
Malleable-Lab: A Tool for Evaluating Adaptive
Online Schedulers on Malleable Jobs

Yangjie Cao∗, Hongyang Sun†, Wen-Jing Hsu† and Depei Qian∗
∗School of Electronic and Information Engineering, Xi’an Jiaotong University, China

Email: caoyj@stu.xjtu.edu.cn, depeiq@xjtu.edu.cn
†School of Computer Engineering, Nanyang Technological University, Singapore

E-mail: {sunh0007, hsu}@ntu.edu.sg

Abstract—The emergence of multi-core computers has led to
explosive development of parallel applications and hence the
need of efficient schedulers for parallel jobs. Adaptive online
schedulers have recently been proposed to exploit the multiple
processor resource and shown good promise in theory. To verify
the effectiveness of these parallel schedulers, it will be reassuring
to test them extensively with various parallel workloads. Unfor-
tunately it is still unknown how the job mixes will eventually
evolve for multi-core computers; moreover, it is also non-obvious
how the parallelism of a typical job will look like. To evaluate
the dynamic behaviors of an adaptive scheduler under various
scenarios, an ideal workload model for schedulers should thus
allow the user to vary parallelism profiles of individual jobs as
well as the job arrival patterns. In this paper, we present a tool
called Malleable-Lab, which models malleable parallel jobs by
extending the traditional moldable job models. Instead of gen-
erating a completely random parallelism, which does not allow
clear account of the request-allocate responses, we identify several
generic patterns of parallelism variations in parallel programs.
Using Malleable-Lab we have evaluated two feedback-driven
adaptive schedulers, namely, AG-DEQ (Adaptive-Greedy-DEQ)
and ABG-DEQ (Adaptive B-Greedy-DEQ), and the well-known
scheduler EQUI (Equi-partition). The results reveal that both
feedback-driven schedulers outperform EQUI, but on the other
hand suffer from high sensitivity to the scheduling overhead. We
also found that ABG-DEQ exhibits better transient responses and
stability than AG-DEQ. In conclusion, the tool has enabled us to
analyze various aspects of the performance of online schedulers,
and we have gained valuable insights for adaptive scheduling of
parallel jobs on multiple processors.

I. INTRODUCTION

The emergence of multi-core computers has led to explosive
development of parallel applications and hence the need of ef-
ficient schedulers for parallel jobs. Adaptive online schedulers
have recently been proposed to exploit the multiple processor
resource [1], [2], [3] and they have shown good promise in
theory. To verify the effectiveness of these parallel schedulers,
it will be reassuring to test them extensively with various
parallel workloads. Unfortunately it is still unknown how the
job mixes will eventually evolve for multi-core computers;
moreover, it is also non-obvious how the parallelism of a
typical job will look like. An ideal parallel workload model for
schedulers should thus allow the user to vary the parallelism
profiles of individual jobs as well as the job arrival patterns.
With the adaptive schedulers, there is a special need to test
the responsiveness and stability of a given request-allocate
cycle. This need arises because, with adaptive schedulers, the

allocation of processors to the jobs is typically done on a
periodical basis: the individual jobs request processors based
on the need and/or utilization in the past scheduling quantum,
and the operating system allocator determines the allotment
based on the requests and available resource.

According to the classification by Feitelson, the parallel
workload model is generally divided into three types, namely,
rigid jobs (which require a fixed number of processors), mold-
able jobs (where the jobs can run on an arbitrary number of
processors at launch time) and malleable jobs (where the jobs
can run on an arbitrary number of processors dynamically) [4].
The existing parallel workload models such as Feitelson96 [5],
Jann97 [6] and Lublin03 [7] belong to rigid job models and
thus lack flexibility in generating jobs with internal parallelism
variations. Other parallel workload models are known as
moldable models such as Downey97 [8] and Cirne01 [9],
which estimate the speedup of a parallel job as a function
of its average parallelism and its variance. Downey’s model,
however, only provides two simple hypothetical parallelism
profiles with low and high variance in parallelism and thus
lacks information about the internal parallelism characteristics
of the parallel applications. Based on the statistical analysis
of a survey concerning many users’ experiences with parallel
machines like IBM SP2, Cirne and Berman [9] provided a
more comprehensive moldable job model by taking the parti-
tion size of the workload into account. However, this model
uses a similar speedup function as Downey’s [8], and also
does not consider the job’s internal parallelism variations. To
model the internal job structure, a flexible hierarchical model
was proposed by Calzarossa et al. [10] and further extended
by Feitelson and Rudolph [4]. At the higher level, a rigid job
model is generated from actual workload logs, which provide
the external characteristics of parallel jobs such as arrival
patterns, work requirements, and average parallelism, etc.
Further processing at the lower level adds internal structures
to the jobs while maintaining their external properties, such as
arrival patterns, work requirements, and average parallelism,
etc. Unfortunately, Feitelson provides only two basic internal
structures of fork/join and workpile jobs.

In this paper, we present a tool called Malleable-Lab, which
models malleable parallel jobs by extending the traditional
moldable job models and using a similar hierarchical approach
as Feitelson. To represent diverse parallelism variations, we



0 1 2 3 4 5

0

20

40

60

80

100

Time

P
ar

al
le

lis
m

Ramp

Poly(II)

Log

Impulse

ExpPoly(I)

Step

(a)

2 4 6 8 10

100

200

300

400

500

600

700

800

Time

P
ar

al
le

lis
m

Step

Ramp

ExpImpulse

Poly(I)

Log
Poly(II)

(b)

Fig. 1. (a) Seven different types of parallelism variation curves specified by Step, Log, Poly(II), Ramp, Poly(I), Exp, Impulse functions. (b) Seven parallelism
variation curves with each one having the same work and length, hence the the same average parallelism.

identify a set of generic internal job structures, which can be
mixed flexibly to capture a wide range of running patterns
of parallel programs. Using Malleable-Lab, we evaluate two
feedback-driven adaptive schedulers that respond to a job’s
parallelism variations, namely, AG-DEQ (Adaptive-Greedy-
DEQ) [1], [11] and ABG-DEQ (Adaptive B-Greedy-DEQ)
[3], and the well-known scheduler EQUI [2], [12], which is
oblivious to job’s parallelism variations. The results reveal that
both feedback-driven schedulers achieve better performance
than EQUI, but suffer from high sensitivity to the scheduling
overhead. Using Malleable-Lab, we also found that ABG-DEQ
exhibits excellent transient responses and stability, much better
than AG-DEQ. In conclusion, the tool enables us to analyze
various aspects of the performance of online schedulers, and
we can gain valuable insights for adaptive scheduling of
parallel jobs on multiple processors.

II. MALLEABLE PARALLEL JOB MODELING

Many parallel job models exist but very few of them allow
generating malleable parallel jobs, which take the internal
parallelism variations of the jobs into account. This kind
of malleable job model, however, is essential to evaluating
adaptive scheduling algorithms whose performance is largely
determined by the parallelism variations.

In Malleable-Lab, we present a flexible malleable parallel
job model based on traditional moldable job models and use
the hierarchical approach, proposed by Calzarossa et al. [10]
and extended by Feitelson and Ruldoph [4], for modeling
internal job structures. A hierarchical approach helps to reduce
the complexity of building parallel workload by decoupling the
modeling process into separate levels. At the higher level, jobs
are created based on workload logs, which provide external
information such as arrival patterns, work requirements, and
average parallelism, etc. In this level we integrate existing job
models, such as Downey97 [8] and Cirne01 [9], to generate
jobs. At the lower level, we propose a framework to construct
the malleable jobs by filling in different internal structures
which describe the job’s parallelism variations over time. It is

generally difficult to describe overall parallelism variations of
a job, but it is possible to identify segments of the job with
specific parallelism structures. In our framework we divide a
job into a series of phases and each phase is specified by its
internal structure described by several parameters representing
the phase’s type, degree of parallelism, work requirement, etc.
In our model, these parameters are used to control the form
of internal parallelism variation and maintain consistency with
the external models. Finally, we mix these different internal
structures or parallelism variation curves to create a diverse
set of parallelism profiles for malleable jobs.

The key task of our framework is how to capture the internal
parallelism variations of parallel programs over time. To
achieve that, we identify several generic forms of parallelism
profiles instead of using completely random parallelism, which
can not describe precisely the running patterns of parallel
programs. Specifically, we identify seven generic forms of
distinct parallelism variation curves, which are specified by
Step, Log, Poly(II), Ramp, Poly(I), Exp and Impulse functions,
as shown in Figure 1a. These various profiles, which can
be further adjusted with different parameters, provide a com-
prehensive coverage of the parallelism dynamics in different
phases: the Step profile describes the more stable parallelism
requirement in a given period of time; the Impulse profile
represents the drastic variation of parallelism in instant time;
the Ramp profile describes linear increasing parallelism; the
Exp, Log and two kinds of Poly profiles describe sub-linear
and super-linear changing parallelism, respectively. Moreover,
these different parallelism variation curves can reflect a wide
range of real parallel program running patterns. For instance,
the Impulse profile can emulate a drastic one-off increase
in parallelism typically encountered in, e.g., a short parallel
FOR loop, while the Step profile can represent a more stable
data-parallel section of the job. The Ramp profile as well as
other profiles can model increases in the job’s parallelism with
different rates for spawning parallel threads. Figure 2 demon-
strates several ideal running parallelism patterns through real
parallel program segments for Step, Ramp, Poly(I) and Exp



Fig. 2. Sample parallel program segments and their corresponding parallelism variation over time.

profiles. In the figure, function F0() represents a thread with
a large amount of computation invoked repeatedly by four
different functions constructing the given parallelism profiles.
As shown in the figure, function F1() consists of a fully
parallelized FOR loop without interdependency profiling the
Step curve; functions F2(), F3() and F4() recursively spawns
themselves and other threads with different calling patterns,
hence creating various rates of increasing parallelism.

These various internal parallelism profiles provide a flexible
way to construct malleable jobs whose parallelism changes
with time. However it is also a challenge to maintain con-
sistency with the original moldable job model. In Malleable-
Lab implementation, we provide a basic way to maintain such
consistency and ensure that all kinds of internal variation
curves are coherent with each other. To realize that, we
generate the required work, average parallelism and phase
length for all parallelism variation curves. Specifically, we
combine a pair of increasing and decreasing profiles together
to create a basic parallelism variation block, as shown in
Figure 1b. We first generate the Step profile which ensures that
the work and the average parallelism adhere to those initially
generated from the higher level. Secondly, other parallelism
variation blocks are derived from the Step profile by varying
the degree of internal parallelism curve but with the same
phase length and work. Therefore, the aggregation of these
different variation curves for a job is ultimately consistent with
the original moldable one. We should mention that there also
exist other ways, such as keeping the same peak parallelism
for each type of variation curve but varying their phase work.

These flexibilities allow us to construct malleable workloads
with different characteristics which are essential to evaluate
the practical performance of adaptive online schedulers.

III. TRANSIENT RESPONSE OF ADAPTIVE SCHEDULING

Adaptive online schedulers have recently been proposed
to exploit the multiple processor resource [1], [2], [3], and
they have shown good promise in theory, but they are seldom
verified in practice due to the lack of suitable tools. Malleable-
Lab, which provides malleable workload with a comprehen-
sive set of internal parallelism variations, is more suitable
for analyzing adaptive schedulers that dynamically allocate
processors to jobs at run time. One benefit of this tool is
to reveal how fast and how accurately an adaptive scheduler
responds to a specific parallelism variation. We refer to such
instantaneous reaction to the parallelism variation as transient
response of the adaptive scheduler, which provides insights
on its performance in practice. In this section, we introduce
two feedback-driven adaptive scheduling strategies, which are
known as AG-DEQ [11] and ABG-DEQ [3]. Both algorithms
allocate processors to jobs in a non-clairvoyant manner, since
generally an algorithm does not have access to the charac-
teristics of the jobs, such as their work, parallelism, etc. For
these feedback-driven adaptive schedulers, the processors are
(re)allocated to jobs periodically in scheduling quanta based on
each individual job’s processor request as well as the operating
system’s allocation policy. In this section, we briefly describe
the two algorithms followed by their transient responses.



0 5 10 15
0

20

40

60

80

100

120

140

Time

P
ar

al
le

lis
m

 o
r 

R
eq

ue
st

 

 

Parallelism
AG−DEQ
ABG−DEQ

(a)

0 5 10 15
0

50

100

150

200

250

300

Time

P
ar

al
le

lis
m

 o
r 

R
eq

ue
st

 

 

Parallelism
AG−DEQ
ABG−DEQ

(b)

0 5 10 15
0

50

100

150

200

250

300

Time

P
ar

al
le

lis
m

 o
r 

R
eq

ue
st

 

 

Parallelism
AG−DEQ
ABG−DEQ

(c)

0 5 10 15
0

50

100

150

200

250

300

Time

P
ar

al
le

lis
m

 o
r 

R
eq

ue
st

 

 

Parallelism
AG−DEQ
ABG−DEQ

(d)

0 5 10 15
0

100

200

300

400

500

600

Time

P
ar

al
le

lis
m

 o
r 

R
eq

ue
st

 

 

Parallelism
AG−DEQ
ABG−DEQ

(e)

0 5 10 15
0

100

200

300

400

500

600

700

800

Time

P
ar

al
le

lis
m

 o
r 

R
eq

ue
st

 

 

Parallelism
AG−DEQ
ABG−DEQ

(f)

Fig. 3. Transient responses of ABG-DEQ and AG-DEQ with respect to (a) Step, (b) Log, (c) Poly(II), (d) Ramp, (e) Poly(I) and (f) Exp parallelism profile.

A. Two Adaptive Schedulers

- AG-DEQ [11]: Each individual job scheduled by AG-
DEQ makes a processor request to the operating system for
the next scheduling quantum based on its processor utilization
in the current quantum. Under ideal allocation, where all re-
quests are satisfied, if the processor utilization in a scheduling
quantum reaches a certain threshold, say 80%, the quantum
is considered as efficient; otherwise, it is inefficient. If the
current quantum is efficient, the processor request for the
next quantum will then increase by a factor of 2; it will

decrease by a factor of 2 if the current quantum is inefficient.
Based on the processor request from each job, the operating
system then allocates processors based on DEQ (Dynamic
Equi-partitioning) policy [13], which attempts to allocate an
equal share of processors to each job, but never allocates more
processors to a job than requested. The surplus processors will
be given to the other jobs with higher processor requests, if
any.

- ABG-DEQ [3]: Unlike AG-DEQ, whose processor re-
quests only respond discretely (by a factor of 2 each time)



with respect to the variations in a job’s parallelism, the request
of ABG-DEQ attempts to be more representative of the job’s
immediate parallelism by setting its processor request for
the next quantum directly to the job’s average parallelism in
the current quantum. Upon receiving the processor requests,
the operating system uses DEQ policy as well to allocate
processors. Note that both AG-DEQ and ABG-DEQ set the
initial processor request when the job is first scheduled to 1.

B. Transient Response

We now study the transient responses of the two adaptive
schedulers using Malleable-Lab. Figure 3 demonstrates the
transient response of AG-DEQ and ABG-DEQ on six generic
forms of parallelism profiles (The transient response of the
Impulse profile is similar to that of the Step profile and
hence is not shown.) In the figure, each profile has the same
work, phase length, and average parallelism. The length of the
scheduling quantum is set to 1/5 of the phase length, which
is scaled in the figures to restore the original parallelism vari-
ation. In addition, we add sequential phases before and after
each profile such that the processor requests of both schedulers
will start and end at a steady state with value of 1. As can
be seen in these figures, the two adaptive schedulers exhibit
different transient responses with respect to these parallelism
variation while their requests are satisfied by the operating
system at all time. For the Step profile, AG-DEQ is able to
gradually catch up with the parallelism change but suffers from
request instability when the parallelism remains constant. In
contrast, ABG-DEQ rapidly approaches the parallelism within
a quantum, and thereafter provides stable requests by directly
utilizing the average parallelism of the job. For the other
profiles, both AG-DEQ and ABG-DEQ are able to respond
gradually to the parallelism variations with ABG-DEQ in
general following more closely the changes of the parallelism
and thus taking shorter time to reach steady state. Using
Malleable-Lab we found that ABG-DEQ has more effective
processor requesting strategy, which suggests that it probably
performs better than AG-DEQ in practice. We will verify
this claim in the next section through more comprehensive
simulations.

IV. PERFORMANCE EVALUATION OF ADAPTIVE
SCHEDULING

In this section, we focus on evaluating the performance
of these online adaptive schedulers using Malleable-Lab. We
develop a simulator by integrating the malleable job model
proposed previously to generate the parallel jobs, based on
Downey’s job model at the high level with the same parameters
as set in [8], while we set the system load proportionally
to arrival rate of the jobs. We compare two feedback-driven
adaptive schedulers AG-DEQ, ABG-DEQ and the well-known
scheduler EQUI, which shares the total number of processors
equally among all running jobs in the system. We first evaluate
the impacts of different parallelism variations on ABG-DEQ,
AG-DEQ and EQUI in unconstrained environment where all
processor requests of each job are granted. This allows us

to evaluate the performances of adaptive schedulers under
a favorable circumstance, for otherwise the advantage of a
more efficient processor request calculation scheme can not be
reflected. Secondly, we simulate a system with 64 processors
and generate more realistic workloads, which construct mal-
leable jobs by mixing different internal profiles, to demonstrate
the performances of these schedulers. In this case the type
of parallelism variation curves of each phase is randomly
generated from seven profiles and the average parallelism
of each phase is chosen uniformly according to original job
model. To compare the performance of different adaptive
schedulers, we use the following metrics: average response
time, which is the elapsed time from when a job arrives for
scheduling to when it completes execution averaged over all
jobs, and average utilization, which is the percentage of well-
utilized processors averaged over all processors allocated to
the jobs.

A. Response Time

The impact of different parallelism variations on response
time ratio of ABG-DEQ, AG-DEQ are shown in Figure 4a,
which gives the average response time of the three schedulers
normalized by the average job length. We do not show
response time ratio of EQUI in this figure, since the response
time ratio of EQUI is approximately equal to 1 in this un-
constrained environment where the processor requests of each
job are granted. From the figure we can see that the response
time of ABG-DEQ is roughly related to the degree at which
the parallelism varies. Specifically, the Step profile contains
the more stable parallelism variation and therefore ABG-DEQ
has the better performance and the performances become
worse with steeper parallelism variations. We should point
out that although the Impulse profile has drastic parallelism
variation, ABG-DEQ has better response time since it can
easily capture its parallelism variation within one quantum
and the Impulse profile occurs less frequently. On the other
hand, the response time of AG-DEQ is relatively insensitive
to different parallelism variations because it is oblivious to
the types of internal parallelism variations. Figure 4a clearly
shows that ABG-DEQ achieves better response time ratio than
AG-DEQ. From the simulation results in this unconstrained
environment we can confirm that an adaptive scheduler with
better transient responses should be able to achieve superior
performances.

Figure 4b shows response time of three adaptive schedulers
under a range of workloads, which constructs malleable jobs
by mixing different internal profiles. From the figure, we can
learn that AG-DEQ and ABG-DEQ significantly outperform
EQUI with respect to response time. An obvious reason is that
both AG-DEQ and ABG-DEQ take advantage of the paral-
lelism feedback based on the information of execution history
while EQUI is oblivious to job’s parallelism and thus has bad
responsiveness. Only when the system has light workload with
a small number of jobs, EQUI shows its advantages because
in this case all the jobs can be easily satisfied on the given
processors. The simulation results demonstrate that feedback-



Step Log Poly(II) Ramp Poly(I) Exp Impulse
1

1.5

2

2.5

3

3.5

4

4.5

5

R
es

po
ns

e 
tim

e 
ra

tio

 

 

AG−DEQ
ABG−DEQ

(a)

0 0.5 1 1.5 2 2.5 3
1

2

3

4

5

6

7

8

R
es

po
ns

eT
im

e 
R

at
io

Load

 

 

EQUI
AG−DEQ
ABG−DEQ

(b)

Fig. 4. Response time of ABG-DEQ, AG-DEQ and EQUI on (a) seven different parallelism profiles in ideal, unconstrained environment and (b) a range of
workloads with mixed parallelism profiles.

Step Log Poly(II) Ramp Poly(I) Exp Impulse
0

0.2

0.4

0.6

0.8

1

1.2

U
til

iz
at

io
n

 

 

AG−DEQ
ABG−DEQ

(a)

0 0.5 1 1.5 2 2.5 3
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
til

iz
at

io
n

Load

 

 

EQUI
AG−DEQ
ABG−DEQ

(b)

Fig. 5. Utilization of ABG-DEQ, AG-DEQ and EQUI on (a) seven different parallelism profiles in ideal, unconstrained environment and (b) a range of
workloads with mixed parallelism profiles.

driven adaptive schedulers are more effective in situations
where many parallel jobs with different parallelism variations
are competing for limited processor resources. Moreover,
Figure 4b also shows that the performance of ABG-DEQ is
always better than that of AG-DEQ, which is again due to the
more effective processor request feedbacks of ABG-DEQ.

B. Utilization

Figure 5a shows the utilization of ABG-DEQ, AG-DEQ
with respect to different internal parallelism variation profiles.
Since processors allotted by EQUI are largely wasted in
the unconstrained environment, the utilization of EQUI is
approximately equal to zero and thus we do not show it in this
figure. As can be seen from the simulation results utilizations
of two feedback-driven schedulers are significantly impacted
by different internal parallelism profiles. In general, smoother
parallelism variations tend to give better utilization. From the
figure we can clearly see that ABG-DEQ achieves a higher
utilization (more than 90%) for the jobs with Step variation
and it is also more sensitive to different internal parallelism
variations. AG-DEQ, as shown in the figure, is also similar to

ABG-DEQ but impacts of parallelism variations are less.

The simulation results conducted for a range of workloads,
as shown in Figure 5b, reveal that the utilization of EQUI
is significantly influenced by the system load while ABG-
DEQ and AG-DEQ are relatively stable. Specifically when
the system has light load, where few jobs exist in the system,
EQUI has the worst utilization since it is blind to the paral-
lelism and equally allocates all the processor resource to each
job which eventually leads to wasting many processor cycles.
Only when the system has high load with a large number
of jobs, EQUI shows its advantages because in this case all
the jobs cannot get enough processor resources although they
may have widely changing parallelism. In addition, Figure
5b shows that the utilization of ABG-DEQ is always better
than that of AG-DEQ, which is again because of the more
effective response to the parallelism variation by ABG-DEQ.
The simulation results reconfirm that adaptive schedulers with
good transient response to parallelism variation can achieve
better utilization.



0 0.5 1 1.5 2 2.5 3
0.4

0.6

0.8

1

1.2

1.4

1.6

Load

R
es

po
ns

e 
T

im
e 

R
at

io
 (

E
Q

U
I /

 A
B

G
−

D
E

Q
)

 

 

γ=0
γ=0.02
γ=0.04
γ=0.06
γ=0.08
γ=0.1

(a)

0 0.5 1 1.5 2 2.5 3
0.4

0.6

0.8

1

1.2

1.4

1.6

Load

R
es

po
ns

e 
T

im
e 

R
at

io
 (

E
Q

U
I /

 A
G

−
D

E
Q

)

 

 

γ=0
γ=0.02
γ=0.04
γ=0.06
γ=0.08
γ=0.1

(b)

0 0.5 1 1.5 2 2.5 3
1

1.5

2

2.5

3

3.5

Load

U
til

iz
at

io
n 

R
at

io
 (

A
B

G
−

D
E

Q
 / 

E
Q

U
I)

 

 

γ=0
γ=0.02
γ=0.04
γ=0.06
γ=0.08
γ=0.1

(c)

0 0.5 1 1.5 2 2.5 3
1

1.5

2

2.5

3

3.5

Load

U
til

iz
at

io
n 

R
at

io
(A

G
−

D
E

Q
 / 

E
Q

U
I)

 

 

γ=0
γ=0.02
γ=0.04
γ=0.06
γ=0.08
γ=0.1

(d)

Fig. 6. Impacts of overhead on ABG-DEQ, AG-DEQ and EQUI with respect to response time and utilization

C. Impacts of overhead on adaptive schedulers

Using Malleable-Lab, we also conduct a set of simulations
to demonstrate the impacts of system overhead on adaptive
schedulers. We capture the number of processor reallocations
during running time, which are used to measure the real-
location overheads. The response time and utilization of a
job under a particular scheduler are then increased by an
additive factor γ ·χ, where χ denotes its number of processor
reallocations and γ depends on the system’s physical overhead
for context switching. Figure 6 shows the response time ratio
and utilization ratio of ABG-DEQ and AG-DEQ by comparing
them with EQUI. From the figures we can see that although
both ABG-DEQ and AG-DEQ achieve better performance
than EQUI under most system loads, the two feedback-driven
scheduling strategies exhibit degraded performances when
the scheduling overhead increases. The reason is that both
feedback-driven schedulers adaptively adjust the processor
allotment to catch up with internal parallelism variations over
time and thus suffer from high sensitivity to the scheduling
overhead. On the other hand, the overhead impact on EQUI is
less since it only introduces the scheduling overhead when a
job finishes or completes. From the simulation results, we can
also learn that the response time of ABG-DEQ and AG-DEQ
becomes worse than EQUI under light to medium loads, espe-

cially when the cost of processor reallocations becomes higher.
In contrast, the utilization of ABG-DEQ and AG-DEQ is better
than EQUI in this case since feedback-driven schedulers can
adaptively adjust the processor requests according to internal
parallelism variations. This again demonstrates that the two
feedback-driven schedulers are able to provide more effective
processor requests. Under heavy system loads, however, the
processor requests tend to be deprived and the advantage of
feedback strategies diminishes since neither schedulers have
direct control over the processor allocations. Therefore, the
performances of all adaptive schedulers are similar in such
case.

V. CONCLUSION

In this paper, we present Malleable-Lab for evaluating
adaptive online schedulers, which provides a flexible malleable
job model based on traditional moldable workload for multiple
processors. This malleable job model represents a wide range
of running patterns of parallel programs and it is more
suitable for evaluating adaptive online scheduling policies
whose performance is sensitive to the internal parallelism
variations. Using Malleable-Lab we comprehensively studied
three adaptive online scheduling strategies and gained valuable
insights of them on multi-processor systems. Generally speak-



ing, feedback-driven schedulers work well but suffer from
the scheduling overhead. The proposed malleable job model
clearly captures the impact of different parallelism variations
on the performance of these adaptive schedulers. One of our
future work items is to further verify how closely these generic
forms of parallelism variations match the running patterns of
the real parallel programs. Another interesting direction is to
learn how to mix these generic forms, and other possible
parallelism variations, to best identify the characteristics of
evolving multi-core programs. We believe that such a tool
will eventually benefit creation and evaluation of innovative
adaptive schedulers.

ACKNOWLEDGMENT

Yangjie Cao and Depei Qian are supported by China
National Hi-tech Research and Development Program
(863 Project) under the grants No. 2007AA01A127,
2009AA01Z107 and Natural Science Foundation of China
under the grant No.60873053. Yangjie Cao worked on this
project while he was a visiting scholar at Nanyang Techno-
logical University during Summer 2009.

REFERENCES

[1] K. Agrawal, Y. He, W.-J. Hsu, and C. E. Leiserson. Adaptive scheduling
with parallelism feedback. In PPoPP, pages 100 – 109, New York City,
NY, USA, 2006.

[2] J. Edmonds. Scheduling in the dark. In STOC, pages 179–188, Atlanta,
GA, USA, 1999.

[3] H. Sun, and W.-J. Hsu. Adaptive B-Greedy (ABG): A Simple yet Efficient
Scheduling Algorithm. In SMTPS in conjunction with IPDPS, pages 1–8,
Miami, FL, USA, 2008.

[4] D. G. Feitelson and L. Rudolph. Metrics and benchmarking for parallel
job scheduling Lecture Notes in Computer Science, vol. 1459, pages 185,
1998.

[5] D. G. Feitelson Packing schemes for gang scheduling Lecture Notes in
Computer Science, pages 89–111, 1996.

[6] J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira and J. Riordan.
Modeling of Workload in MPPs. In JSSPP, pages 95–116, Geneva,
Switzerland, 1997.

[7] U. Lublin and D. G. Feitelson. The workload on parallel supercomputers:
modeling the characteristics of rigid jobs. Journal of Parallel and
Distributed Computing, 2003.

[8] A. B. Downey. A parallel workload model and its implications for
processor allocation 6th Intl. Symposium High Performance Distributed
Computing, 1997.

[9] W. Cirne and F. Berman. A comprehensive model of the supercomputer
workload In 4th Annual Workshop Workload Characterization, pages
140–148, 2001.

[10] M. Calzarossa, A. Merlo, D. Tessera, G. Haring, and G. Kotsis. A
hierarchical approach to workload characterization for parallel systems.
Lecture Notes in Computer Science, vol. 919, pages 102–109, 1995.

[11] Y. He, W.-J. Hsu, and C. E. Leiserson. Provably efficient two-level
adaptive scheduling. In JSSPP, pages 1–32, Saint-Malo, France, 2006.

[12] J. Edmonds, D. D. Chinn, T. Brecht, and X. Deng. Non-clairvoyant
multiprocessor scheduling of jobs with changing execution characteristics.
In STOC, pages 120–129, El Paso, TX, USA, 1997.

[13] C. McCann, R. Vaswani, and J. Zahorjan. A dynamic processor
allocation policy for multiprogrammed shared-memory multiprocessors
ACM Transactions on Computer Systems (TOCS), vol. 11, pages 146-
178, 1993.


