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ABSTRACT
Energy consumption and heat dissipation have become key
considerations for modern high performance computer sys-
tems. In this paper, we focus on non-clairvoyant speed scal-
ing to minimize flow time plus energy for batched paral-
lel jobs on multiprocessors. We consider a common sce-
nario where the total power consumption cannot exceed a
given budget and the power consumed on each processor is
sα when running at speed s. Extending the Equi proces-
sor allocation policy, we propose two algorithms: U-Equi
and N-Equi, which use respectively a uniform-speed and
a non-uniform speed scaling function for the allocated pro-
cessors. Using competitive analysis, we show that U-Equi

is O(P (α−1)/α2
)-competitive for flow time plus energy, and

N-Equi is O( α
√

ln P )-competitive for the same metric when
given sufficient power, where P is the total number of pro-
cessors. Our simulation results confirm that U-Equi and
N-Equi achieve better performance than a straightforward
fixed-speed Equi strategy. Moreover, moderate power con-
straint does not significantly affect the performance of our
algorithms.

Categories and Subject Descriptors
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Process Management—Scheduling, Multiprocessing
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1. INTRODUCTION
As processors continue to increase in performance and

speed, energy consumption and heat dissipation have be-
come key considerations in the design of modern high per-
formance computer systems. These issues are crucial to
battery-based computers, which will soon be equipped with
an unprecedented large number of cores, as well as super-
computers or server farms, whose heat dissipation has be-
come an increasingly critical problem. Dynamic speed scal-
ing [8, 17] is a popular technique to reduce energy consump-
tion by taking advantage of the nonlinear relationship be-
tween the processor’s speed and power. If a processor op-
erates at speed s, then its power consumption u satisfies
u = sα, where α > 1 and is typically 2 or 3 [8]. Since good
system performance and low energy consumption are mutu-
ally conflicting objectives, how to optimally balance the two
has become an active research topic recently. (See, e.g., [32,
19, 9, 1, 5, 24, 23, 27].)

One commonly used performance metric in computing
systems is the average response time, or equivalently the
flow time of the jobs in the system. The flow time of a job
is the duration between the release time and the completion
time of the job, and the problem of minimizing the total flow
time without power constraints has been studied extensively
in the literature. (See [26] for a survey.) To take the energy
consumption into account, Pruhs et al. [27] first studied the
problem of minimizing the total flow time subject to an en-
ergy constraint. They proposed an optimal offline algorithm
for sequential jobs of unit size. Albers and Fujiwara [1] later
proposed combining the conflicting objectives of the flow
time and the energy consumption into a single objective of
flow time plus energy, which has since become a popular
metric for studying the power management problems [5, 24,
3, 23, 10]. In fact, minimizing a combination of flow time
plus energy can be naturally interpreted by looking at both
objectives from a unified viewpoint and measuring them in
economic terms. Similar metrics have been used before in
the scheduling literature [30, 12] that considers the schedul-
ing costs as part of the objective functions.

Although many excellent results have been obtained for
scheduling sequential jobs on a single processor using flow
time plus energy as the performance metric [5, 24, 3, 23, 10],
relatively little work is known for parallel jobs on multipro-
cessor systems. Most previous results [28, 11, 9, 2] on mul-
tiprocessor scheduling that take energy issues into consider-
ation are offline algorithms either for optimizing the system
performance with an energy constraint, or for minimizing



the total energy consumption subject to deadlines. In [23],
Lam et al. focused on online non-migratory scheduling for
flow time plus energy on multiprocessors. They considered
sequential jobs and assumed that the work requirement of
each job is known.

In this paper, we adopt the performance metric of flow
time plus energy and study online speed scaling for batched
(i.e., all jobs are released at time 0) parallel jobs on multi-
processor systems. Compared to sequential jobs scheduling
on a single processor, schedulers for parallel jobs on multi-
processors need to have both a processor allocation policy
for determining the number of processors allocated to each
job and a speed scaling policy for determining the speed of
each allocated processor, assuming that per core/processor
speed scaling [29, 22] is possible. Furthermore, we focus on
the non-clairvoyant scheduling model, in which no knowl-
edge about the work and the parallelism of the jobs is as-
sumed when making scheduling decisions. Prior to our work,
Lam et al. [24] and Chan et al. [10] have considered non-
clairvoyant scheduling in speed scaling context. However,
both results studied scheduling sequential jobs on a single
processor while focusing on batched and non-batched set-
tings, respectively. Lam et al. [24] also considered a bounded
speed scenario where the processor speed at any time can not
exceed a given maximum. In contrast to [24], we consider
a scenario where at any time the total power consumption
on all processors can not exceed a given power budget. This
assumption has been previously considered by Isci et al. [20]
in their empirical study.

As with Edmonds et al. [16, 15], we allow a parallel job
to have time-varying execution characteristics and model it
by multiple phases of speedup functions. However, unlike
in [16, 15], where each phase of a job admits an arbitrary
non-decreasing but sub-linear speedup, we consider a model
where each phase has a linear speedup function up to a cer-
tain degree of parallelism, beyond which no further speedup
can be gained. The execution of a given phase then de-
pends on this ceiling parallelism, the number of processors
allocated to it as well as the speed of the allocated proces-
sors. We consider two scenarios in this paper depending
on whether a parallel job is executed by processors of the
same speed or different speeds at any given time. We call a
scheduling algorithm uniform-speed if it sets all processors
allocated to a job to run at the same speed at any given
time; otherwise, we call it nonuniform-speed. Setting pro-
cessors to run at different speeds for a parallel job can have
complicated effects on the job’s execution, subject to the un-
derlying dependencies among the tasks (or threads) of the
job as well as the load balancing strategy. To ease analy-
sis, we make the following simplifying assumptions. If the
number of allocated processors is more than the maximum
degree of parallelism, say h, in the current phase, then the
maximum utilization policy [21, 6] is employed at the under-
lying task scheduling level such that the h fastest processors
are used to execute the job. Otherwise, if there is sufficient
parallelism in this phase, all allocated processors are used
to execute the job. We further assume that the tasks of a
phase are able to run independently of each other, such as
those in some data-parallel jobs, and ideal load balancing
can be achieved in scheduling the tasks, which can be ap-
proximated by the round-robin strategy provided that the
phase is long enough. Hence, for both uniform-speed and
nonuniform-speed schedules, the execution rate of a phase

at any time is equal to the sum of the speeds of the proces-
sors utilized to execute the phase.

We propose a uniform-speed scheduling algorithm and a
nonuniform-speed scheduling algorithm based on the well-
known Equi (equi-partitioning) processor allocation policy
[16, 15], which shares the total number of processors equally
among all active jobs at any time. We call our proposed
algorithms U-Equi (for Uniform-speed Equi) and N-Equi
(for Nonuniform-speed Equi), respectively. Both algorithms
extend the natural speed scaling function [5, 24] used on
a single processor, where the power consumption at any
time is set proportionally to the number of active jobs. In
the case of U-Equi and N-Equi, the power consumption
is set to either this natural power or the given power bud-
get, whichever is lower, and it is also distributed equally
among all active jobs. However, this scheme can lead to
a large amount of energy waste when jobs have relatively
low parallelism. U-Equi tackles this problem by reducing
the processor allocations such that it maintains an optimal
balance between the speedup and the energy consumption of
the jobs. N-Equi, on the other hand, takes advantage of the
maximum utilization policy and distributes the power non-
uniformly among the allocated processors of a job based on
a scaled version of harmonic series.

Our contributions include the competitive analysis for both
algorithms as well as their empirical evaluations. Specifi-

cally, we show that U-Equi is O(P (α−1)/α2
)-competitive and

N-Equi is O( α
√

n ln P/m)-competitive with respect to flow
time plus energy for any batched parallel job set, where P is
the total number of processors, n is the total number of jobs,
and m is a function of the capped power (defined in detail
in Section 2). The ratio of U-Equi also matches the lower
bound for any uniform-speed non-clairvoyant algorithm (up
to constant factor). Our simulation results on synthetic
workloads show that U-Equi and N-Equi perform better
than a straightforward fixed-speed Equi strategy. Further-
more, moderate power constraint has little impact on the
performances of our algorithms while reducing the power
budget below 50% of the full power can lead to significant
performance degradations.

The rest of this paper is organized as follows. Section 2
defines the job model and the scheduling model. Section 3
introduces two lower bounds for flow time plus energy on
batched parallel jobs. Section 4 outlines the local competi-
tive analysis framework used in this paper, followed by the
presentation of U-Equi and N-Equi algorithms and their
analysis in Section 5. Our simulation results are presented
in Section 6. Section 7 discusses some related work, and
finally, Section 8 gives the concluding remark.

2. PRELIMINARIES
We consider a set J = {J1, J2, . . . , Jn} of n jobs to be

scheduled on P processors with power budget U . Each job
Ji in the job set, where 1 ≤ i ≤ n, has time-varying par-
allelism modeled by multiple phases of speedup functions.
Specifically, the job Ji contains qi phases 〈J1

i , J2
i , . . . , Jqi

i 〉,
and each phase Jq

i , where 1 ≤ q ≤ qi, has an amount of work
wq

i , and a linear speedup function Γq
i up to a certain degree

of parallelism hq
i , where hq

i ≥ 1. The phase is fully paral-
lelizable if hq

i = ∞, and it is sequential if hq
i = 1. The total

work of job Ji is denoted by wi =
∑qi

q=1 wq
i . At any time

t, suppose that job Ji is allotted ai(t) processors. In this



paper, we do not restrict the allotted processors to have the
same speed. Hence, let the jth allotted processor have speed
sij(t), where 1 ≤ j ≤ ai(t), and without loss of generality,
we assume si1(t) ≥ si2(t) ≥ . . . ≥ siai(t)(t).

At any time t when job Ji is in its q-th phase, the execution
of the job is based on the maximum utilization policy [21,
6], where faster processors are always utilized before slower
ones. Hence, with ideal load balancing, the effective speedup
or execution rate of the job at time t is given by

Γq
i (ai(t)) =

{ ∑ai(t)
j=1 sij(t) if ai(t) ≤ hq

i ,∑h
q
i

j=1 sij(t) if ai(t) > hq
i ,

and the power consumption of job Ji at time t is given by

ui(t) =
∑ai(t)

j=1 sij(t)
α.

A scheduling algorithm Alg for any set J of jobs specifies
the number ai(t) of processors allocated to each job Ji at
any time t, as well as the speed of each allocated processor.
In order for the schedule to be valid, we require that at any
time t the total processor allocation is not more than the
total number of processors, i.e.,

∑n
i=1 ai(t) ≤ P , and the

total power consumption is not more than the total power
budget, i.e.,

∑n
i=1 ui(t) ≤ U . Let cq

i denote the completion
time of the q-th phase of job Ji, and let ci = cqi

i denote
the completion time of job Ji. We also require that a valid
schedule must complete all jobs in finite amount of time
and cannot begin to execute a phase of a job unless it has
completed all its previous phases, i.e., 0 = c0

i < c1
i < . . . <

cqi
i < ∞, and

∫ c
q
i

c
q−1
i

Γq
i (ai(t))dt = wq

i for all 1 ≤ q ≤ qi.

The job Ji is said to be active at time t if it is released
but not completed at t, i.e., 0 < t < ci. The flow time fi of
the job is simply the completion time of the job in batched
setting, i.e., fi = ci, and the energy ei of the job is the total
power consumed by the job integrated over time, i.e., ei =∫∞
0

ui(t)dt. The total flow time F (J ) of the entire job set
J is thus given by F (J ) =

∑n
i=1 fi, or alternatively can be

expressed as F (J ) =
∫∞
0

n(t)dt, where n(t) is the number of
active jobs at time t. The total energy is E(J ) =

∑n
i=1 ei, or

alternatively E(J ) =
∫∞
0

u(t)dt, where u(t) =
∑n(t)

i=1 ui(t)
is the total power consumption at time t. For convenience,
let us set the total power budget to U = m

α−1
, where m > 0,

and set Ui = min{U, i
α−1

}. Let us also define the capped

power m(t) at time t to be

m(t) =





1 if m < 1,
m if 1 ≤ m ≤ n(t),
n(t) if m > n(t),

and let m = m(0).
Our objective is to minimize the total flow time plus en-

ergy, G(J ) = F (J ) + E(J ), for which we use competitive
analysis [7]. A scheduling algorithm Alg is said to be c-
competitive if its total flow time plus energy is not more
than c times that of an optimal schedule, i.e., GAlg(J ) ≤
c · GOpt(J ) for any job set J , where GOpt(J ) is the total
flow time plus energy of the optimal scheduler.

3. TWO LOWER BOUNDS ON TOTAL FLOW
TIME PLUS ENERGY

In this section, we present two lower bounds on the to-
tal flow time plus energy for any batched parallel job set.
These two lower bounds resemble the height bound and the

squashed area bound [31, 13, 16, 18] in the literature for the
flow time of batched parallel jobs, and they extend the lower
bounds derived by Lam et al.[24, 23] for the flow time plus
energy of sequential jobs.

Without loss of generality, we assume that the jobs in J
are sorted according to their work such that w1 ≥ w2 ≥
. . . ≥ wn. Also define h

q
i = min{P, hq

i } for each phase Jq
i

of job Ji. The derivation of the lower bounds relies on the
following property of the optimal scheduler.

Property 1. At any time t, suppose that Opt is exe-
cuting phase Jq

i of job Ji, then Opt allocates ai(t) ≤ h
q
i

processors of the same speed to job Ji.

Proof. It can be readily seen that if Opt allocates more
processors than h

q
i , then it will waste more energy without

improving the flow time. Suppose that Opt does not set the
same speed for the ai(t) allocated processors, then averaging
their speed can result in the same execution rate at time t,
and hence the same overall flow time, but less energy being
consumed by the convexity of the power function.

Lemma 2. The optimal total flow time plus energy sat-
isfies GOpt(J ) ≥ max{G1(J ), G2(J )} for any set J of
batched parallel jobs, where

G1(J ) =
1 + U1

U
1/α
1

n∑
i=1

qi∑
q=1

wq
i

(h
q
i )1−1/α

,

G2(J ) =
1

P 1−1/α

n∑
i=1

i + Ui

U
1/α
i

· wi.

Proof. Suppose that in any infinitesimal interval of time
[t, t + ∆t], where Opt does not change the number of pro-
cessors and their speed allocated to job Ji, the job is cur-
rently executing its q-th phase Jq

i . According to Property 1,

Opt allocates ai ≤ h
q
i processors of the same speed, say

si, to the job. The work done for the job during the inter-
val is therefore ∆wi = aisi∆t, and the energy consumed is
ais

α
i ∆t. Hence, the flow time plus energy for the job during

this interval is given by ∆wi
aisi

+ ∆wi
aisi

ais
α
i , which when mini-

mized, subject to the total power constraint ais
α
i ≤ U , gives

1+U1

U
1/α
1

· ∆wi

a
1−1/α
i

≥ 1+U1

U
1/α
1

· ∆wi

(h
q
i )1−1/α . Generalizing the argu-

ment to all jobs at all time gives the first lower bound. Note
that this first lower bound applies to non-batched parallel
job sets as well.

For the second lower bound, define J ′ = {J ′1, J ′2, . . . , J ′n}
to be another set of jobs such that each job J ′i has a single
fully parallelizable phase with work w′i = wi. The opti-
mal schedule for J is certainly a valid schedule for J ′ as
well. Therefore, we have GOpt(J ) ≥ GOpt(J ′). As with
scheduling for sequential jobs on single processor systems,
Opt schedules J ′ using Spt (shortest processing time) pol-
icy, since otherwise, the total flow time can be reduced by
swapping jobs without affecting the energy. Applying the
same argument for the proof of the first lower bound to
scheduling job J ′i by noting that the flow time contribution
now becomes ∆t · i, we get the second lower bound.

4. LOCAL COMPETITIVE ARGUMENT
To prove that an online algorithm is c-competitive using

local competitive argument [25], we will show that at any
point in time, its performance is no more than c times that of
the optimal. For most scheduling problems, especially with



speed scaling, local competitiveness is usually not achiev-
able by directly comparing the number of active jobs and the
power consumption of the online algorithm with those of the
optimal scheduler [5]. However, for scheduling batched par-
allel jobs with more than one clearly defined lower bounds,
as can also be observed in the scheduling literature with-
out power considerations [13, 16, 18], the competitive ratio
of the algorithm can be obtained by a bounding its local
performance in terms of the changes of the lower bounds.

Let Alg be any online scheduling algorithm. For any

job Ji ∈ J , let us define Ji(
←−
t ) to be the portion of job

Ji executed by Alg before time t. Specifically, Ji(
←−
t ) con-

sists of the first q − 1 phases 〈J1
i , J2

i , . . . , Jq−1
i 〉 of job Ji,

where cq−1
i < t ≤ cq

i , and if q ≤ qi, followed by another
phase with linear speedup function Γq

i up to hq
i and work∫ t

c
q−1
i

Γq
i (ai(t))dt. Let us also define J (

←−
t ) to be J (

←−
t ) =

{J1(
←−
t ), J2(

←−
t ), . . . , Jn(

←−
t )}. To schedule any job set J for

the total flow time plus energy, we show that at any time t,
Alg satisfies

ĠAlg(J (t)) ≤ c1 · Ġ1(J (t)) + c2 · Ġ2(J (t)), (1)

where ĠAlg(J (t)) = GAlg(J (
←−−−
t+∆t))−GAlg(J (

←−
t ))

∆t
denotes the

rate of change (increase) for flow time plus energy incurred
by the scheduling of Alg at time t, where ∆t is an in-
finitesimal interval of time. Similarly, we have Ġ1(J (t)) =
G1(J (

←−−−
t+∆t))−G1(J (

←−
t ))

∆t
and Ġ2(J (t)) = G2(J (

←−−−
t+∆t))−G2(J (

←−
t ))

∆t
,

which denote respectively the rates of change for the two
lower bounds given in Lemma 2. Note that the changes for

the two lower bounds are between job set J (
←−−−−
t + ∆t) and

job set J (
←−
t ), whose difference lies only in the parts that

are executed by the online algorithm Alg over time interval
∆t. Now, integrating Inequality (1) over time, we get

GAlg(J ) ≤ c1 ·G1(J ) + c2 ·G2(J ),

which implies that Alg is (c1 +c2)-competitive with respect
to the total flow time plus energy.

In the infinitesimal interval of time ∆t, we can assume that
no job completes or makes a transition from one phase to
the next. We can also assume that the processor and speed
allocations by Alg do not change in this interval. The rate
of increase for flow plus energy at time t is thus given by

ĠAlg(J (t)) = n(t) +

n(t)∑
i=1

ai(t)∑
j=1

sij(t)
α.

The rate of change for G1 due to the scheduling of Alg
at time t is

Ġ1(J (t)) =
1 + U1

U
1/α
1

n(t)∑
i=1

Γq
i (ai(t))

(h
q
i )1−1/α

.

Since i+Ui

U
1/α
i

is an increasing function of i, the rate of change

for G2 is minimized when the rates of execution for the active
jobs at time t are sorted in non-decreasing order, that is,
Γq

1(a1(t)) ≥ Γq
2(a2(t)) ≥ . . . ≥ Γq

n(t)(an(t)(t)), and we have

Ġ2(J (t)) ≥ 1

P 1−1/α

n(t)∑
i=1

i + Ui

U
1/α
i

· Γq
i (ai(t)).

By evaluating the rates of execution for a particular al-
gorithm Alg, we can get the rates of change for G1 and

G2 at any time t. Together with the rate of increase for
flow time plus energy, the competitive ratio of Alg can be
obtained by setting the minimum values for c1 and c2 such
that Inequality (1) is satisfied.

5. TWO EQUI-BASED NON-CLAIRVOYANT
ALGORITHMS

In this section, we propose two online non-clairvoyant
scheduling algorithms based on the well-known Equi (equi-
partitioning) [16, 15] algorithm, which partitions the total
number of processors equally among all active jobs at any
time. The two algorithms are power-aware variants of Equi,
each augmented with a speed scaling function to assign the
speed of the allocated processors. The first algorithm, called
U-Equi (for Uniform-speed Equi), uses a uniform-speed
scaling function, and we show that it achieves a competi-

tive ratio of O(P (α−1)/α2
), which matches the lower bound

for any uniform-speed non-clairvoyant algorithm (up to con-
stant factor). The second algorithm, called N-Equi (for
Nonuniform-speed Equi), uses a nonuniform-speed scaling

function and achieves a competitive ratio of O( α
√

n ln P/m),
which improves upon the asymptotic performance of U-Equi
when given sufficient power.

In this paper, we restrict ourselves to the case where the
total number of jobs is no more than the total number of
processors, i.e., n ≤ P . Hence, each active job can get at
least one processor at any time. In addition, we assume
that the processor allocations are always integral.1 Let us
define the following notations. An active job Ji is said to
be satisfied at time t if its processor allocation is at least
the parallelism hq

i of the phase Jq
i in which it is currently

executing, i.e., ai(t) ≥ hq
i . Otherwise, the job is deprived

if ai(t) < hq
i . Let JS(t) denote the set of satisfied jobs at

time t, and let JD(t) denote the set of deprived jobs at t.
Furthermore, we define the deprived ratio x(t) at any time t
to be x(t) = |JD(t)| /n(t), and obviously, we have 0 ≤ x(t) ≤
1. We will present U-Equi and N-Equi algorithms and their
analysis in the following two subsections. In Section 5.3, we
give brief discussions on their performances in practice.

5.1 U-EQUI
U-Equi algorithm uses a variant of Equi to allot proces-

sors to active jobs at any time, and assigns the same speed
to all allocated processors. Specifically, upon the arrival of
all jobs at time 0 or the completion of any active job at time
t, U-Equi does the following:

(1) Assigns ai(t) = P λ

n(t)
processors to each active job Ji ∈

J (t), where 0 < λ ≤ 1;
(2) Sets the speed of each processor allocated to job Ji to

si(t) =
(

Un(t)
n(t)ai(t)

)1/α

.

We denote the algorithm that chooses a particular value
of λ as U-Equiλ, where λ is the allocation parameter. Note
that for λ < 1, the number of processors allocated to each
active job by U-Equiλ is less than that allocated by Equi.
The reason for this more conservative strategy is mainly for
reducing the energy consumption of the algorithm, and the
optimal value of λ will be given later in this subsection. The

1In case that the processor allocation a to a job J is non-
integral, then round it to dae or bac will affect the processor
allocation by at most a factor of two, and the competitive
ratio by at most a constant factor.



following lemma uses the set of satisfied jobs and the set of
deprived jobs to bound the rates of change for G1 and G2

respectively under U-Equiλ.

Lemma 3. Under U-Equiλ, the rates of change for G1

and G2 at any time t satisfy
(1) Ġ1(J (t)) ≥ 1

P λ/α (1− x(t))n(t);

(2) Ġ2(J (t)) ≥ 1

2P (1−λ)(α−1)/α x(t)2n(t).

Proof. (1). For any satisfied job Ji ∈ JS(t), its ex-
ecution rate at time t is given by Γq

i (ai(t)) = hq
i si(t) =

hq
i

(
Un(t)

n(t)ai(t)

)1/α

. Since hq
i ≥ 1, hence, we have

Ġ1(J (t)) ≥ 1 + U1

U
1/α
1

|JS(t)|∑
i=1

(
hq

i Un(t)

n(t)ai(t)

)1/α

≥
(

m(t)

n(t)ai(t)

)1/α

(1− x(t))n(t)

≥ 1

P λ/α
(1− x(t))n(t).

(2). For any deprived job Ji ∈ JD(t), its execution rate

at time t is Γq
i (ai(t)) = ai(t)si(t) =

(
Un(t)
n(t)

)1/α

ai(t)
1−1/α.

Hence, we have

Ġ2(J (t)) ≥ 1

P 1−1/α

(
Un(t)

n(t)

)1/α

ai(t)
1−1/α

|JD|∑
i=1

i + Ui

U
1/α
i

.

Let k = bmc, and assume 1 ≤ k ≤ |JD(t)|. Then, we have
Un(t) = m

α−1
and

|JD(t)|∑
i=1

i + Ui

U
1/α
i

=

k∑
i=1

i + i
α−1(

i
α−1

)1/α
+

|JD(t)|∑

i=k+1

i + m
α−1(

m
α−1

)1/α

≥ α

(α− 1)1−1/α

k∑
i=1

i1−1/α +

(
α− 1

m

)1/α |JD(t)|∑

i=k+1

i

≥ αk2−1/α

2 (α− 1)1−1/α
+

(
α− 1

m

)1/α |JD(t)|2 − k2

2
. (2)

Substituting Inequality (2) into Ġ2(J (t)) and simplifying,
we get

Ġ2(J (t)) ≥
(

1

P

)(1−λ)(α−1)/α
x(t)2

2
n(t). (3)

The rate of change for G2 for the other two cases when
k < 1 or k > |JD(t)| turns out to satisfy Inequality (3) as
well and can be easily verified.

Now, let us set λ1 = (α− 1)/α. Given the rates of change
for G1 and G2, the following theorem bounds the competi-
tive ratio of U-Equiλ1 for batched parallel job sets.

Theorem 4. The U-Equiλ1 algorithm, where λ1 = (α−
1)/α, is O(P (α−1)/α2

)-competitive with respect to the total
flow time plus energy for any batched parallel job set.

Proof. Based on the local competitiveness analysis out-
lined in Section 4, we show that at any time t, U-Equiλ1
satisfies

ĠU-Equiλ1
(J (t)) ≤ c1 · Ġ1(J (t)) + c2 · Ġ2(J (t)), (4)

where c1 = c2 = 2α
α−1

P (α−1)/α2
. Hence, we get the specified

competitive ratio.
The rate of increase for the flow time plus energy is given

by ĠU-Equiλ1
(J (t)) = n(t)+

∑n(t)
i=1 ai(t)si(t)

α = n(t)+Un(t) ≤
n(t) + n(t)

α−1
= α

α−1
n(t). Substituting it and the rates of

change for G1 and G2 into Inequality (4) and simplifying,
we get (x(t)−1)2 ≥ 0, which holds for all values of x(t).

Remarks. It can be seen from the analysis of Lemma 3
and Theorem 4 that U-Equiλ is O(Pmax{λ/α,(1−λ)(α−1)/α})-
competitive for any value λ. Hence, the choice of λ1 =
(α− 1)/α2 gives the best competitive ratio for U-Equiλ al-
gorithm. Larger values of λ can lead to waste of energy when
the parallelism of the job is relatively low, while smaller
values of λ do not speed up the job enough when it has
ample parallelism. In fact, as long as a deterministic non-
clairvoyant algorithm uses uniform-speed scaling function,
no further improvements on the competitive ratio can be
attained (up to constant factor), as the following theorem
gives a matching lower bound.

Theorem 5. Any deterministic non-clairvoyant algorithm

that uses uniform-speed scaling is Ω(P (α−1)/α2
)-competitive

with respect to total flow time plus energy on parallel jobs.

Proof. The proof is based on a simple construction with
a single job having constant parallelism h ≤ P and work
w > 0. Without loss of generality, we can assume that
any uniform-speed non-clairvoyant algorithm Alg allocates
a fixed number a of processors with speed s to the job
throughout its execution. The adversary, upon knowing the
allocation a, can set the parallelism h of the job in such a
way that it forces algorithm Alg to have a large competitive
ratio.

The optimal algorithm on the other hand always allocates

h processors to the job, each with speed
(

1
(α−1)h

)1/α

. Thus,

it has total flow time plus energy GOpt = α

(α−1)1−1/α · w

h1−1/α .

We consider two cases depending on the allocation of Alg.
Case 1: Suppose that a ≥ P 1−1/α. Then setting h = 1

gives the total flow time plus energy GAlg = w
s

+ w
s
asα ≥

α

(α−1)1−1/α · wa1/α. The competitive ratio in this case is

given by GAlg/GOpt ≥ a1/α ≥ P (α−1)/α2
.

Case 2: Suppose that a < P 1−1/α. Then setting h = P
gives the total flow time plus energy GAlg = w

as
+ w

as
asα ≥

α

(α−1)1−1/α · w

a1−1/α . The competitive ratio in this case is

given by GAlg/GOpt ≥ (h/a)1−1/α > P (α−1)/α2
.

Remarks. Despite the fact that the best competitive ratio
for U-Equiλ algorithm is obtained at λ = (α − 1)/α, we
can get different values of c1 and c2 with other choices of
λ. This has an implication on the practical performance of
U-Equiλ under different workload conditions. More practi-
cal considerations for the U-Equiλ algorithm are presented
in Section 5.3 and in our simulation study in Section 6.



5.2 N-EQUI
We observe from the analysis of U-Equiλ that for non-

clairvoyant algorithms, it is important to maintain a bal-
anced design that considers both jobs with high parallelism
and jobs with low parallelism. Although U-Equiλ1 pro-
vides the optimal balance between the two groups among
all uniform-speed algorithms, the lower bound (Theorem 5)
on the competitive ratio motivates us to also examine non-
clairvoyant algorithms with nonuniform-speed scaling func-
tions. In this subsection, we show that nonuniform-speed
scaling indeed helps by presenting one specific algorithm,
N-Equi, with improved competitive ratio.

N-Equi algorithm uses Equi as the processor allocation
policy, and a scaled version of harmonic series as the power
distribution policy. Specifically, at any time t, let a = P

n(t)
,

and let Ha denote the a-th Harmonic number, that is, Ha =∑a
k=1

1
k
. The N-Equi algorithm does the following:

(1) Assigns ai(t) = a processors to each active job Ji ∈ J (t);
(2) Sets the speed of the jth processor of job Ji to sij(t) =(

Un(t)
n(t)Ha·j

)1/α

.

The following theorem bounds the performance of N-Equi
with respect to the flow time plus energy for batched parallel
jobs.

Theorem 6. The N-Equi algorithm is O( α
√

n ln P/m)-
competitive with respect to the total flow time plus energy
for any batched parallel job set.

Proof. The proof follows closely that of U-Equi based
on local competitiveness analysis. In particular, we show
that at any time t, N-Equi satisfies

ĠN-Equi(J (t)) ≤ c1 · Ġ1(J (t)) + c2 · Ġ2(J (t)), (5)

where c1 =
2H

1/α
P

21−1/α−1

(
n
m

)1/α
and c2 =

2H
1/α
P

21−1/α−1
. Since it is

well known that the harmonic number HP = Θ(ln P ), the
competitive ratio is given by the larger coefficient c1, which
is O( α

√
n ln P/m) for constant values of α.

The rate of increase for the flow time plus energy at time

t is given by ĠN-Equi(J (t)) = n(t) +
∑n(t)

i=1

∑ai(t)
j=1 sij(t)

α =

n(t) + Un(t) ≤ n(t) + n(t)
α−1

= α
α−1

n(t). The rates of change
for G1 and G2 are again based on the set of satisfied jobs
and the set of deprived jobs respectively under N-Equi.

For any satisfied job Ji ∈ JS(t), its execution rate at time

t is given by Γq
i (ai(t)) =

∑h
q
i

j=1 sij(t) =
∑h

q
i

j=1

(
Un(t)

n(t)Ha·j

)1/α

≥
(

Un(t)
n(t)Ha

)1/α (h
q
i +1)1−1/α−1

1−1/α
≥

(
Un(t)

n(t)Ha

)1/α
21−1/α−1

1−1/α
(hq

i )
1−1/α.

The last inequality is because (x+1)1−1/α−1

x1−1/α is increasing
function of x for x ≥ 1. Hence, we have

Ġ1(J (t))

≥ 1 + U1

U
1/α
1

(
Un(t)

n(t)Ha

)1/α
21−1/α − 1

1− 1/α

|JS(t)|∑
i=1

(hq
i )

1−1/α

(hq
i )

1−1/α

≥
(

m(t)

n(t)Ha

)1/α
21−1/α − 1

1− 1/α
(1− x(t))n(t).

For any deprived job Ji ∈ JD(t), its execution rate at

time t is Γq
i (ai(t)) =

∑a
j=1 sij(t) =

∑a
j=1

(
Un(t)

n(t)Ha·j

)1/α

≥
(

Un(t)
n(t)Ha

)1/α
(a+1)1−1/α−1

1−1/α
≥

(
Un(t)

n(t)Ha

)1/α
21−1/α−1

1−1/α
· a1−1/α.

The rate of change of G2 is then at least

Ġ2(J (t))

≥ 1

P 1−1/α

(
Un(t)

n(t)Ha

)1/α
21−1/α − 1

1− 1/α
· a1−1/α

|JD|∑
i=1

i + Ui

U
1/α
i

.

Let k = bmc, and assume 1 ≤ k ≤ |JD(t)|. Substituting

Inequality (2) into Ġ2(J (t)) above and simplifying, we get

Ġ2(J (t)) ≥ 21−1/α−1
1−1/α

(
1

Ha

)1/α
x(t)2

2
n(t), which again holds

for k < 1 or k > |JD(t)| as can be easily verified. Inequal-
ity (5) is satisfied by substituting the rate of increase for
flow time plus energy, as well as the rates of change for G1

and G2.

Remarks. Theorem 6 suggests that when given sufficient
power with respect to the total number of jobs, the compet-
itive ratio of N-Equi becomes O( α

√
ln P ), which improves

the asymptotic performance of U-Equiλ1 algorithm.

5.3 Performance in Practice
In the preceding two subsections, we have analyzed the

performances of U-Equi and N-Equi algorithms in terms
of their competitive ratios. In this subsection, we briefly
discuss their performances in practice.

From the analysis given previously, we can see that the
competitive ratio of an algorithm can be decomposed into
two parts c1 and c2, which are obtained by considering the
set of satisfied jobs and the set of deprived jobs, respec-
tively. In practice, the performance of the algorithm will
to a large extent depend on the dominant coefficient, which
corresponds to the dominating set of jobs. For instance, the
competitive ratio of U-Equi1 algorithm is O(P 1/α), which
is obtained by the larger coefficient c1 on the set of satis-
fied jobs. However, if the system is under heavy workloads
when there is a large number of active jobs with ample par-
allelism, then there tends to be more deprived jobs than
satisfied ones. In this case, the dominant coefficient actu-
ally tends towards c2, which is a constant with respect to
P . On the other hand, the coefficient c2 for the U-Equiλ1

algorithm, where λ1 = (α− 1)/α, is given by O(P (α−1)/α2
).

Hence, despite the fact that U-Equiλ1 has better worst-case
competitive ratio than U-Equi1, U-Equi1 should perform
better than U-Equiλ1 when the system is under relatively
heavy workload.

In addition, the local performance of U-Equi at any time
t when the system is under light workload is also dependent
upon the capped power at t as can be seen from the deriva-
tion of Ġ2 in Lemma 3. While this factor can have an impact
on the practical performance of U-Equi, it is neglected in
the worst-case analysis to obtain the global competitive ra-
tio. In Section 6, we will evaluate the impact of these factors
through simulations.

6. SIMULATIONS
We use simulations to evaluate the performances of our

proposed algorithms. Our main objectives include demon-
strating the effect of allocation factor λ on the performance
of U-Equiλ, comparing our dynamic speed-scaling algorithms
with Equi-based fixed-speed strategy, and evaluating the
impact of different power budgets on their performances.



6.1 Simulation Setup
In our simulations, we construct synthetic workloads using

parallel jobs with varying degrees of parallelism. For each
job, we generate its parallelism based on the model given
in [14], which uses two parameters: the average parallelism
A, and the variance of parallelism σ, to specify the paral-
lelism characteristics of the job. Specifically, for each job,
we choose its average parallelism A uniformly from [1, 100]
and select the variance σ uniformly in the interval [0, 2].
Moreover, in order to evaluate the robustness of our algo-
rithms, we allow the parallelism for each phase of a job to
follow different distributions, such as Uniform, Weibull, and
Lognormal distributions. As the experimental results finally
turn out, the performances of our algorithms are fairly in-
sensitive to the distributions we choose.

We generate a wide range of workloads by varying the
number of jobs in our simulations. Specifically, we conduct
over 1000 sets of experiments, and the number of jobs in
each experiment is uniformly selected from 1 to 100. The
performance ratio of an algorithm in each experiment is com-
puted by normalizing its flow time plus energy with respect
to the maximum of the two lower bounds given in Section 3.
For experiments that have the same number of jobs, hence
with similar workloads, we take their average ratio to eval-
uate the performance of an algorithm for robustness. The
number of processors in the system is set to be P = 1000,
and the power parameter is set to be α = 3. The schedul-
ing overheads due to reallocations and speed scalings of the
processors are ignored, since they happen infrequently only
when a job completes its execution.

6.2 Simulation Results
(1) Effect of λ for U-Equiλ.
Our first set of simulations focuses on the effect of alloca-

tion factor λ on the performance of U-Equiλ algorithm. As
indicated in Section 5.3, larger values of λ give better per-
formance with heavy system workload while smaller values
of λ tend to perform better when the workload is light. We
choose five values of λ uniformly between 1−1/α and 1, and
their performance ratios on different workloads are given in
Figure 1. Clearly, the results match our analysis, and the
crossover happens roughly when the number of jobs reaches
10 in our simulation. Because of the superior performance
of U-Equi1 on the majority of our workloads, we use it to
represent the class of U-Equi algorithms in the subsequent
experiments.

(2) Comparison with fixed-speed strategy.
We evaluate the performances of U-Equi and N-Equi al-

gorithms by comparing them with a fixed-speed strategy,
which uses Equi as the processor allocation policy, and al-
ways assigns the same fixed speed to all processors at all
time. To demonstrate the advantage of our speed-scaling al-
gorithms, we conduct simulations for each set of jobs using
the fixed-speed strategy with a wide range of speeds, and
choose the best one to compare with U-Equi and N-Equi.
Figure 2 shows the comparison results. As can be seen,
N-Equi significantly outperforms the best fixed-speed strat-
egy under light workloads, and U-Equi performs slightly
better than the best fixed-speed strategy over the entire
workload range. N-Equi and U-Equi have similar perfor-
mances under heavy system workloads, when the ratio of
U-Equi becomes dominated by the constant coefficient, and
the ratio of N-Equi is small enough by our choice of the pa-
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Figure 1: Effect of allocation factor λ on the perfor-
mance of U-EQUIλ.
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Figure 2: Comparison of U-EQUI and N-EQUI with
the best fixed-speed strategy.

rameters to match that of U-Equi. On average, N-Equi im-
proves the overall performance ratio of the best fixed-speed
strategy by 15.6% and U-Equi improves the performance
ratio by 3.6%.

(3) Impact of power budget.
We study the effect of different power budget on the per-

formance of U-Equi and N-Equi by changing the parameter
m (i.e. (α− 1) times the power budget) with respect to the
total number n of jobs for each job set. Specifically, we re-
duce m/n from 100% to 10%. Figure 3(a) and Figure 3(b)
show the impact of power reduction on the performances of
U-Equi and N-Equi. We can see that except for the very
light and heavy workloads, where the impact of power reduc-
tion is relatively small, clear performance degradations can
be observed for the wide range of medium workloads on both
algorithms. The exception for the light workload follows the
analysis in Section 5 that the performances of our algorithms
degrade with reduced power budget until the parameter m is
capped at 1. When the workload is heavy, on the other hand,
deprived jobs will dominate so that reducing the power bud-
get will have little effect on the performance. Figure 4 shows
the performance degradation of N-Equi in terms of the in-
crease in percentage of the average performance ratio when
reducing the power budget. (Almost identical results are
observed for U-Equi.) Clearly, the performance is not sig-
nificantly affected by moderate power reduction, but it de-
grades quickly after the power budget drops below 50%. The
performance degradation reaches 36% when the power is re-
duced to only one tenth of the full power.
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Figure 3: Impact of different power budgets on the performances of U-EQUI and N-EQUI.
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Figure 4: Performance degradation of N-EQUI
when reducing the power budget.

7. RELATED WORK
There are many prior studies that focus on power-efficient

scheduling with dynamic speed scaling. One line of re-
search considers scheduling with deadline constraints. Yao
et al. [32] initially considered a minimum energy schedule
and average rate heuristic for clairvoyant job scheduling
with deadlines. They gave an optimal offline algorithm and
an online algorithm whose competitive ratio is between αα

and 2ααα (α ≥ 2). Bansal et al. [4] further improved
the online scheduling result with a new algorithm that is
2(α/(α−1))αeα-competitive. Some other results for schedul-
ing with deadlines can be found in the survey [19].

Another line of research studies speed scaling to minimize
the total flow time plus energy. Almost all results along
this line use the natural speed scaling function that sets the
processor speed at any time t to n(t)1/α, where n(t) is the
number of active jobs at t. Albers and Fujiwara [1] first
considered this problem for unit-size jobs and proposed an

O
((

3+
√

5
2

)α)
-competitive algorithm. Bansal et al. [5] later

improved its competitive ratio to 4. Moreover, they also
considered a more general setting, where jobs have arbitrary
sizes and arbitrary weights, and showed that Hdf (highest

density first) is max{2, 2(α−1)

α−(α−1)1−1/(α−1) }-competitive for frac-

tional weighted flow plus energy. The same results were
achieved in [3] for one processor with bounded speed. Lam
et al. [24] showed that Srpt (shortest remaining process-
ing time) is 2/(1− α−1

aα/(α−1) )-competitive without speed con-

straint and 2(α+1)/(α− α−1

aα/(α−1) )-competitive with bounded
speed. They also showed that the non-clairvoyant algo-
rithm Rr (round robin) achieves (2 − 1/α)-competitive for
batched jobs without speed bound and 2-competitive with
speed bound. Recently, Chan et al. [10] showed that the
non-clairvoyant algorithm Laps (Latest Arrival Processor
Sharing) is O(α3)-competitive for non-batched jobs.

All results above focused on uniprocessor scheduling. At-
tention has also been paid to speed scaling in multiprocessor
settings. For real-time systems, Chen [11] proposed an en-
ergy efficient algorithm to schedule frame-based tasks over
multiprocessors. Isci et al. [20] developed globally aware
policies to dynamically tune the speeds of the processors un-
der a chip-wide power constraint. Pruhs [28] considered min-
imizing the makespan for jobs with precedence constraints
on multiprocessors with bounded energy. Bunde [9] gave
an optimal offline algorithm for the makespan of equal-size
jobs on multiprocessors with an energy constraint, and an
arbitrarily good approximation algorithm for the total flow
time. Albers et al. [2] studied offline scheduling for jobs with
deadline constraints to minimize the total consumed energy
on parallel processors. Lam et al. [23] studied online non-
migratory scheduling for sequential jobs on multiprocessors
while minimizing the total flow time plus energy.

For scheduling without power constraints, Edmonds et
al. [16] considered non-clairvoyant scheduling on batched
parallel jobs modeled by multiple phases of arbitrary speedup
functions. They showed that Equi is (2 +

√
3)-competitive

with respect to the total flow time. Edmonds [15] also
showed that for arbitrarily released parallel jobs, Equi is
(2+ 4

ε
)-competitive with respect to the total flow time when

given (2 + ε) more processors than the optimal scheduler.

8. CONCLUDING REMARKS
In this paper, we have focused on non-clairvoyant speed

scaling for batched parallel jobs to minimize the total flow
time plus energy. Based on the Equi processor allocation
policy, we have proposed two algorithms, namely U-Equi
and N-Equi, which use uniform-speed and nonuniform-speed
scaling functions, respectively, and we have studied the per-
formance of our algorithms using both theoretical analysis
and empirical simulations.

Extending the analysis in this paper and in [13], we can
show that combining Deq (dynamic Equi-partitioning) pro-
cessor allocation policy, which utilizes the jobs’ instanta-



neous parallelism at any time to allocate processors, with
the uniform-speed scaling function presented in this paper,
O(1)-competitiveness can be achieved in terms of the total
flow time plus energy for batched parallel jobs. This ob-
servation reveals the benefit of clairvoyance when it comes
to scheduling for flow time plus energy with uniform-speed
scaling, although the non-clairvoyant algorithm Equi pos-
sesses O(1)-competitiveness for flow time alone [16]. For

nonuniform-speed scaling, whether the current O( α
√

ln P )-
competitiveness of N-Equi can be further improved is an
open question, and it will also be of interest to provide a
non-trivial lower bound in this setting.
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