
Speed Scaling for Energy and Performance with
Instantaneous Parallelism

Hongyang Sun1, Yuxiong He2, and Wen-Jing Hsu1

1 School of Computer Engineering, Nanyang Technological University, Singapore
{sunh0007, hsu}@ntu.edu.sg

2 Microsoft Research, Redmond, WA, USA
yuxhe@microsoft.com

Abstract. We consider energy-performance tradeoff for scheduling par-
allel jobs on multiprocessors using dynamic speed scaling. The objective
is to minimize the sum of energy consumption and certain performance
metric, including makespan and total flow time. We focus on designing
algorithms that are aware of the jobs’ instantaneous parallelism but not
their characteristics in the future. For total flow time plus energy, it is
known that any algorithm that does not rely on instantaneous paral-
lelism is Ω(ln1/α P)-competitive, where P is the total number of proces-
sors. In this paper, we demonstrate the benefits of knowing instantaneous
parallelism by presenting an O(1)-competitive algorithm. In the case of
makespan plus energy, which is considered in the literature for the first
time, we present an O(ln1−1/α P)-competitive algorithm for batched jobs
consisting of fully-parallel and sequential phases. We show that this al-
gorithm is asymptotically optimal by providing a matching lower bound.

Keywords: Energy, Flow time, Instantaneous parallelism, Makespan,
Multiprocessors, Parallel jobs, IP-clairvoyant, Speed scaling

1 Introduction

Energy consumption has become a key consideration in the design of modern
high-performance computer systems. One popular approach to controlling energy
is by dynamically scaling the speeds of the processors, or dynamic speed scaling
[5, 9]. Since the seminal paper by Yao, Demers and Shenker [16], most researchers
have assumed the power function of sα when a processor runs at speed s, where
α > 1 is the power parameter. As this power function is strictly convex, the
energy consumption when executing a job can be significantly reduced by slowing
down the processor speed at the expense of the job’s performance. Thus, how to
optimally tradeoff energy and performance has become an active research topic.
(See [10, 1] for two surveys of the field.)

We study energy-performance tradeoff for scheduling parallel jobs on mul-
tiprocessors. A scheduling algorithm needs to have both a processor allocation
policy, which decides the number of processors allocated to each job at any time,
and a speed scaling policy, which decides the speeds of the allocated proces-
sors. We assume that the parallel jobs under consideration have time-varying

2 Hongyang Sun, Yuxiong He and Wen-Jing Hsu

parallelism over different phases of execution [8, 7, 14]. This poses additional
challenges compared to the speed scaling problem for sequential jobs. Our goal
is to minimize sum of energy consumption and some performance metric, which
in this paper includes either total flow time or makespan for a set of jobs. The
flow time of a job is the duration between its release and completion, and the
total flow time for a set of jobs is the sum of flow time of all jobs. The makespan
is the completion time of the last completed job. Both metrics are widely used
in scheduling literature. Although energy and flow time (or makespan) have dif-
ferent units, optimizing a combination of the two can be justified by looking at
both objectives from a unified point of view in terms of economic costs.

Since Albers and Fujiwara [2] initiated minimizing total flow time plus energy,
many results (e.g., [4, 11, 3, 6, 7, 14]) have been obtained under different online
settings. Some results assume that the scheduling algorithm is clairvoyant, that
is, it gains complete knowledge of a job, such as its total work, immediately upon
the job’s arrival; the other results are based on a more practical non-clairvoyant
setting, where the scheduler knows nothing about the job. Most of these results,
however, only concern scheduling sequential jobs on a single processor, and to the
best of our knowledge, no previous work has considered makespan plus energy.
The closest results to ours are by Chan, Edmonds and Pruhs [7], and Sun,
Cao and Hsu [14], who studied non-clairvoyant scheduling for parallel jobs on
multiprocessors to minimize total flow time plus energy. In both work, it is
shown that any non-clairvoyant algorithm that allocates processors of uniform
speed to a job will perform poorly, or Ω(P (α−1)/α2

)-competitive, where P is
the total number of processors. Intuitively, any non-clairvoyant algorithm may
allocate a “wrong” number of processors to a job compared to its parallelism,
thus either incurs excessive energy waste or causes severe execution delay. It turns
out that non-uniform speed scaling can alleviate the problem. A lower bound of
Ω(log1/α P) has been shown in this case for any non-clairvoyant algorithm that
allocates processors of different speeds to a job [7, 15].

In this paper, we consider a setting that lies in between clairvoyant and non-
clairvoyant settings. In particular, a scheduling algorithm is allowed to know
the available parallelism of a job at the immediate next step, or the instanta-
neous parallelism (IP). Any characteristic of the job in the future, such as its
remaining parallelism and work, is still unknown. Hence, we call such algorithms
IP-clairvoyant. In many parallel systems using centralized task queue or thread
pool, instantaneous parallelism is simply the number of ready tasks in the queue
or the number of ready threads in the pool, which is information practically
available to the scheduler. Our contributions include the following algorithmic
results that use instantaneous parallelism to schedule jobs:

– We present an O(1)-competitive algorithm with respect to total flow time
plus energy. This significantly improves upon any non-clairvoyant algorithm
and is the first O(1)-competitive algorithm for multiprocessor speed scaling
on parallel jobs.

– We present an O(ln1−1/α P)-competitive algorithm with respect to makespan
plus energy for batched parallel jobs consisting of sequential and fully-parallel

Speed Scaling for Energy and Performance with Instantaneous Parallelism 3

phases. We also give a matching lower bound of Ω(ln1−1/α P) for any IP-
clairvoyant algorithm.

For total flow time plus energy, the improved result of our IP-clairvoyant algo-
rithm over any non-clairvoyant algorithm comes from the fact that the knowledge
of instantaneous parallelism enables a scheduling algorithm to allocate a “right”
number of processors to a job at any time. This ensures no energy waste while
at the same time guaranteeing sufficient execution rate for the jobs. Moreover,
our IP-clairvoyant algorithm only requires allocating uniform-speed processors
to a job, thus may have better feasibility in practice.

In addition, compared to minimizing total flow time plus energy, where the
common practice is to set the power proportionally to the number of active
jobs [4, 11, 3, 6] at any time, we show that the optimal strategy for minimizing
makespan plus energy is to set the power consumption at a constant level, or
precisely 1

α−1 at any time, where α is the power parameter.

2 Models and Objective Functions

We consider a set J = {J1, J2, · · · , Jn} of n jobs to be scheduled on P processors.
Adopting the notations in [8, 7], we assume that each job Ji ∈ J contains ki

phases 〈J1
i , J2

i , · · · , Jki
i 〉, and each phase Jk

i has an amount of work wk
i and a

speedup function Γ k
i . Unlike [8, 7], which assumed that each phase admits an

arbitrary non-decreasing and sub-linear speedup, we consider the case where each
phase has a linear speedup function up to a certain parallelism hk

i ≥ 1. Suppose
that at any time t, job Ji is in its k-th phase and is allocated ai(t) processors of
speed si(t). Then, only āi(t) = min{ai(t), hk

i } processors are effectively utilized,
and the speedup or the execution rate of the job at time t is given by Γ k

i (t) =
āi(t)si(t). The span lki of phase Jk

i , which is a convenient parameter representing
the time to execute the phase with hk

i or more processors of unit speed, is given by
lki = wk

i /hk
i . We say that phase Jk

i is fully-parallel if hk
i = ∞ and it is sequential

if hk
i = 1. Moreover, if job Ji consists of only sequential and fully-parallel phases,

we call it (Par-Seq)* job [13]. Finally, for each job Ji, we define its total work
to be w(Ji) =

∑ki

k=1 wk
i and define its total span to be l(Ji) =

∑ki

k=1 lki .
At any time t, a scheduling algorithm needs to specify the number ai(t) of

processors allocated to each job Ji, as well as the speed si(t) of the allocated
processors. The algorithm is said to be IP-clairvoyant if it is only aware of the
instantaneous parallelism (IP) of the job, i.e., hk

i if job Ji is in phase Jk
i at time

t. Any characteristic of the job in the future, including the remaining work of
the phase and the existence of any subsequent phase is not available. We require
that the total processor allocations cannot be more than the total number of
processors at any time, i.e.,

∑n
i=1 ai(t) ≤ P . Let ri and ci denote the release

time and completion time of job Ji, respectively. If all jobs arrive in a batch,
then their release times are all assumed to be 0. Otherwise, we assume without
loss of generality that the first released job arrives at time 0. We require that
any phase of a job cannot be executed unless all its preceding phases have been

4 Hongyang Sun, Yuxiong He and Wen-Jing Hsu

completed, i.e., ri = c0
i ≤ c1

i ≤ · · · ≤ cki
i = ci, and

∫ ck
i

ck−1
i

Γ k
i (t)dt = wk

i for all

1 ≤ k ≤ ki, where ck
i denotes the completion time of phase Jk

i .
The flow time fi of job Ji is the duration between its release and completion,

i.e., fi = ci − ri. The total flow time F (J) of all jobs in J is given by F (J) =∑n
i=1 fi, and the makespan M(J) is the completion time of the last completed

job, i.e., M(J) = maxi=1,···,n ci. Job Ji is said to be active at time t if it is
released but not completed at t, i.e., ri ≤ t ≤ ci. An alternative expression for
total flow time is F (J) =

∫∞
0

ntdt, where nt is the number of active jobs at
time t. For each processor at a particular time, its power consumption is given
by sα if it runs at speed s, where α > 1 is the power parameter. Let ui(t) denote
the power consumed by job Ji at time t, i.e., ui(t) = ai(t)si(t)α. The energy
consumption ei of the job is then given by ei =

∫∞
0

ui(t)dt, and the total energy
consumption E(J) of the job set is E(J) =

∑n
i=1 ei, or alternatively E(J) =∫∞

0
utdt, where ut =

∑n
i=1 ui(t) denotes the total power consumption of all jobs

at time t. We consider total flow time plus energy G(J) = F (J) + E(J) and
makespan plus energy H(J) = M(J)+E(J) of the job set, and use competitive
analysis to bound G(J) or H(J) by comparing them with the performances of
the optimal offline algorithms, denoted by G∗(J) and H∗(J) respectively.

3 Total Flow Time plus Energy

3.1 Preliminaries

We first derive a lower bound on the total flow time plus energy, which will help
conveniently bound the performance of an online algorithm through indirect
comparing with the optimal.

Lemma 1. The optimal total flow time plus energy of a job set J satisfies
G∗(J) ≥ G∗1(J) = α

(α−1)1−1/α

∑n
i=1

∑ki

k=1
wk

i

(hk
i)1−1/α .

Proof. Consider any phase Jk
i of any job Ji ∈ J . The optimal scheduler will

allocate a fixed number, say ai, processors of the same speed, say si, to the
phase throughout its execution. This is because, by the convexity of the power
function, if different numbers of processors or different speeds are used, then
averaging the processor numbers or the speeds will result in the same execution
rate hence flow time but less energy consumption [16]. Moreover, we have ai ≤
hk

i , since allocating more processors to a phase than its parallelism incurs more
energy without improving flow time. The flow time plus energy introduced by
the execution of Jk

i is then given by wk
i

aisi
+ wk

i

aisi
· ais

α
i = wk

i

(
1

aisi
+ sα−1

i

)
≥

α
(α−1)1−1/α · wk

i

a
1−1/α
i

≥ α
(α−1)1−1/α · wk

i

(hk
i)1−1/α . Extending this lower bound to all

phases of all jobs proves the lemma. ut
We now describe an amortized local competitiveness argument [4] to prove

the competitive ratio of our online scheduling algorithm. We first define some
notations. For any job set J at time t, let dGA(J (t))

dt and dG∗(J ∗(t))
dt denote the

Speed Scaling for Energy and Performance with Instantaneous Parallelism 5

rates of change for the total flow time plus energy under an online scheduler A

and the optimal offline scheduler, respectively. Apparently, we have dGA(J (t))
dt =

nt + ut, and dG∗(J ∗(t))
dt = n∗t + u∗t , where n∗t and u∗t denote the number of active

jobs and power consumption under the optimal at time t. Moreover, let dG∗1(J (t))
dt

denote the rate of change for the lower bound given in Lemma 1 with respect
to the execution of the job set under online algorithm A at time t. Lastly, we
need to define a potential function Φ(t) associated with the status of the job
set at any time t under both the online algorithm and the optimal. Then, we
can similarly define dΦ(t)

dt to be the rate of change for the potential function at
t. The following lemma shows that the competitive ratio of algorithm A can be
obtained by bounding the performance of A at any time t with respect to the
optimal scheduler through these rates of change.

Lemma 2. Suppose that an online algorithm A schedules a set J of jobs. Then
A is (c1 + c2)-competitive with respect to total flow time plus energy, if given a
potential function Φ(t), the execution of the job set under A satisfies

- Boundary condition: Φ(0) ≤ 0 and Φ(∞) ≥ 0;
- Arrival condition: Φ(t) does not increase when a new job arrives;
- Completion condition: Φ(t) does not increase when a job completes;
- Running condition: dGA(J (t))

dt + dΦ(t)
dt ≤ c1 · dG∗(J ∗(t))

dt + c2 · dG∗1(J (t))
dt .

Proof. Let T denote the set of time instances when a job arrives or completes
under either the online algorithm A or the optimal. Integrating the running
condition over time, we get GA(J) + Φ(∞) − Φ(0) +

∑
t∈T (Φ(t−)− Φ(t+)) ≤

c1 · G∗(J) + c2 · G∗1(J), where t− and t+ denote the time right before and
after t. Now, applying boundary, arrival and completion conditions to the above
inequality, we get GA(J) ≤ c1 · G∗(J) + c2 · G∗1(J). Since G∗1(J) is a lower
bound on the total flow time plus energy of job set J according to Lemma 1,
the performance of algorithm A satisfies GA(J) ≤ (c1 + c2) ·G∗(J). ut

3.2 U-CEQ and Performance

We present and analyze a IP-clairvoyant algorithm U-Ceq (Uniform Conserva-
tive Equi-partitioning), which is shown in Algorithm 1. U-Ceq uses a conser-
vative version of the well-known Equi (Equi-partitioning) algorithm [8], which
at any time t divides the total number P of processors equally among the nt

active jobs. However, U-Ceq makes sure that no job is allocated more proces-
sors than its instantaneous parallelism, which essentially avoids any waste of
processor cycle hence energy consumption. Moreover, the speed of all allocated
processors in U-Ceq is set in a uniform manner, and is therefore more feasible
to implement in practice than the best known non-clairvoyant algorithms that
rely on non-uniform speed scaling [7, 14].

We can see that each job Ji at any time t under U-Ceq consumes power
ui(t) = 1

α−1 . Therefore, the overall power consumption is ut = nt

α−1 , which has
been a common practice to minimize total flow time plus energy in the speed
scaling literature (see, e.g., [4, 11, 3, 6]). The intuition is that an efficient online

6 Hongyang Sun, Yuxiong He and Wen-Jing Hsu

Algorithm 1 U-Ceq

1: At any time t, allocate ai(t) = min{hk
i , P/nt} processors to each active job

Ji, where hk
i is the instantaneous parallelism of Ji at time t.

2: set the speed of the allocated processors to si(t) =
(

1
(α−1)ai(t)

)1/α

.

algorithm should balance total flow time and energy. Since the rate of increase for
the total flow time at time t is the number of active jobs nt, having proportional
increase for the energy consumption provides a good balance.

At time t, when job Ji is in its k-th phase, we say that it is satisfied if
its processor allocation is exactly the instantaneous parallelism, i.e., ai(t) = hk

i .
Otherwise, the job is deprived if ai(t) < hk

i . Let JS(t) and JD(t) denote the set of
satisfied and the set of deprived jobs at time t, respectively. For convenience, we
let nS

t = |JS(t)| and nD
t = |JD(t)|. Apparently, we have nt = nS

t +nD
t . Moreover,

we define xt = nD
t /nt to be the deprived ratio. Since there is no energy waste,

we will show that the execution rate for each job Ji, given by Γ k
i (t) = ai(t)

1−1/α

(α−1)1/α ,
is sufficient to ensure the competitive performance of U-Ceq.

To apply the amortized local competitiveness argument shown in Lemma 2,
we adopt the potential function by Lam et al. [11] in the analysis of online speed
scaling algorithm for sequential jobs. Let nt(z) denote the number of active jobs
whose remaining work is at least z at time t under U-Ceq, and let n∗t (z) denote
the number of active jobs whose remaining work is at least z under the optimal.
The potential function is defined to be

Φ(t) = η

∫ ∞

0

nt(z)∑

i=1

i1−1/α

− nt(z)1−1/αn∗t (z)

 dz, (1)

where η = η′

P 1−1/α and η′ = 2α2

(α−1)1−1/α . We also need to apply the following
lemma in our proof, which gives us an important inequality.

Lemma 3. n
1−1/α
t s∗j ≤ λP 1−1/α

α

(
s∗j

)α + 1−1/α
λ1/(α−1)P 1/α nt for any nt, s

∗
j ≥ 0 and

P, λ > 0.

Proof. The lemma is a direct result of Young’s Inequality, which has been
previously applied in [4, 11, 7, 6]. It is formally stated as follows. If f is a
continuous and strictly increasing function on [0, c] with c > 0, f(0) = 0, a ∈
[0, c] and b ∈ [0, f(c)], then ab ≤ ∫ a

0
f(x)dx +

∫ b

0
f−1(x)dx, where f−1 is the

inverse function of f . In this case, by setting f(x) = λP 1−1/αxα−1, a = s∗j and

b = n
1−1/α
t , the lemma can be implied. ut

Theorem 1. U-Ceq is O(1)-competitive with respect to total flow time plus
energy for any set of parallel jobs.

Speed Scaling for Energy and Performance with Instantaneous Parallelism 7

Proof. We will show that, with the potential function defined in Eq. (1), the
execution of any job set under U-Ceq (UC for short) satisfies boundary, arrival
and completion conditions shown in Lemma 2, as well as the running condition
dGUC(J (t))

dt + dΦ(t)
dt ≤ c1 · dG∗(J ∗(t))

dt + c2 · dG∗1(J (t))
dt , where c1 = max{ 2α2

α−1 , 2αα}
and c2 = 2α. Since both c1 and c2 are constants with respect to P , the theorem
is proved. We now examine each of these conditions in the following.

- Boundary condition: At time 0, no job exists. The terms nt(z) and n∗t (z)
are both 0 for all z. Therefore, we have Φ(0) = 0. At time ∞, all jobs have
completed, so again we have Φ(∞) = 0. Hence, the boundary condition holds.

- Arrival condition: Suppose that a new job with work w arrives at time
t. Let t− and t+ denote the time right before and after t. Thus, we have
nt+(z) = nt−(z) + 1 for z ≤ w and nt+(z) = nt−(z) for z > w, and similarly
n∗t+(z) = n∗t−(z) + 1 for z ≤ w and n∗t+(z) = n∗t−(z) for z > w. For conve-

nience, we define φt(z) =
(∑nt(z)

i=1 i1−1/α
)
− nt(z)1−1/αn∗t (z). It is obvious that

for z > w, we have φt+(z) = φt−(z). For z ≤ w, we can get φt+(z) − φt−(z) =
n∗t−(z)

(
nt−(z)1−1/α − (nt−(z) + 1)1−1/α

) ≤ 0. Hence, Φ(t+) = η
∫∞
0

φt+(z)dz ≤
η

∫∞
0

φt−(z)dz = Φ(t−), and the arrival condition holds.
- Completion condition: When a job completes under either U-Ceq or the

optimal, Φ(t) is unchanged since n(t) or n∗(t) is unchanged for all z > 0. Hence,
the completion condition holds.

- Running condition: At any time t, suppose that the optimal offline sched-
uler sets the speed of the j-th processor to s∗j , where j = 1, · · · , P . We have
dGUC(J (t))

dt = nt + ut = α
α−1nt and dG∗(J ∗(t))

dt = n∗t + u∗t = n∗t +
∑P

j=1

(
s∗j

)α.

To bound the rate of change dG∗1(J (t))
dt , which only depends on the portions

of the jobs executed under U-Ceq at t, we focus on the set JS(t) of satisfied
jobs. Since each job Ji ∈ JS(t) has processor allocation ai(t) = hk

i , we can get
dG∗1(J (t))

dt ≥ α
(α−1)1−1/α

∑
Ji∈JS(t)

Γ k
i (t)

(hk
i)

1−1/α = α
α−1 |JS(t)| = α

α−1 (1 − xt)nt. We

now focus on finding an upper bound for dΦ(t)
dt . In this case, we consider the set

JD(t) of deprived jobs, which in the worst case may have the most remaining
work. In addition, each job Ji ∈ JD(t) has processor allocation ai(t) = P/nt.
The rate of change for the potential function can then be shown to satisfy

dΦ(t)
dt

≤ η′

P 1−1/α

−

nD
t∑

i=1

i1−1/αΓ k
i (t) + n

1−1/α
t

P∑

j=1

s∗j

+
η′

P 1−1/α

(
n∗t

nt∑

i=1

(
i1−1/α − (i− 1)1−1/α

)
Γ k

i (t)

)
. (2)

More details on the above derivation can be found in the full version of this paper
[15]. Now, to simplify Inequality (2), we have

∑nt

i=1

(
i1−1/α − (i− 1)1−1/α

)
=

n
1−1/α
t and by approximating summation with integral, we get

∑nD
t

i=1 i1−1/α ≥∫ nD
t

0
i1−1/αdi = (nD

t)2−1/α

2−1/α ≥ x2
t n

2−1/α
t

2 . According to Lemma 3, we also have

8 Hongyang Sun, Yuxiong He and Wen-Jing Hsu

n
1−1/α
t

∑P
j=1 s∗j ≤ λP 1−1/α

α

∑P
j=1

(
s∗j

)α+ (1−1/α)P 1−1/α

λ1/(α−1) nt, where λ is any positive

constant. Finally, we have Γ k
i (t) = P 1−1/α

(α−1)1/αn
1−1/α
t

for each job Ji ∈ JD(t). Thus,

we get dΦ(t)
dt ≤ η′

(
− x2

t

2(α−1)1/α nt + λ
α

∑P
j=1

(
s∗j

)α + 1−1/α
λ1/(α−1) nt + n∗t

(α−1)1/α

)
. Set

λ = 2α−1(α − 1)1−1/α and substitute various rates of change as well as c1, c2

into the running condition, we can verify that it holds for all values of xt. ut

4 Makespan plus Energy

4.1 Performance of the Optimal

We first show that as far as minimizing makespan plus energy for batched jobs,
the optimal (online/offline) strategy maintains a constant total power 1

α−1 at
any time. This corresponds to the power equality property shown in [12], which
applies to any optimal offline algorithm for the makespan minimization problem
with an energy budget.

Lemma 4. For any schedule A on a set J of batched jobs, there exists a sched-
ule B that executes J with a constant total power 1

α−1 at any time, and performs
no worse than A with respect to makespan plus energy, i.e., HB(J) ≤ HA(J).

Proof. For any schedule A on a set J of batched jobs, consider an interval
∆t during which the speeds of all processors, denoted as (s1, s2, · · · , sP), remain
unchanged. The makespan plus energy of A incurred by executing this portion
of the job set is given by HA = ∆t(1 + u), where u =

∑P
j=1 sα

j is the power
consumption of all processors during ∆t. We now construct schedule B such
that it executes the same portion of the job set by running the j-th processor at

speed k ·sj , where k =
(

1
(α−1)u

)1/α

. This portion will then finish under schedule

B in ∆t
k time, and the power consumption at any time in this interval is given by

1
α−1 . The makespan plus energy of B incurred by executing the same portion of
the job set is HB = ∆t

k (1 + 1
α−1) = α

(α−1)1−1/α ∆tu1/α. Since 1+u
u1/α is minimized

when u = 1
α−1 , we have HA

HB
= (α−1)1−1/α

α · 1+u
u1/α ≥ 1, i.e., HA ≥ HB . Extending

this argument to all such intervals in schedule A proves the lemma. ut
Compared to total flow time plus energy, where the completion time of each

job contributes to the overall objective function, makespan for a set of jobs
is the completion time of the last job. The other jobs only contribute to the
energy consumption part of the objective, thus can be slowed down to consume
less energy, which eventually results in better overall performance. Based on this
observation as well as Lemma 4, we derive the performance of the optimal offline
scheduler for any batched (Par-Seq)* job set in the following lemma.

Lemma 5. The optimal makespan plus energy for any batched set J of (Par-

Seq)* jobs satisfies H∗(J) ≥ α
(α−1)1−1/α ·max{

∑n
i=1 w(Ji)

P 1−1/α , (
∑n

i=1 l(Ji)α)1/α}.

Speed Scaling for Energy and Performance with Instantaneous Parallelism 9

Proof. Given any job Ji ∈ J , define Ji,P to be a job with a single fully-parallel
phase of the same work as Ji, and define Ji,S to be a job with a single sequential
phase of the same span as Ji. Moreover, we define JP = {Ji,P : Ji ∈ J } and
JS = {Ji,S : Ji ∈ J }. Clearly, the optimal makespan plus energy for JP and JS

will be no worse than that for J , i.e., H∗(J) ≥ H∗(JP) and H∗(J) ≥ H∗(JS),
since the optimal schedule for J is a valid schedule for JP and JS .

For job set JP , the optimal scheduler can execute the jobs in any order
since all jobs are fully-parallel in this case. Moreover, by the convexity of the
power function, all P processors are run with constant speed s. According to

Lemma 4, we have Psα = 1
α−1 , hence s =

(
1

(α−1)P

)1/α

. The makespan plus

energy is therefore H∗(JP) =
∑n

i=1 w(Ji)

Ps (1 + Psα) = α
(α−1)1−1/α ·

∑n
i=1 w(Ji)

P 1−1/α .
For job set JS , the optimal can execute each job on a single processor with

constant speed. Moreover, all jobs are completed simultaneously, since otherwise
jobs completed earlier can be slowed down to save energy without affecting
makespan. Let si denote the speed by the optimal for job Ji,S , so l(J1)

s1
= l(J2)

s2
=

· · · = l(Jn)
sn

, and
∑n

i=1 sα
i = 1

α−1 according to Lemma 4. Therefore, we have

si = 1
(α−1)1/α · l(Ji)

(∑n
i=1 l(Ji)α)1/α for i = 1, 2, · · · , n. The makespan plus energy is

H∗(JS) = l(J1)
s1

+ l(J1)
s1

(
∑n

i=1 sα
i) = α

(α−1)1−1/α (
∑n

i=1 l(Ji)α)1/α. ut

4.2 P-FIRST and Performance

We now present and analyze a IP-clairvoyant algorithm P-First (Parallel-First)
for any batched set J of (Par-Seq)* jobs. As shown in Algorithm 2, P-First
will first execute the fully-parallel phases of any job whenever possible, and then
executes the sequential phases of all jobs at the same rate.

Algorithm 2 P-First

1: if there is at least one active job in fully-parallel phase at any time t then

2: execute any such job on P processors, each with speed
(

1
(α−1)P

)1/α

.
3: else
4: execute all nt active jobs on P ′ = min{nt, P} processors by equally sharing

the processors among the jobs; each processor runs at speed
(

1
(α−1)P ′

)1/α

.

P-First ensures that the overall energy consumption E(J) and the makespan
M(J) of job set J satisfies E(J) = 1

α−1M(J), since at any time t, the total

power is given by ut = 1
α−1 , and E(J) =

∫ M(J)

0
utdt. The makespan plus en-

ergy of the job set thus satisfies H(J) = E(J) + M(J) = α
α−1M(J). The

performance of P-First is shown in the following theorem.

10 Hongyang Sun, Yuxiong He and Wen-Jing Hsu

Theorem 2. P-First is O(ln1−1/α P)-competitive with respect to makespan
plus energy for any set of batched (Par-Seq)* jobs, where P is the total number
of processors.

Proof. Since the makespan plus energy of job set J scheduled by P-First
satisfies H(J) = α

α−1M(J), we only focus on the makespan M(J) by bounding
separately the time M ′(J) when all P processors are utilized and the time
M ′′(J) when less than P processors are utilized. Obviously, we have M(J) =
M ′(J) + M ′′(J).

According to P-First, the execution rate when all P processors are utilized
is given by P 1−1/α

(α−1)1/α . The total work completed in this case is upper bounded

by
∑n

i=1 w(Ji). Hence, we have M ′(J) ≤ (α − 1)1/α
∑n

i=1 w(Ji)

P 1−1/α . We now bound
M ′′(J) when less than P processors are used, which only occurs while P-First
executes sequential phases. Since all jobs are batch released, the number of active
jobs monotonically decreases. Let T denote the first time when the number of
active jobs drops below P , and let m = nT . Therefore, we have m < P . For
each of the m active job Ji at time T , let l̄i denote the remaining span of the
job. Rename the jobs such that l̄1 ≤ l̄2 ≤ · · · ≤ l̄m. Since P-First executes the
sequential phases of all jobs at the same speed, the sequential phases of the m jobs
will complete exactly in the above order. Define l̄0 = 0, then we have M ′′(J) =∑m

i=1
l̄i−l̄i−1

(1
(α−1)(m−i+1))

1/α = (α − 1)1/α
∑m

i=1

(
(m− i + 1)1/α − (m− i)1/α

)
l̄i. For

convenience, define ci = (m− i + 1)1/α − (m− i)1/α for 1 ≤ i ≤ m, and we can
get ci ≤ 1

(m−i+1)1−1/α . Let R =
∑m

i=1 l̄αi , and subject to this condition and the

ordering of l̄i,
∑m

i=1 ci · l̄i is maximized when l̄i = R1/α · c
1

α−1
i(∑m

i=1 c
α

α−1
i

)1/α . Hence,

we have M ′′(J) ≤ (α− 1)1/αR1/α
(∑m

i=1 c
α

α−1
i

)1−1/α

≤ (α− 1)1/αR1/αH
1−1/α
m ,

where Hm = 1 + 1/2 + · · ·+ 1/m denotes the m-th harmonic number.
The makespan plus energy of the job set scheduled under P-First thus

satisfies H(J) ≤ α
(α−1)1−1/α

(∑n
i=1 w(Ji)

P 1−1/α + R1/αH
1−1/α
m

)
. Since it is obvious that∑n

i=1 l(Ji)α ≥ ∑m
i=1 l̄αi = R, comparing the performance of P-First with that of

the optimal in Lemma 5, we have H(J) ≤ (1+H
1−1/α
m)·H∗(J) = O(ln1−1/α P)·

H∗(J), as m < P and it is well-known that Hm = O(ln m). ut
From the proof of Theorem 2, we observe that the competitive ratio of P-

First is dominated by the execution of sequential phases of the (Par-Seq)*
jobs. Without knowing the jobs’ future work, the optimal strategy for any online
algorithm does seem to execute their sequential phases at the same rate. In the
following theorem, we confirm this intuition by proving a matching lower bound
for any IP-clairvoyant algorithm using sequential jobs only. It also implies that
P-First is asymptotically optimal with respect to makespan plus energy.

Theorem 3. Any IP-clairvoyant algorithm is Ω(ln1−1/α P)-competitive with re-
spect to makespan plus energy, where P is the total number of processors.

Speed Scaling for Energy and Performance with Instantaneous Parallelism 11

Proof. Consider a batched set J of P sequential jobs, where the i-th job has
span l(Ji) = 1

(P−i+1)1/α . Since the number of jobs is the same as the num-
ber of processors, any reasonable algorithm will assign one job to one proces-
sor. From Lemma 5, the optimal offline scheduler has makespan plus energy
H∗(J) = α

(α−1)1−1/α H
1/α
P , where HP is the P -th harmonic number. We will

show that P-First performs no worse than any IP-clairvoyant algorithm A.
From proof of Theorem 2, we can get HPF (J) = α

α−1M(J) = α
(α−1)1−1/α ·

∑P
i=1

(
(P − i + 1)1/α − (P − i)1/α

)
l(Ji) ≥ α

(α−1)1−1/α · ∑P
i=1

l(Ji)
α(P−i+1)1−1/α =

1
(α−1)1−1/α HP . Comparing the performances of P-First and the optimal proves
the theorem, since it is also well-known that HP = Ω(lnP).

To show HPF (J) ≤ HA(J), we construct schedules from A to P-First in
three steps without increasing the total cost. For schedule A, the adversary al-
ways assigns the i-th job to the processor that first completes 1

(P−i+1)1/α amount
of work with ties broken arbitrarily. For convenience, we let the i-th job assigned
to the i-th processor. First, we construct schedule A′ from A by executing each
job Ji with constant speed s′i derived by taking the average speed of proces-
sor i in A. Based on the convexity of the power function, the completion time
of each job remains the same in A′ but the energy may be reduced. Thus, we
have HA′(J) ≤ HA(J). According to the adversarial strategy, the processor
speeds in A′ satisfy s′1 ≥ s′2 ≥ · · · ≥ s′P . We then construct schedule A′′ by ex-
ecuting each job Ji with speed s′P throughout its execution. Since we also have
l(J1) < l(J2) < · · · < l(JP), the makespan in A′′ is still determined by job JP

and is the same as that in A′, but the energy may be reduced by slowing down
other jobs. Thus, we have HA′′(J) ≤ HA′(J). Note that the speeds of all pro-
cessors are the same in A′′. According to Lemma 4, we can construct schedule
B from A′′ such that it consumes constant total power 1

α−1 at any time and
HB(J) ≤ HA′′(J). By observing that B is identical to P-First, the proof is
complete. ut

5 Discussion

For the objective of makespan plus energy, we have only studied the performance
of IP-clairvoyant algorithms on (Par-Seq)* jobs. How to deal with jobs with
arbitrary parallelism profile and what is the performance in the non-clairvoyant
setting remain interesting problems to consider. In particular, comparing the
known performance ratios of IP-clairvoyant and non-clairvoyant algorithms with
respect to both objective functions as shown in Table 1, we conjecture that min-
imizing makespan plus energy is inherently more difficult than minimizing total
flow time plus energy, hence is likely to incur a much larger lower bound in the
non-clairvoyant setting. Intuitively, a non-clairvoyant algorithm for makespan
plus energy can potentially make mistakes not only in speed assignment, but
also in processor allocation. The former mistake leads to bad performance since
jobs that complete early may in fact be slowed down to save energy, and this
has contributed to the lower bound of IP-clairvoyant algorithms shown in this

12 Hongyang Sun, Yuxiong He and Wen-Jing Hsu

Total flow time plus energy Makespan plus energy

IP-clairvoyant O(1) Ω(ln1−1/α P)

Non-clairvoyant Ω(log1/α P) ?
Table 1. Performance comparison for total flow time plus energy and makespan plus
energy under IP-clairvoyant setting and non-clairvoyant setting.

paper. The situation may deteriorate further in the non-clairvoyant setting as
more energy will be wasted or slower execution rate will result if a wrong number
of processors is also allocated to a job.

References

[1] S. Albers. Energy-efficient algorithms. Communications of the ACM, 53(5):86–96,
2010.

[2] S. Albers and H. Fujiwara. Energy-efficient algorithms for flow time minimization.
In STACS, pages 621–633, 2006.

[3] N. Bansal, H.-L. Chan, and K. Pruhs. Speed scaling with an arbitrary power
function. In SODA, pages 693–701, 2009.

[4] N. Bansal, K. Pruhs, and C. Stein. Speed scaling for weighted flow time. In
SODA, pages 805–813, 2007.

[5] D. M. Brooks, P. Bose, S. E. Schuster, H. Jacobson, P. N. Kudva, A. Buyukto-
sunoglu, J.-D. Wellman, V. Zyuban, M. Gupta, and P. W. Cook. Power-aware
microarchitecture: Design and modeling challenges for next-generation micropro-
cessors. IEEE Micro, 20(6):26–44, 2000.

[6] H.-L. Chan, J. Edmonds, T.-W. Lam, L.-K. Lee, A. Marchetti-Spaccamela, and
K. Pruhs. Nonclairvoyant speed scaling for flow and energy. In STACS, pages
409–420, 2009.

[7] H.-L. Chan, J. Edmonds, and K. Pruhs. Speed scaling of processes with arbitrary
speedup curves on a multiprocessor. In SPAA, pages 1–10, 2009.

[8] J. Edmonds. Scheduling in the dark. In STOC, pages 179–188, 1999.
[9] D. Grunwald, C. B. Morrey III, P. Levis, M. Neufeld, and K. I. Farkas. Policies

for dynamic clock scheduling. In OSDI, pages 6–6, 2000.
[10] S. Irani and K. Pruhs. Algorithmic problems in power management. SIGACT

News, 36(2):63–76, 2005.
[11] T. W. Lam, L.-K. Lee, I. K.-K. To, and P. W. H. Wong. Speed scaling functions

for flow time scheduling based on active job count. In ESA, pages 647–659, 2008.
[12] K. Pruhs, R. van Stee, and P. Uthaisombut. Speed scaling of tasks with precedence

constraints. In WAOA, pages 307–319, 2005.
[13] J. Robert and N. Schabanel. Non-clairvoyant batch set scheduling: Fairness is fair

enough. In ESA, pages 741–753, 2007.
[14] H. Sun, Y. Cao, and W.-J. Hsu. Non-clairvoyant speed scaling for batched parallel

jobs on multiprocessors. In CF, pages 99–108, 2009.
[15] H. Sun, Y. He, and W.-J. Hsu. Energy-Efficient Multiprocessor Scheduling for

Flow Time and Makespan. CoRR abs/1010.4110, 2010.
[16] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU energy.

In FOCS, pages 374–382, 1995.

