
Scalable hierarchical scheduling for multiprocessor
systems using adaptive feedback-driven policies

Yangjie Cao∗, Hongyang Sun†, Depei Qian∗ and Weiguo Wu∗
∗School of Electronic and Information Engineering, Xi’an Jiaotong University, China

Email: caoyj@stu.xjtu.edu.cn, {depeiq, wgwu}@xjtu.edu.cn
†School of Computer Engineering, Nanyang Technological University, Singapore

E-mail: sunh0007@ntu.edu.sg

Abstract—This work addresses the problem of allocating
resource-intensive parallel jobs on multicore- and multiprocessor-
based systems, where the performance gains largely depend on
effectively exploiting application parallelization across the avail-
able parallel computing resources. The objective is to find efficient
allocation approaches that minimize the parallel jobs’ completion
time, i.e. makespan. Integrating feedback-driven adaptive strate-
gies, we present a general hierarchical scheduling framework
and show that two hierarchical scheduling algorithms: ABG-DS
and AG-DS achieve scalable performance in term of makespan
regardless of the number of hierarchical levels. Specifically, we
prove that both ABG-DS and AG-DS have O(1)-competitive
ratio for batched parallel jobs. Extending an existing tool, called
Malleable-Lab, we evaluate the performance and scalability of
our proposed algorithms and compare with that of well-known
EQUI-based strategies. The simulation results demonstrate that
both ABG-DS and AG-DS generally outperforms EQUI-EQUI for
a wide range of parallel workloads. Moreover, feedback-driven
adaptive scheduling algorithms show better scalability when the
number of levels increases in the scheduling hierarchy.

I. INTRODUCTION

Multicore and multiprocessor computers are increasingly
used to support a wide range of parallel and distributed
computing environments, such as multiclusters, Grid and more
recently Cloud computing infrastructure. In these environ-
ments, the productivity and performance gains largely depend
on effectively exploiting application parallelization across the
available parallel computing resources. With the rapidly evolv-
ing nature of parallel programming paradigms, however, the
recent parallel workloads with a wide spectrum of parallelism
and various QoS requirements poses an even harder challenge
to the scheduling community.

In this paper, we study the adaptive scheduling for malleable
parallel jobs on multiprocessor-based systems. To handle
complicated resource allocation and aggregate performance
requirements, a hierarchical scheduling framework is applied
in our study. Hierarchical scheduling provides a more flexible
way to separate the concerns of scheduling at different levels
and has drawn much attention in literature [1]–[3]. In a hier-
archical scheduling framework, proportional-share scheduling
algorithms are commonly used to proportionally share all
available resources among competing requests. As illustrated
in [2], traditional proportional-share scheduling algorithms,
which are designed for uniprocessor environment, can result
in unbounded unfairness and starvation when employed in

multiprocessor environments. Using adaptive feedback-driven
strategies, we focus on studying online scheduling to achieve
both fairness and efficiency for executing parallel applications
on hierarchical systems. The objective is to minimize the
makespan, i.e., the completion time of the last completed job
in the job set. We adopt the online non-clairvoyant scheduling
model, which requires the algorithm to operate in an online
manner, that is, to make irrevocable decisions in response
to each incoming request with no knowledge of the jobs’
future characteristics, such as their internal parallelism, and
remaining work. To measure the performance of an online
scheduling algorithm, we employ the competitive analysis [4],
which compares the performance of an online algorithm with
that of an optimal offline scheduler.

Non-clairvoyant scheduling was introduced by Motwani et
al. [5] in an attempt to design algorithms that are provably
efficient for practical purposes. To date, several extensions
have been made to take advantage of time- or space-shared
resources. In the multiprocessor environments, the well-known
non-clairvoyant scheduling algorithm is EQUI (Equi-partition)
[6], [7], which equally shares available computing power
among all jobs. For makespan minimization Robert et al. [8]
show that EQUI achieves competitive ratio of O(ln n

ln ln n) and
that no better ratio is possible. The closely related work to
our study in the similar setting is the work done by Robert
et al. [8] and Sun et al. [9]. In [8], the authors organize
the jobs into different sets and present an online schedul-
ing algorithm: EQUI◦EQUI, which consists in 1) splitting
evenly the available processors among the sets and then 2)
splitting evenly these processors among the jobs of each
set. They consider the metric of setflowtime, i.e. the total
makespan of all sets, and proved that EQUI◦EQUI achieved
a competitive ratio (2 +

√
3 + o(1)) ln n

ln ln n . In [9], Sun et al.
considered the same metric but they combined EQUI with
feedback-driven adaptive policies ABG [10] and AG [11] to
propose EQUI◦ABG and EQUI◦AG. They showed that both
EQUI◦ABG and EQUI◦AG achieved O(1)-competitiveness
with respect to the setflowtime for batched jobs.

In this paper, we present a hierarchical scheduling frame-
work and integrate the feedback-driven adaptive strategies
to optimize overall resource allotment. Specifically, we use
feedback-driven schedulers: ABG and AG to indicate pro-
cessor requirements for the jobs at the bottom level and at

higher levels we present a scheme, called DS (Desire-Sum) for
aggregating the resources requirements at each intermediate
nodes. We show that both ABG-DS and AG-DS achieve
scalable performance in terms of makespan by proving that
their competitive ratios are identical to those in the two-
level setting [10], [12], namely O(1)-competitive for batched
jobs. To evaluate the performance of hierarchical scheduling
algorithms, we extend an existing tool, called Malleable-Lab
[13], to support hierarchical scheduling and implement three
algorithms: ABG-DS, AG-DS, and EQUI-EQUI which is a
variation of EQUI for hierarchical scheduling environments.
The simulation results demonstrate that both ABG-DS and
AG-DS generally achieve better performance than EQUI-
EQUI with respect to makespan. Moreover, ABG-DS has
shown better scalability than AG-DS, which leads to ABG-DS
having much better and more stable performance in simulation.

The rest of this paper is organized as follows. In Section 2,
we formally define the hierarchical scheduling model. Section
3 describes the hierarchical algorithms ABG-DS and AG-DS
and analyzes the performance of these algorithms with respect
to makespan. Section 4 presents the simulation and its results.
Finally, Section 5 concludes the paper with future directions.

II. HIERARCHICAL SCHEDULING MODEL

We introduce the hierarchical scheduling model in detail in
this section. There are a set of n jobs, J = {J1, J2, . . . , Jn},
to be scheduled on a tree structure system. The jobs are
assumed to be malleable, that is, they can be executed with a
variable number of processors and their parallelism also varies
with time. At any time when the parallelism of a job is h, and
the job is allocated a processors, the execution rate of the
job is given by min{a, h}. For each job Ji, let wi denote the
total work of the job, and let li denote the total length, or
span of the job. The online algorithm is non-clairvoyant, so it
must make scheduling decisions without knowing wi, li and
the parallelism profile of the job.

The problem is to design a scheduling algorithm that allo-
cates a number of P processors through all the intermediate
levels down to the jobs, and the objective is to minimize the
overall completion time of the jobs, or the makespan. Note that
when K = 2, the problem is reduced to the two-level problem
that has been studied previously in [10]–[12]. Hence, our
model represents a more general setting for the multiprocessor
scheduling problem. Moreover, the tree structure is assumed
to be given that reflects the characteristics of the system
hierarchy. Hence, the scheduling algorithm cannot dynamically
change the given structure to make better scheduling decisions.
In addition, the scheduling decisions at the each individual
node must also be made without knowing the corresponding
decisions at other nodes. Therefore, the processors are allo-
cated down the system hierarchy in a distributed and online
manner.

We evaluate the performance of the online algorithm us-
ing both theoretical analysis and simulations. Theoretically,
the performance is measured using competitive analysis [4],
which compares the online algorithm with the optimal offline

scheduler. Suppose for a job set J , the makespan of the online
algorithm is M , and the makespan of the optimal offline
algorithm is M∗. Then the online algorithm is said to be
c-competitive if M ≤ c · M∗ + b, where b is a constant.
For simulations, we extend Malleable-Lab [13], a tool we
developed previously by augmenting Downeys parallel job
model [16] with a set of generic parallelism variations, to
evaluate the performance and the scalability of our proposed
scheduling algorithms. Note that, to simply the theoretical
analysis, we assume that all jobs are released in one batch
with release time 0.

III. TWO ADAPTIVE SCHEDULERS BASED ON
FEEDBACK-DRIVEN POLICIES

In this section, we present a framework for the hierarchi-
cal scheduling problem and derive performance bounds for
two specific schedulers that rely on adaptive feedback-driven
policies. In this framework, any scheduler can be used to
indicate processor requirements for the jobs at the bottom
level. In this paper, we use AG and ABG schedulers proposed
by Agrawal et al. [11] and Sun et al. [10], respectively. At
higher levels, we present a scheme, called Desire-Sum or
DS for short, to aggregate the resources requirements at each
intermediate level. Finally, we use the dynamic equi-partition
(DEQ) algorithm [14] for allocating the processors resources.

A. Feedback-driven schedulers for jobs

AG and ABG schedulers calculate the processor require-
ment or the processor desire for each job periodically after
a scheduling quantum expires. Both schedulers achieve this
based on the execution status of the job in the previous
quantum. Specifically, AG uses the processor utilization of
the job and ABG uses the measured average parallelism of
the job for the processor desire calculation.

1) AG: AG was first proposed by Agrawal et al [11].
Suppose in quantum q, job Ji requires for di(q) processors
and gets allocation of ai(q) processors. Then Ji is said to be
satisfied if ai(q) ≥ di(q), otherwise it is deprived. Moreover,
suppose Ji completes wi(q) work in quantum q. Then Ji is
said to be efficient if wi(q) ≥ δai(q)L, where L is the quantum
length and δ < 1 is the utilization threshold. Otherwise, Ji is
inefficient. The processor desire for job Ji in the next quantum
is then calculated as shown below:

di(q + 1) =

di(q) · ρ if efficient and satisfied,
di(q)/ρ if inefficient,
di(q) if efficient and deprived,

where ρ > 1 is the responsiveness parameter.
2) ABG: ABG was proposed by Sun et al. [10] after

observing that the processor desires of AG tend to become
unstable due to its multiplicative increase and multiplicative
decrease nature. ABG on the other hand directly utilizes the
average parallelism of the job in a quantum for the desire
calculation, hence is much more stable and representative of
the job’s resource requirements. Suppose that job Ji completes
wi(q) work and reduces its span by li(q) in quantum q, then

the average parallelism of the job is Ai(q) = wi(q)/li(q). The
processor desire of Ji in the next quantum is set to the average
parallelism Ai(q):

di(q + 1) = Ai(q).

The initial desire for both ABG and AG in the first schedul-
ing quantum is set to be 1.

B. Desire aggregation scheme for nodes

We present a scheme that aggregates the processor desires
from lower levels at each node of the intermediate level, and
calculates an overall desire for reporting to the higher level.
The scheme, called Desire-Sum or DS, collects the desires of
the children nodes, process them by taking their aggregates as
its own desire and reports that to the parent node.

Suppose the bottom level is denoted as level 1, and each
intermediate node nk

i at level k > 1 has ck
i immediate

children. At the end of each quantum q, the ck
i children report

their processor desires for quantum q + 1 to node nk
i , which

are denoted as {di1(q + 1), di2(q + 1), · · · }. Then node nk
i

calculates the aggregate desire di(q +1) for quantum q +1 as
shown below:

di(q + 1) =
ck

i∑

j=1

dij(q + 1).

However, for the hierarchical scheduling problem, each level
may not have the same quantum length. In this paper, we only
consider the case where the quantum length at a particular
level can only be an integral multiple of that at the immediate
lower level. Suppose that the quantum at level k has not
expired when nodes at level k − 1 report their desires, then
the aggregate desire calculated above will be discarded, and
only the most recent desires from lower levels are taken when
the quantum at level k does expire. This scheme is reasonable
because when the number of levels increases, it is not likely
that past execution characteristics of the jobs are still relevant
to direct the future processor allocation.

C. Processor allocation algorithm

We apply the dynamic equi-partition (DEQ) algorithm [14]
to allocate processors to the nodes at each level, including
the jobs at the bottom level, based on their processor desires.
Generally speaking, DEQ attempts to allocate an equal share
of processors to each requesting node, but will not allocate
more processors to a node than it desires.

Suppose that at the end of quantum q when the quantum
for level k expires, and node nk

i gets ai(q + 1) processors
at the beginning of quantum q + 1. Then for the ck

i children
nodes under nk

i , the equal processor share is ai(q+1)/ck
i . The

processors are allocated to the children for quantum q + 1 in
the following way:

(1). For those children whose desires are not more than the
equal share, their desires will be satisfied.

(2). Update the equal share by excluding the jobs already
satisfied and the processors already allocated. Then satisfy

those jobs whose desires now becomes less than or equal to
the equal share. This process is repeated until no job can be
easily satisfied.

(3). If all remaining jobs have more processor desire than
the equal share, then the remaining processors will be shared
equally among these jobs.

Note that this algorithm applies to all levels, including the
jobs at the bottom level. At a particular level, it is executed
only when the quantum for this level expires. However,
lower levels could have smaller quantum length. Hence, the
processors could be reallocated among the lower level nodes
more frequently than the nodes at the higher level.

D. Performance analysis

Combining the schemes presented so far, we can get two
different adaptive schedulers for the hierarchical scheduling
problem, and we call them AG-DS and ABG-DS respectively.
We provide performance bounds for the two schedulers in
terms of the overall completion time or the makespan of the
jobs in this subsection. The analysis uses the existing bounds
for the AG and ABG schedulers, and they apply to the case
where all levels share the same quantum length. Specifically,
we show that the competitive ratios for the makespan of the
jobs in this case are identical to the respective ratios obtained
when there are only two levels in the hierarchy [10], [12]. In
the next section, experimental studies are performed for the
more general cases with different quantum length.

We first present the bound for AG based scheduler. The
same analysis can be easily extended to the scheduler based on
ABG at the bottom level. We first define two related concepts
for the jobs. For any job Ji, let ti denote the total satisfied
time of the job, and let ai denote the total deprived processor
allocation for the job. Then the analysis from [11] gives the
following bounds for ti and ai scheduled by AG:

ti ≤ 2
1− δ

· li + o(1), (1)

ai ≤ 1 + ρ

δ
· wi, (2)

where wi and li are the work and the span of the job,
respectively. Relying on these two bounds, we show the
makespan ratio of AG-DS in the following theorem. Note that
we assume that all jobs are released in a batch.

Theorem 1: For the hierarchical scheduling problem with
the same quantum length in all levels, the makespan M of the
jobs scheduled by AG-DS satisfies

M ≤
(

2
1− δ

+
1 + ρ

δ

)
·M∗ + o(1), (3)

where M∗ denotes the optimal makespan of the jobs.
Proof: The performance is obtained by bounding the total

satisfied time and the total deprived time of the last completed
job separately.

Let Jk be the last completed job. Then the makespan of
all jobs is the same as the completion time of Jk. The total
satisfied time of Jk, according to Inequality (1), is given by
tk ≤ 2

1−δ ·lk+o(1). When Jk is deprived, since all levels share

the same quantum length, according to the desire aggregation
scheme DS and the DEQ allocation policy, all the ancestors
of job Jk, including the root node, in the hierarchy are also
deprived. This is because if any ancestor of Jk is satisfied, then
it could satisfy all its descendants, including Jk. Note that this
property holds regardless of the number of hierarchical levels.
Hence, all P processors must be allocated to the jobs in this
case. Also based on Inequality (2), the total deprived time of
job Jk is not more than

∑
ai

P ≤ 1+ρ
δ ·

∑
wi

P .
The makespan of the jobs, which is the completion time of

Jk, is then given by M ≤ 2
1−δ ·lk + 1+ρ

δ ·
∑

wi

P +o(1). Because
the optimal algorithm takes at least span lk time to complete
the job set, and

∑
wi

P is also a lower bound on the makespan
[12], the theorem is proved.

Theorem 1 shows that AG-based hierarchical scheduler is
O(1)-competitive in terms of the makespan of the jobs, since
ρ and δ can be considered as constants. We can now apply
similar analysis to the ABG-based scheduler at the bottom
level and achieve similar result. Specifically, the performance
of ABG depends on a parameter, which is called the transition
factor and denoted by C ≥ 1 to indicate the maximum ratio
on the average parallelism of the jobs over any two adjacent
quanta. Let Ai(q) and Ai(q+1) denote the average parallelism
of job Ji in quantum q and q + 1, respectively. Then we have
1
C ≤ Ai(q)

Ai(q+1) ≤ C. More details on this factor can be found
in [10], [15]. The performance of ABG-DS is given in the
following theorem.

Theorem 2: For the hierarchical scheduling problem with
the same quantum length in all levels, the makespan M of the
jobs scheduled by ABG-DS satisfies

M ≤ 2(C + 1) ·M∗, (4)

where M∗ denotes the optimal makespan of the jobs.
Proof: For ABG-DS, a job Ji is called over-allocated in

a quantum q if the processor allocation is at least the average
parallelism in the quantum, i.e., ai(q) ≥ Ai(q). Otherwise it
is called under-allocated. From the analysis in [10], the total
over-allocated time ti and the total under-allocated processor
allocation ai are given by ti ≤ (C+1)·li and ai ≤ (C+1)·wi,
respectively. According to the ABG scheduler, job Ji is also
deprived in a quantum if it is under-allocated. The rest of the
analysis then follows exactly that of Theorem 1, and the bound
can be easily derived.

Given any set of jobs, Theorem 2 shows that ABG-DS
hierarchical scheduling algorithm achieves O(1)-competitive
in terms of the makespan of the jobs given that the transition
factor of the jobs are bounded by a constant. Moreover, The-
orems 1 and 2 also show that both AG-DS and ABG-DS have
the same competitive ratios as the corresponding two-level
algorithms [10], [12]. This suggest that the two hierarchial
scheduling algorithms achieve scalable performances in terms
of makespan regardless of the number of hierarchical levels.

Finally, comparing ABG-DS and AG-DS, we can see that
ABG-DS scheduler tends to have better performance when the
jobs have smaller transition factor, hence smoother parallelism
variations. In the next section, we study their performance

experimentally for the multi-level setting as well as under
variable quantum length over different levels.

IV. SIMULATIONS

In this section, we conduct simulations to evaluate the
performance of the hierarchical feedback-driven scheduling
algorithms and compare them with EQUI-based scheduling
policies. Specifically, we study the scalability, the performance
with respect to makespan ratio, and the impact of different
quantum patterns for these hierarchical scheduling algorithms.

A. Simulation setup

We extend an existing tool called Malleable-Lab [13] to
support the hierarchical scheduling on multiprocessor systems.
Malleable-Lab provides a flexible framework to evaluate the
performance of online adaptive schedulers by integrating a
detailed malleable job model augmented with a set of generic
internal parallelism variations, which is essential for analyzing
the dynamic behaviors of these adaptive schedulers. Based on
Malleable-Lab, we build a multi-level scheduling framework,
which is capable to divide the processor resource allocation
into different levels. In addition, we implement a request-
allotment protocol to support the feedback mechanism and
processor resource allocation among different levels. Each
level has its independent execution interval, or scheduling
quantum, to aggregate performance requirements and adjust
its child resource allotments.

In our study, we build a hierarchical system with 256 proces-
sors and the number of levels can be reset when starting to run
the simulations. In this simulation framework, we implement
three hierarchical scheduling policies: ABG-DS, AG-DS, and
EQUI-EQUI, where EQUI-EQUI is the variation of well-
known EQUI algorithm for hierarchical environment. In the
following sections, we conduct several series of experiments
respectively to study the scalability, performance, and impacts
of scheduling quantum for these algorithms. To compare the
performances of these different hierarchical schedulers, we use
the following metrics: makespan, which is the completion time
of the last job in system, and makespan ratio, which is the ratio
of online algorithm’s makespan over that of the optimal offline
algorithm given by the lower bound in the proof of Theorem 1.
Following the traditional Downey’s model, the system load is
proportional with the number of jobs which increases from 20
to 500 with an increment of 20 each time. For any experiment
we run it for 10 times with the same load and take the average
result as the final output.

B. Simulation Results

(1) scalability of feedback-driven scheduling policies
Our first set of simulations focuses on studying the scala-

bility of hierarchical feedback-driven schedulers. As shown
in previous theoretical analysis, here the scalability of a
hierarchical scheduling algorithm is a measure of its capacity
to effectively respond to the changes of hierarchical levels. In
our simulation, we evaluate the scalability of a given algorithm
by adjusting the number of levels from 1 to 5 and the quantum

100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

M
ak

es
pa

n

Number of jobs

#Level=1
#Level=2
#Level=3
#Level=4
#Level=5

(a) ABG-DS

100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

M
ak

es
pa

n

Number of jobs

#Level=1
#Level=2
#Level=3
#Level=4
#Level=5

(b) AG-DS

Fig. 1. Scalability of ABG-DS and AG-DS with respect to makespan when increasing the number of levels.

length of each level is set to be the same. For each experiment,
the simulation start under light load changing to heavy load
which is identified by different job numbers. The simulation
results of ABG-DS and AG-DS are shown in Fig. 1.

From the simulation results we can learn that both ABG-DS
and AG-DS achieve better scalability with respect to changes
in the number of levels. Moreover, as shown in Fig. 1, ABG-
DS generally has more stable scalability than AG-DS in all
cases. For example, when the number of levels is set to be
1 and 2, both ABG-DS and AG-DS have similar scalability
in this case, but AG-DS exhibits slightly degrading scalability
with increasing number of levels, as shown in Fig. 1b. The
reason is that the task scheduler ABG provides a more
stable and efficient feedback scheme than AG to calculate
the processor requests, which finally leads to influencing the
overall resource feedbacks. The simulation results indicate that
the scheduling policies with stable feedback tend to achieve
better scalability.

(2) comparison with different scheduling policies
In this section, we evaluate the performance of ABG-DS

and AG-DS using the metric of makespan ratio and compare
them with EQUI-EQUI, which equally divides all available
processor resource among active jobs and internal nodes
without any feedback information. We conduct a series of
experiments by varying the number of levels from 1 to 5 and
the quantum length of each level is set to be the same.

From the simulation results, as shown in Fig. 2, we can
learn that the feedback-driven scheduling algorithms ABG-
DS and AG-DS generally achieve better performance than
EQUI-EQUI with respect to makespan ratio in all cases. Only
when the system has light system load, ABG-DS and AG-
DS are slightly worse than EQUI-EQUI. The reason is that
feedback-driven scheduling strategies take advantage of the
parallelism feedback based on the information of execution
history while EQUI-EQUI is oblivious to job’s parallelism
and thus waste many processor resources. When the system
has a small number of jobs, as shown in Fig. 2, EQUI-EQUI
shows its advantages because in this case all the nodes and

jobs can be easily satisfied with their processor requirements.
Furthermore, as shown in Fig. 2, the performances of ABG-
DS and AG-DS gradually tend to converge with that of EQUI-
EQUI with the increasing system load because in this case any
job can only receive very few processors most of time, and
thus frequent processor reallocations have no obvious benefits.

The simulation results also demonstrate that ABG-DS has
better performance than AG-DS for all system loads, espe-
cially when the number of levels increases. For example,
when the number of levels is set to be 2, the makespan ratio
of ABG-DS outperforms that of AG-DS by approximately
4% on average. When the number of levels is set to be
3, ABG-DS outperforms AG-DS by approximately 16% on
average. Moreover, as shown in Fig. 2, the performance of
ABG-DS is also more stable than AG-DS when changing
the number of levels. Overall, feedback-driven scheduling
algorithms have more advantages for scheduling malleable
jobs whose internal parallelism is changing with time, and the
better overall performance will be achieved with more stable
feedback mechanism.

(3) Impact of scheduling quantum
For adaptive scheduling algorithms, the scheduling quantum

is an important system parameter, which may significantly
affect the overall system performance. In this section, we con-
sider the impact of scheduling quantum on these hierarchical
scheduling algorithms. We conduct three sets of experiments
following different scheduling quantum patterns. In the first set
of experiments, the quantum length of all levels is set to be the
same. In the second set, the quantum length of adjacent levels
is increased by a factor of 2 from lower level to higher level.
For instance, if the number of levels is set to be 5, the quantum
length of each level from bottom to top is L, 2L, 22L, 23L, 24L
respectively, where L is the quantum length of lowest level.
The quantum pattern of last set is similar to the second one
but the factor is set to be 3. We evaluate these quantum
patterns with different numbers of hierarchical levels and the
simulation results are shown in Fig. 3. Note that the number
of levels is only varied from 2 to 5, since when the number of

level is 1 the quantum length does not changed with different
quantum factor.

The simulation results show that the different quantum
patterns has impacted on the performance of ABG-DS and
AG-DS, but it is not significant for all cases, especially when
the number of levels is not so large. From Fig. 3a and Fig. 3b
we can learn that the performance of both ABG-DS and AG-
DS is nearly unaffected by different quantum patterns when
the number of levels is set to be 2. Specifically, the difference
of makespan ratio for ABG-DS is only 0.5% between Quan-
tumFactor=1 and QuantumFactor=2 on average and it is 1.1%
averagely between QuantumFactor=1 and QuantumFactor=3.
With the increasing number of levels, the impact of different
quantum patterns is becoming slightly apparent. For example,
the average difference of makespan ratio for ABG-DS reaches
11% between QuantumFactor=1 and QuantumFactor=2 when
the number of level is 5. Moreover, the simulation results
also demonstrate that AG-DS is more easily influenced than
ABG-DS by different quantum patterns. Overall, as shown in
simulation, the quantum patterns have impact on the system
performance and the quantum length of higher level can not
be set much larger than that of lower levels to guarantee good
performance, especially when the number of level is high.

V. CONCLUSIONS

We have focused on the problem of online hierarchical
scheduling to minimize the makespan for malleable parallel
jobs. Non-clairvoyant scheduling is studied with emphasis on
exploiting increasing malleability in parallelism for multicore-
and multiprocessor-based systems. Integrating feedback-driven
adaptive schemes, which are capable of dynamically adjusting
the resource allotment, we propose two hierarchical scheduling
algorithms: ABG-DS and AG-DS and show that both adaptive
scheduling algorithms achieve scalable performance in term
of makespan regardless of the number of hierarchical levels.
The simulation results also demonstrate that feedback-driven
hierarchical scheduling algorithms outperform EQUI-based
policies for a wide range of workloads.

One of the future work is to extend the hierarchical adaptive
scheduling model to more types of feedback-driven resource
allotment policies and evaluate the performance of these
online scheduling algorithms using both theoretical analysis
and various parallel workloads. Another interesting work is
to consider the different cost for interactions between the
hierarchical levels since the delays can be successively longer
when climbing up the tree.

ACKNOWLEDGMENT

Yangjie Cao, Depei Qian, and Weiguo Wu are supported
by China National Hi-tech Research and Development Pro-
gram (863 Project) under the grants No. 2009DFA12110,
2009AA01Z108, 2009AA01A131 and Natural Science Foun-
dation of China under the grant No.60873053. The authors
would like to thank Wen-Jing Hsu for the initial idea of this
work and helpful comments. Yangjie Cao also thanks Wen-
Jing Hsu for generous hospitality when he was a visiting

scholar at Nanyang Technological University during Summer
2009.

REFERENCES

[1] P. Goyal, X. Guo, and H. Vin. A Hierarchical CPU Scheduler for
Multimedia Operating Systems Proc. Second Usenix Symp. Operating
System Design and Implementation (OSDI’96), pages 107–122, Oct.
1996.

[2] A. Chandra and P. Shenoy. Hierarchical scheduling for symmetric
multiprocessors In IEEE Transactions on Parallel and Distributed
Systems, pages 418–431, 2008.

[3] J.H. Abawajy. Adaptive hierarchical scheduling policy for enterprise grid
computing systems Journal of Network and Computer Applications,
32(3):770–779, 2009.

[4] A. Borodin and R. El-Yaniv. Online computation and competitive
analysis. Cambridge University Press, New York, NY, USA, 1998.

[5] R. Motwani, S. Phillips, and E. Torng. Non-clairvoyant scheduling. In
SODA, pages 422–431, Austin, TX, USA, 1993.

[6] J. Edmonds. Scheduling in the dark. In STOC, pages 179–188, Atlanta,
GA, USA, 1999.

[7] Jeff Edmonds and Donald D. Chinn and Tim Brecht and Xiaotie Deng.
Non-clairvoyant Multiprocessor Scheduling of Jobs with Changing Ex-
ecution Characteristics. In Journal of Scheduling, 6(3):231–250, 2003.

[8] J. Robert and N. Schabanel. Non-clairvoyant batch set scheduling:
Fairness is fair enough. In ESA, pages 741–753, Eilat, Israel, 2007.

[9] H. Sun, Y. Cao, and W.-J. Hsu. Non-clairvoyant Adaptive Scheduling
for Sets of Parallel Jobs with Fairness and Efficiency. Submitted.

[10] H. Sun, and W.-J. Hsu. Adaptive B-Greedy (ABG): A Simple yet
Efficient Scheduling Algorithm. In SMTPS in conjunction with IPDPS,
pages 1–8, Miami, FL, USA, 2008.

[11] K. Agrawal, Y. He, W.-J. Hsu, and C. E. Leiserson, Adaptive scheduling
with parallelism feedback, In PPoPP, pages 100 – 109, New York City,
NY, USA, 2006.

[12] Y. He, W.-J. Hsu, and C. E. Leiserson. Provably efficient two-level
adaptive scheduling. In JSSPP, pages 1–32, Saint-Malo, France, 2006.

[13] Y. Cao, H. Sun, and W.-J. Hsu. Malleable-Lab: A tool for evaluating
adaptive online schedulers on malleable jobs. The 18th Euromicro
International Conference on Parallel, Distributed and Network-Based
Computing, pages 11-18, Piza, Italy, 2010.

[14] C. McCann, R. Vaswani, and J. Zahorjan. A dynamic processor
allocation policy for multiprogrammed shared-memory multiprocessors.
ACM Transactions on Computer Systems, 11(2):146–178, 1993.

[15] H. Sun, Y. Cao, and W.-J. Hsu. Efficient Adaptive Scheduling of
Multiprocessors with Stable Parallelism Feedback. To appear in IEEE
Transactions on Parallel and Distributed Systems.

[16] A. B. Downey. A parallel workload model and its implications for
processor allocation. In HPDC, page 112, Portland, OR, USA, 1997.

100 200 300 400 500
0.6

0.7

0.8

0.9

1

1.1

1.2

M
ak

es
pa

n
ra

tio

Number of jobs

EQUI / ABG
EQUI / AG

(a) number of levels = 1

100 200 300 400 500
0.6

0.7

0.8

0.9

1

1.1

1.2

M
ak

es
pa

n
ra

tio

Number of jobs

EQUI−EQUI / ABG−DS
EQUI−EQUI / AG−DS

(b) number of levels = 2

100 200 300 400 500
0.6

0.7

0.8

0.9

1

1.1

1.2

M
ak

es
pa

n
ra

tio

Number of jobs

EQUI−EQUI / ABG−DS
EQUI−EQUI / AG−DS

(c) number of levels = 3

100 200 300 400 500
0.6

0.7

0.8

0.9

1

1.1

1.2

M
ak

es
pa

n
ra

tio

Number of jobs

EQUI−EQUI / ABG−DS
EQUI−EQUI / AG−DS

(d) number of levels = 4

100 200 300 400 500
0.6

0.7

0.8

0.9

1

1.1

1.2

M
ak

es
pa

n
ra

tio

Number of jobs

EQUI−EQUI / ABG−DS
EQUI−EQUI / AG−DS

(e) number of levels = 5

Fig. 2. Makespan comparisons of ABG-DS and AG-DS with EQUI-EQUI.

100 200 300 400 500
1

1.5

2

2.5

3

3.5

M
ak

es
pa

n
ra

tio

Number of jobs

QuantumFactor=1
QuantumFactor=2
QuantumFactor=3

(a) ABG-DS (number of levels = 2)

100 200 300 400 500
1

1.5

2

2.5

3

3.5

M
ak

es
pa

n
ra

tio

Number of jobs

QuantumFactor=1
QuantumFactor=2
QuantumFactor=3

(b) AG-DS (number of levels = 2)

100 200 300 400 500
1

1.5

2

2.5

3

3.5

M
ak

es
pa

n
ra

tio

Number of jobs

QuantumFactor=1
QuantumFactor=2
QuantumFactor=3

(c) ABG-DS (number of levels = 3)

100 200 300 400 500
1

1.5

2

2.5

3

3.5

M
ak

es
pa

n
ra

tio

Number of jobs

QuantumFactor=1
QuantumFactor=2
QuantumFactor=3

(d) AG-DS (number of levels = 3)

100 200 300 400 500
1

1.5

2

2.5

3

3.5

M
ak

es
pa

n
ra

tio

Number of jobs

QuantumFactor=1
QuantumFactor=2
QuantumFactor=3

(e) ABG-DS (number of levels = 4)

100 200 300 400 500
1

1.5

2

2.5

3

3.5

M
ak

es
pa

n
ra

tio

Number of jobs

QuantumFactor=1
QuantumFactor=2
QuantumFactor=3

(f) AG-DS (number of levels = 4)

100 200 300 400 500
1

1.5

2

2.5

3

3.5

M
ak

es
pa

n
ra

tio

Number of jobs

QuantumFactor=1
QuantumFactor=2
QuantumFactor=3

(g) ABG-DS (number of levels = 5)

100 200 300 400 500
1

1.5

2

2.5

3

3.5

M
ak

es
pa

n
ra

tio

Number of jobs

QuantumFactor=1
QuantumFactor=2
QuantumFactor=3

(h) AG-DS (number of levels = 5)

Fig. 3. Impact of different quantum patterns on ABG-DS and AG-DS with respect to makespan ratio.

