio was recently improved to 3 by He et al. [20]. In
addition, Edmonds et al. [15] also extended the analysis of Equi to the TCP
protocol in Internet congestion control. Robert and Schabanel [29, 30] applied
variations of Equi to other job models and objective functions.

For two-level adaptive schedulers, modeling a parallel job as a directed acyclic
graph (dag), Agrawal et al. [1, 3] proposed two algorithms, namely Ag (Adap-
tive Greedy) and As (Adaptive Work-Stealing), which are based on centralized
scheduling and distributed work stealing, respectively. They proved that Ag and
As achieve nearly linear speedup and waste a relatively small number of proces-
sor cycles for each individual job. He et al. [18] later combined task schedulers
Ag and As with the OS allocator Deq to form two-level schedulers. They proved
that the resulting algorithmsAgdeq andAsdeq are both O(1)-competitive with
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respect to the mean response time for batched parallel jobs. In addition, He et
al. [19] also showed that when the system is heavily-loaded, the two-level algo-
rithms can be coupled with Rr to achieve similar results. Observing that Ag can
cause unstable processor desires although the parallelism of the job is constant,
Sun and Hsu [32] proposed Abg (Adaptive B-Greedy) task scheduler, which
guarantees stability of the processor desires along with other control-theoretic
properties. They also proved the mean response time of batched parallel jobs for
the two-level scheduler Abgdeq in terms of the jobs’ parallelism transition.

Several empirical studies on two-level adaptive scheduling are also known in
the literature. Sen [31] presented experimental results on a dynamic desire es-
timation algorithm for the Cilk work-stealing scheduler [8], which inspired the
research presented in [1, 3]. Agrawal, He and Leiserson [2] compared Asdeq
with Equi through simulations, and confirmed that the former has superior per-
formance. He, Hsu and Leiserson [19] evaluated the performance Agdeq under
a wide range of workloads, and revealed that it actually performs much better
in practice than predicted by the theoretical bounds. Sun and Hsu [32], also
through simulations, confirmed that Abgdeq does improve upon Agdeq for
batched parallel jobs.

7 Conclusion

In this paper, we have analyzed the mean response time of two-level adaptive
schedulers Agdeq and Abgdeq on parallel jobs with arbitrary release time
and changing degrees of parallelism. We have shown through a general analysis
framework that both Agdeq and Abgdeq are competitive with respect to the
mean response time using O(1) times faster processors. In addition, we have
also conducted simulations over a wide range of workloads using parallel jobs
with different parallelism variations. The simulation results have verified the
effectiveness of Agdeq and Abgdeq with appropriately chosen quantum length.

Compared to the job model used in this paper, Edmonds et al. [13, 16] have
assumed a more general model, in which each phase of a job can admit an
arbitrary non-decreasing and sub-linear speedup. However, to analyze the mean
response time of Equi and Laps, Edmonds et al. reduced any set J of jobs
with non-decreasing and sub-linear speedups to a set J ′ of jobs that consist of
only fully parallelizable and strongly sequential phases, where a phase is fully
parallelizable if its speedup function Γ satisfies Γ (a) = a for all a ≥ 0 and
it is strongly sequential if Γ (a) = 1 for all a ≥ 0. One implicit assumption
used in this reduction is that the online algorithm is not able to distinguish a
newly constructed phase from the original phase because it is non-clairvoyant.
Thus, the same number of processors will be allocated to J ′ and J at any
time. However, such reduction does not directly apply to the type of adaptive
schedulers considered in this paper because their future processor allocations do
depend on the past parallelism of the jobs. It will be interesting to see if similar
reductions are possible for these adaptive schedulers.
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Another problem with existing task schedulers Ag and Abg is that they both
require comprehensive statistics about a job’s execution in the current quantum
in order to estimate its processor desire for the next quantum. Collecting such
statistics can be difficult in real systems, and even if possible, might incur signif-
icant overheads, which as have been shown in our simulations can have adverse
effect on the system performance. It will be useful to design task schedulers
that use incomplete information about a job’s execution (e.g., obtained through
samplings) to estimate its processor desires while still guaranteeing desirable
performances.
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