
Adaptive B-Greedy (ABG): A Simple yet Efficient Scheduling Algorithm

Hongyang Sun Wen-Jing Hsu

School of Computer Engineering,
Nanyang Technological University, Singapore

{sunh0007, hsu}@ntu.edu.sg

Abstract

In order to improve processor utilizations on parallel sys-
tems, adaptive scheduling with parallelism feedback was re-
cently proposed. A-Greedy, an existing adaptive scheduler, of-
fers provably-good job execution time and processor utilization.
Unfortunately, it suffers from unstable feedback and hence un-
necessary processor reallocations even when the job has con-
stant parallelism. This problem may cause difficulties in the
management of system resources.

We propose a new adaptive scheduler called ABG (for Adap-
tive B-Greedy), which ensures both performance and stability.
In a direct comparison with A-Greedy using simulated data-
parallel jobs, ABG shows an average 50% reduction in wasted
processor cycles and an average 20% improvement in running
time. For a set of jobs, ABG also outperforms A-Greedy by
10% to 15% on average in terms of both makespan and mean
response time, provided the system is not heavily loaded. Our de-
tailed analysis shows that ABG indeed offers improved transient
and steady-state behaviors in terms of control-theoretic metrics.
Using trim analysis, we show that ABG provides nearly linear
speedup for individual jobs and good processor utilizations. Us-
ing competitive analysis, we also show that ABG offers good
makespan and mean response time bounds.

1 Introduction

Conventional approaches to scheduling a parallel job with a
fixed number of processors can often cause processor waste and
job execution delays if the job’s parallelism varies with time [1].
In fact, many parallel jobs can be designed to run with a vari-
able number of processors during their execution, and such jobs
are called malleable jobs [8]. Adaptive scheduling that periodi-
cally adjusts the processor allocations to malleable jobs can thus
improve processor utilization and speed up job execution.

A two-level architecture has provided a convenient frame-
work for adaptive scheduling of malleable jobs [1, 8], where a
system-level OS allocator allots processors to jobs and a user-
level task scheduler schedules a job’s tasks onto the allotted
processors. The execution of the job is divided into schedul-
ing quanta. The task scheduler periodically provides feedback in
terms of processor requests to the OS allocator between schedul-
ing quanta, and based on the system policy and the task sched-
uler’s request, the OS allocator decides on an appropriate num-

Figure 1. Request instability of A-Greedy.

ber of processors to allot to the job for the next quantum. Since
the future parallelism of the job is usually unknown prior to the
job’s execution, the challenge is for the task scheduler to make
processor requests in a non-clairvoyant fashion.

Agrawal, He, Hsu, and Leiserson [1] proposed an adaptive
task scheduler A-Greedy that provides feedback to the OS allo-
cator based on the statistics of the job in the previous quantum. It
calculates the processor requests using a multiplicative-increase
multiplicative-decrease strategy and schedules the tasks of the
job greedily with the allotted processors. A-Greedy is shown to
be efficient in terms of running time and processor utilizations
when scheduling a malleable job. However, simple analysis also
reveals certain problems of A-Greedy in terms of its transient
behaviors of processor requests. As shown in Figure 1, it suf-
fers from request instability even when the parallelism of the job
stays constant. The fluctuating processor requests can cause po-
tential difficulties for the management of processor resources,
such as unnecessary processor waste and job execution delays as
well as unnecessary reallocation overheads and loss of localities,
etc., which tend to worsen with increased job parallelism.

We present a new adaptive scheduler called Adaptive B-
Greedy (ABG for short) under the same two-level scheduling
framework. ABG includes a scheduling algorithm B-Greedy
and a processor request calculation algorithm A-Control. B-
Greedy schedules the tasks of a job in a greedy manner, but with
a breath-first strategy, which allows it to measure more precisely
the job’s average parallelism in each quantum. A-Control cal-
culates the processor requests using an adaptive controller. The
calculation is based on classical control theory, which has been
routinely applied in scheduling real-time systems (e.g. [17, 20])
and designing computing applications (e.g. [14]). Ours appears
to be its first application in scheduling multiprocessor systems.
Using control-theoretic analysis, we show that the processor re-
quests calculated by A-Control is able to achieve much improved
transient and steady-state performances that A-Greedy fails to
attain.

We also prove from algorithmic perspective the running time
and the processor utilizations of scheduling a malleable job with
ABG. As with [1, 6], we model a malleable job as a dynami-
cally unfolding directed acyclic graph (dag). We use two intrin-
sic characteristics of the job in our analysis, namely the work
T1, which is the total number of vertices (each one represents a
unit-size task) in the dag, and the critical-path length T∞, which
is the number of nodes on the longest dependency chain in the
dag. Moreover, we identify a new job characteristic, which we
call the transition factor, to characterize the variation of job’s av-
erage parallelism between any two adjacent scheduling quanta.
The transition factor is an important job characteristic because it
fundamentally affects the effectiveness of an adaptive and non-
clairvoyant scheduler. We will formally define transition factor
in Section 5. Intuitively, it indicates the inherent difficulty to
schedule a given job, and we argue that this factor should be
reflected in the performance analysis.

In addition, to analyze the running time of a job when sched-
uled by ABG, we use a statistics-inspired trim analysis [1],
which shows the limit of an OS allocator even if it behaves like
an adversary that prevents any task scheduler from achieving lin-
ear speedup. We will describe more about trim analysis in Sec-
tion 6. The readers can also refer to [1–3] for an excellent argu-
ment on the application of trim analysis in adaptive scheduling.

Our main contributions lie in analytically showing that ABG
has the following properties:

• ABG achieves good transient and steady-state perfor-
mances in terms of its processor requests. The processor
requests satisfy bounded-input bounded-output (BIBO) sta-
bility, zero steady-state error, zero overshoot, and conver-
gence at a user-configurable rate r.

• ABG finishes a job with work T1, critical-path length T∞,
and transition factor CL on a machine with P processors
and quantum length L in T ≤ 2T1

P̃
+ (CL + 2) T∞ + L =

O(T1

P̃
+ CLT∞ + L) time, and wastes no more than W =

O(CLT1 + P · L) processor cycles, where P̃ denotes the
O(CLT∞ + L)-trimmed processor availability and the con-
vergence rate needs to satisfy r < 1/CL.

• ABG can be coupled with a fair and non-reserving (de-
fined in Section 5) OS allocator to schedule a set of jobs
J on a machine with P processors and quantum length L.
If |J | ≤ P , i.e., the number of jobs is no more than the
number of processors, then the makespan is bounded by
M = O(CLM∗ + L · |J |) for any set of jobs with arbi-
trary release times, and the mean response time is bounded
by R = O(CLR∗ + L · |J |) for any set of jobs released in a
batched fashion, where M∗ and R∗ denote the lower bounds
of makespan and mean response time, respectively. Here,
CL denotes the maximum transition factor of all jobs and
the convergence rate needs to satisfy r < 1/CL.

We conduct simulations with data-parallel jobs to evaluate the
algorithmic performances of ABG. Simulation results indicate
that ABG performs much better on this type of jobs than what
the theoretical bounds predict, and that ABG achieves an average
20% improvement in running time and 50% reduction in proces-
sor waste as compared to A-Greedy. In addition, when the sys-
tem is not heavily loaded in a multiprogrammed environment,
ABG also outperforms A-Greedy by 10% to 15% on average for
both makespan and mean response time of the job set.

Figure 2. Tasks scheduled by B-Greedy.

The remaining parts of the paper are organized as follows.
Section 2 introduces B-Greedy task scheduling algorithm. Sec-
tion 3 presents A-Control processor request calculation scheme.
Section 4 provides the control-theoretic analysis of ABG. Sec-
tion 5 introduces some definitions and algorithmic preliminaries,
followed by the algorithmic analysis in Section 6. Section 7 de-
scribes the simulation and comparison of ABG and A-Greedy
in terms of the algorithmic performances. Section 8 reviews the
related work of adaptive scheduling from both control and algo-
rithm perspectives. Finally, Section 9 summarizes our findings
and suggests some future work.

2 B-Greedy Task Scheduling

The B-Greedy task scheduling algorithm uses a variant of the
well-known greedy scheduler [10] augmented with a breadth-
first level-by-level strategy to schedule the tasks of a job. Sup-
pose that a job gets a(q) processors in quantum q, then on any
time step of the quantum, a greedy scheduler schedules any a(q)

tasks of the job if there are more than a(q) tasks that are ready,
i.e., tasks whose parents are already executed. Otherwise, it
schedules all ready tasks. B-Greedy works similarly, except that
it gives priority to the ready task with the lowest level, which is
the length of the longest chain from the source node(s) of the dag
to the task. This breadth-first scheduling strategy ensures that no
task at level l completes later than any task at level l + 1.

One rationale of B-Greedy is that it attempts to fully expand
the parallelism of the job, and therefore tries to make faster
progress on its critical path at all time. Furthermore, it may
be adapted easily to measure the average parallelism of the job
in a scheduling quantum. For each quantum q, B-Greedy col-
lects the quantum work T1(q), which is the number of tasks
the scheduler has completed in the quantum, and the quantum
critical-path length T∞(q), which is the number of levels the
job has advanced in the quantum. The quantum average par-
allelism A(q) is then computed as A(q) = T1(q)/T∞(q). Note
that the quantum critical-path length T∞(q) can be non-integer
values if the scheduler has completed some but not all tasks
in a level. The fractional part is defined to be the ratio of the
number of tasks completed to the total number of tasks on that
level. For example, Figure 2 shows in gray the tasks that are
scheduled in quantum q by B-Greedy. The quantum work and
quantum critical-path length in this case are T1(q) = 12 and
T∞(q) = 0.8+1+0.6 = 2.4, respectively. Therefore, the quantum
average parallelism is A(q) = T1(q)/T∞(q) = 12/2.4 = 5.

3 A-Control Processor Request Calculation

A-Control calculates the processor requests using an adap-
tive controller. As shown in Figure 3, the output of A-Control
is the processor request d(q) for quantum q. The request is sent

Figure 3. Feedback control structure of ABG.

to the OS allocator, which based on the system policy gives the
job an allotment a(q). As with [1], we assume that the OS al-
locator is conservative, that is, it never allots more processors
than requested. Thus the allotment a(q) for the job in any quan-
tum q always satisfies a(q) = min{d(q), p(q)}, where p(q) is the
number of available processors for the job in quantum q based
on the OS allocator’s system policy. After the job is scheduled
by B-Greedy at the end of quantum q, the quantum average par-
allelism A(q) is collected, and the output y(q) is computed as
y(q) = d(q)/A(q). The output is compared with the reference
r(q) to produce an error term e(q) = r(q) − y(q), which is used
by the adaptive controller for calculation of the processor request
d(q + 1) for the next quantum q + 1. The controller applies the
following integral control law [14]:

d(q + 1) = d(q) + K(q + 1)e(q), (1)

where K(q + 1) denotes the controller gain for quantum q + 1,
and determines how aggressively the controller responds to the
job’s parallelism. It adjusts the processor request for each quan-
tum based on the request and the error of the previous quantum.
The controller is adaptive because the gain K(q + 1) is reset for
each quantum based on the measurement A(q) and some per-
formance specifications. Shortly in Section 4, we will present
these specifications and show how to set the controller gain for
each quantum to satisfy them from control-theoretic perspective.
The processor request for the first quantum is simply set to be
d(1) = 1.

4 Control-Theoretic Analysis

The adaptive controller shown in Figure 3 dynamically ad-
justs its controller gain based on the time-varying parallelism of
the job and is referred to as self-tuning regulator [5] in classical
control theory. We now determine how the controller gain can
be set for each scheduling quantum via control-theoretic analy-
sis. We basically transform the system into z-domain, and em-
ploy pole placement strategy [14] by considering a set of tran-
sient and steady-state performance specifications. Our analysis
directly applies to times when the job’s average parallelism is
constant. At other times when the average parallelism is chang-
ing, these specifications are not properly defined, however.

Assume that the job’s average parallelism is A, and it will
stay constantly at A for sufficiently long time. The controller
gain K, which depends on the value of A, will also stay constant
in the mean time. Ideally the processor request should match the
job’s average parallelism for a quantum to be efficient. Hence,
the reference in our scheduler is set to be 1 for all quanta, which
corresponds to a unit-step function. Thus, we can represent the
reference as well as A-Control and B-Greedy in z-domain:

• Reference: R(z) = z/(z − 1).

• A-Control: G(z) = D(z)/E(z) = K/(z − 1).
• B-Greedy: S(z) = Y (z)/D(z) = 1/A.

The closed-loop transfer function of the system can be de-
rived accordingly as

T (z) =
Y (z)

R(z)
=

G(z)S(z)

1 + G(z)S(z)
=

K/A

z − (1 − K/A)
. (2)

Clearly, the closed-loop is a first-order system with single
pole p0 = 1 − K/A. We adopt the following set of criteria [14]
commonly used in control theory to place the position of the pole
by setting the value of controller gain K.

• BIBO-Stability. The system is bounded-input bounded-
output (BIBO) stable if given a bounded reference, the pro-
cessor request is also bounded.

• Steady-State Error. The steady-state error is given by the
difference between the processor request and the job’s av-
erage parallelism after sufficiently long time, i.e., at steady
state.

• Maximum Overshoot. The maximum overshoot is the max-
imal difference between the transient processor request and
its steady-state value.

• Convergence Rate. The convergence rate r is the speed
at which the processor request approaches the job’s av-
erage parallelism. Specifically, r is defined to be r =

(|d(q + 1) − A|) / (|d(q) − A|).
These four criteria specify the transient and steady-state per-

formance of the scheduler when the average parallelism of the
job stays constant. We show that ABG has good performance in
terms of these criteria in the following theorem.

Theorem 1 Suppose that ABG schedules a job whose average
parallelism stays constantly at A for sufficiently long time. If the
controller gain is set to be K = (1 − r)A, where r ∈ [0, 1), then
processor requests satisfy (1) BIBO stability, (2) zero steady-
state error, (3) zero overshoot, and (4) convergence rate r.

Proof. The proof is straightforward using control theory. The
details can be found in the full version of this paper [23].

Since the average parallelism A(q) of the job is measured for
each scheduling quantum q ≥ 1, the controller gain according
to Theorem 1 is set to be K(q) = (1 − r)A(q − 1) for q ≥ 2.
Substituting this into Equation (1), we get the following relation
on the processor request,

d(q) =

{
rd(q − 1) + (1 − r)A(q − 1) if q > 1,

1 if q = 1,
(3)

which is essentially the algorithm for calculating processor re-
quest for each quantum. A special case of this algorithm occurs
when the convergence rate satisfies r = 0. This gives the fastest
rate of convergence, or one-step convergence. The resulting pro-
cessor request for each quantum q is then equal to the job’s av-
erage parallelism of the previous quantum, i.e., d(q) = A(q − 1).

Figure 4 shows the behavior of ABG as compared to A-
Greedy on a synthetic job with constant parallelism over 8

scheduling quanta. The convergence rate of the controller is set
to be 0.2 in this case, and the multiplicative factor of A-Greedy
is set to be 2. As can be readily seen, ABG satisfies good tran-
sient and steady-state performances as stated in Theorem 1 while

0 1 2 3 4 5 6 7 8
0

10

20

Quantum

Processor request
Job parallelism

(a)

0 1 2 3 4 5 6 7 8
0

10

20

Quantum

(b)

Figure 4. Transient and steady-state behaviors of
(a) ABG (b) A-Greedy.

A-Greedy suffers from apparent oscillating instability, nonzero
steady-state error and significant overshoot. These problems of
A-Greedy can cause unnecessary processor waste and job execu-
tion delays, which worsens with increased job parallelism. Prac-
tically, because of its instability, A-Greedy may also suffer from
unnecessary context switching overhead and loss of locality, etc.
Thus, it is important to take control-theoretic performances into
consideration when evaluating an adaptive scheduler.

5 Algorithmic Preliminaries

5.1 Quantum Efficiency

A scheduling quantum of a job is said to be a full quantum
iff there is work done on each time step of the quantum. We as-
sume that the OS allocator is fair and non-reserving1, and that
the number of jobs in the system is no more than the number
of processors. Thus each job receives at least 1 processor at all
times. Therefore all except the last quantum of a job are guar-
anteed to be full quanta. Suppose that the quantum length is
L, then for each full quantum q with allotment a(q), the quan-
tum work satisfies T1(q) ≤ a(q)L and the quantum critical-path
length satisfies T∞(q) ≤ L. We define the quantum work effi-
ciency to be α(q) =

T1(q)
a(q)L

, and the quantum critical-path length

efficiency to be β(q) =
T∞(q)

L . Thus, both α(q) and β(q) satisfy
0 < α(q), β(q) ≤ 1. The quantum average parallelism A(q) is
therefore

A(q) =
T1(q)

T∞(q)
= a(q)

α(q)

β(q)
. (4)

Since B-Greedy schedules a job in breadth-first manner, treat-
ing part of the job completed in each quantum as a separate job,
we can apply a well-known result [6,10] from greedy scheduling,
which is L ≤ T1(q)

a(q)
+ T∞(q) =

(
α(q)
β(q)

+ 1
)

T∞(q). Substituting
in T∞(q) = β(q)L, we get

α(q) + β(q) ≥ 1. (5)

Inequality (5) gives a lower bound on the sum of quantum
work efficiency and quantum critical-path length efficiency of
any full quantum. We will use this relationship as well as Equa-
tion (4) later in our analysis to derive the upper bounds on run-
ning time and processor waste.

1An OS allocator is fair if it gives all jobs an equal number of processors
unless a job requests for less. An OS allocator is non-reserving if it never keeps
any processor idle unless no job requests for more.

5.2 Transition Factor

The transition factor of a job, denoted by CL, where CL ≥ 1,
is defined to be the maximal ratio on the average parallelism of
any two adjacent full quanta for a given quantum length L. For-
mally, for a job with transition factor CL, the average quantum
parallelism of the job satisfies

1

CL
≤ A(q)

A(q − 1)
≤ CL, (6)

for q ≥ 1, and A(0) is defined to be 1.
The transition factor of a job, like the work and critical-path

length, is an intrinsic job characteristic, and is independent of
the task scheduler used to schedule it. 2 Intuitively, it represents
how fast the parallelism of the job changes with time and thus
reflects the degree of difficulty to schedule the job in an adaptive
and non-clairvoyant fashion.

5.3 Processor Request Bounds

We now show that the processor requests generated by ABG
can be bounded from both above and below provided that certain
conditions are satisfied.

Lemma 2 Suppose that ABG schedules a job with transition
factor CL on a machine with quantum length L. Then the pro-
cessor request d(q) for each full quantum q satisfies

1 − r

CL − r
A(q) ≤ d(q) ≤ CL(1 − r)

1 − CLr
A(q), (7)

where A(q) is the job’s average parallelism in quantum q and r

denotes the convergence rate. The inequality on the right only
holds provided r < 1/CL.

Proof. We will prove the upper bound of d(q) by induction
on the scheduling quantum. The lower bound can be proven
similarly, which is omitted here.

Base case: For q = 1, we have d(1) = 1. Because A(0) = 1,
and according to Inequality (6), the average parallelism A(1) ≥
1/CL. Thus we have d(1)

A(1)
≤ CL ≤ CL−CLr

1−CLr , since CL ≥ 1 and

CLr < 1. Therefore, we get d(1) ≤ CL(1−r)
1−CLr A(1).

Induction: For q ≥ 2, suppose that we have d(q − 1) ≤
CL(1−r)
1−CLr A(q − 1). Because A(q − 1) ≤ CLA(q) from In-

equality (6), then according to the processor request algorithm
in Equation (3), we have for quantum q, d(q) = rd(q − 1) +

(1 − r)A(q − 1) ≤ CLr(1−r)
1−CLr A(q − 1) + (1 − r)A(q − 1) =

1−r
1−CLr A(q − 1) ≤ CL(1−r)

1−CLr A(q).
Remarks. The assumption r < 1/CL is required for the upper

bound of the processor request to hold. Without this assumption,
unfortunately, the ratio of the processor request and the quantum
average parallelism cannot be bounded from above. The worst
case happens when the parallelism of the job reduces much faster
than the responsiveness of the chosen convergence rate, hence
the processor requests cannot be reduced as quickly.

2The transition factor, however, does depend on the length of the scheduling
quantum. Different quantum length may yield different transition factor for the
same job. For a given quantum length and the dag structure of the job, the tran-
sition factor can usually be derived based on the worst case schedule. We will
not be concerned about how the transition factor may be derived, much like the
work and the critical-path length of a job. We will just make use of these job
characteristics to quantify the behavior of our scheduler in terms of performance
bounds.

6 Algorithmic Analysis

6.1 Running Time

We use trim analysis [1] for analyzing the running time of
ABG. We classify each full quantum q into “accounted”, namely
the quantum that is accounted for speedup, and “deductible”,
namely the quantum that is trimmed and not considered. Specif-
ically, a full quantum q is accounted if the processor request is
deprived, i.e., a(q) < d(q) and the allotment is less than the av-
erage parallelism, i.e., a(q) < A(q). Otherwise, the quantum is
deductible if a(q) = d(q) or a(q) ≥ A(q). We prove the running
time of ABG by bounding the number of each type of quanta
separately.

The trim analysis is used to bound the number of accounted
quanta, and it is applied as a tool to limit the power of the OS
allocator, which can behave like an adversary to the task sched-
uler. In particular, the OS allocator may provide a large number
of available processors when the parallelism of the job is low,
thus preventing any task scheduler from achieving good linear
speedup in terms of the average processor availability for the job.
Trim analysis trims off a few quanta with the highest number of
available processors and shows that a job can achieve nearly lin-
ear speedup in terms of the average processor availability on the
remaining quanta. The resulting average processor availability
is called R-trimmed availability, where R is the number of time
steps trimmed. The following theorem states the running time of
ABG under trim analysis.

Theorem 3 Suppose that ABG schedules a job with work T1,
critical-path length T∞ and transition factor CL on a machine
with quantum length L. Then the running time of the job is
bounded by

T ≤ 2T1

P̃
+

CL + 1 − 2r

1 − r
T∞ + L, (8)

where P̃ denotes the
(

CL+1−2r
1−r T∞ + L

)
-trimmed processor

availability and r denotes the convergence rate.

Proof. Let A denote the set of accounted quanta. From the def-
inition of accounted quantum, Equation (4) and Inequality (5),
we have α(q) ≥ 1/2 for each q ∈ A, i.e., T1(q) ≥ a(q)L

2 .
Since a(q) < d(q) on accounted quanta, and OS allocator al-
locates a(q) = min {d(q), p(q)} processors to the job, we have
a(q) = p(q). The total work done on accounted quanta satisfies
T1 ≥ ∑

q∈A T1(q) ≥ ∑
q∈A

a(q)L
2 = L

2

∑
q∈A p(q) = L

2 P |A|,
where P is the average processor availability on accounted
quanta. The total number of accounted quanta is then |A| ≤ 2T1

PL
.

Let D denote the set of deductible quanta. From the definition
of deductible quantum and Lemma 2, we have a(q) ≥ 1−r

CL−r A(q)

for each q ∈ D. Substituting Equation (4) and Inequality (5)
into it, we obtain β(q) ≥ 1−r

CL+1−2r , i.e., T∞(q) ≥ 1−r
CL+1−2r L.

The sum of the quantum critical-path length in deductible quanta
thus satisfies T∞ ≥ ∑

q∈D T∞(q) ≥ ∑
q∈D

1−r
CL+1−2r L =

1−r
CL+1−2r |D|L. Therefore, the total number of deductible quanta
is |D| ≤ CL+1−2r

(1−r)L
T∞.

Let N denote the set of non-full quanta. Since only the last
quantum of the job may be a non-full quantum, we have |N | ≤ 1.
Combining these bounds, the running time of the job satisfies

T ≤ 2T1

P
+ CL+1−2r

1−r T∞ + L. Since P is the average processor
availability on all accounted quanta, that is, the processor avail-
ability after trimming at most CL+1−2r

1−r T∞ + L non-accounted
quanta, it is clearly no less than the

(
CL+1−2r

1−r T∞ + L
)
-trimmed

processor availability P̃ . Thus, substituting P ≥ P̃ into the run-
ning time bound, we proved the theorem.

6.2 Processor Waste

We analyze the number of processor cycles wasted when
scheduling a job using ABG. As pointed out in the remark
of Lemma 2, bounding processor waste relies on the convergence
rate to satisfy r < 1/CL for a job with transition factor CL. How-
ever, since the job characteristics are usually unknown prior to its
execution, we assume that the convergence rate is chosen based
on some historical characterization of the workload, which en-
sures that it can satisfy the requirement. The processor waste can
be bounded in terms of the total work as stated in the following
theorem.

Theorem 4 Suppose that ABG schedules a job with work T1 and
transition factor CL on a machine with quantum length L. Then
the total number of processor cycles wasted is bounded by

W ≤ CL(1 − r)

1 − CLr
T1 + P · L, (9)

where r denotes the convergence rate of the scheduler.

Proof. Since we assume a(q) ≤ d(q), from Lemma 2, we
have for each full quantum q, a(q) ≤ CL(1−r)

1−CLr A(q). Substitut-
ing Equation (4) and Inequality (5) into it, we obtain α(q) ≥

1−CLr
1+CL−2CLr , i.e., T1(q) ≥ 1−CLr

1+CL−2CLr a(q)L. Let w(q) denote
the waste in the quantum, then w(q) satisfies w(q) = a(q)L −
T1(q) ≤ a(q)L − 1−CLr

1+CL−2CLr a(q)L =
CL(1−r)

1+CL−2CLr a(q)L ≤
CL(1−r)
1−CLr T1(q). Let F denote the set of full quanta. The total pro-

cessor waste in F is then
∑

q∈F w(q) ≤ ∑
q∈F

CL(1−r)
1−CLr T1(q) ≤

CL(1−r)
1−CLr T1. The job’s last quantum may not be a full quantum

and wastes at most P · L processor cycles. The total waste is
obtained by summing up wastes from both types of quanta.

6.3 Makespan and Mean Response Time

Makespan or mean response time of a set of jobs often indi-
cate the overall system performance in a multiprogrammed envi-
ronment. Such global measures can depend on both running time
and processor waste of a single job as well as the OS allocator’s
system policy. As was shown by He et al. [11, 12], when a par-
ticular task scheduler is coupled with a fair and non-reserving
OS allocator such as dynamic equi-partitioning [18] in a two-
level scheduling context, the makespan and mean response time
of the job set can be bounded by combining the running time and
processor waste bounds in a non-trivial manner. Suppose that we
couple ABG with a fair and non-reserving OS allocator. We can
apply the techniques in [11, 12] and the improved results in [13]
to prove the makespan for any set of jobs with arbitrary release
times and the mean response time for any set of jobs released in a
batched fashion. The resulting performance bounds for the two-
level scheduler are represented in terms of their competitive ra-
tio, i.e., their performance ratio to the theoretical lower bounds.

The following theorem states the results for both makespan and
mean response time. The proof is omitted and can be found in
the full version of this paper [23].

Theorem 5 Suppose that ABG is coupled with a fair and non-
reserving OS allocator to schedule a set of jobs J on a machine
with P processors and quantum length L. If the number of jobs
is no more than the number of processors in the system, i.e.,
|J | ≤ P , then the makespan is bounded by

M ≤
(

CL + 1 − 2CLr

1 − CLr
+

CL + 1 − 2r

1 − r

)
M∗ + L · (|J | + 2)

(10)
for any set of jobs with arbitrary release times, and the mean
response time is bounded by

R ≤
(

2CL + 2 − 4CLr

1 − CLr
+

CL + 1 − 2r

1 − r

)
R∗ + L · (|J | + 2)

(11)
for any set of jobs released in a batched fashion, where M∗

and R∗ denote the theoretical lower bounds for the makespan
and mean response time, respectively. CL denotes the maximum
transition factor of all jobs in the system and r denotes the con-
vergence rate, where r < 1/CL.

6.4 Comparison with A-Greedy

We briefly interpret the performance bounds of ABG and
compare them with those of A-Greedy. Suppose that the conver-
gence rate r of ABG can be chosen from the historical statistics
of the workload such that CLr can be upper-bounded by a con-
stant less than 1, the performance bounds can then be simplified
to the following,

T ≤ 2 · T1

P̃
+ (CL + 2) T∞ + L = O(

T1

P̃
+ CLT∞ + L),

W = O(CLT1 + P · L),

M = O(CLM∗ + L · |J |),
R = O(CLR∗ + L · |J |).

where P̃ is the O(CLT∞+L)-trimmed processor availability. As
can be seen, the transition factor CL of the job plays a crucial role
in reflecting the performances of ABG. Nearly linear speedup
can be achieved if the average parallelism of the job dominates
the average processor availability and the job has a relatively
small transition factor. For a given job set J and quantum length
L, the makespan and mean response time satisfy M = O(CL)M∗

and R = O(CL)R∗ respectively, and therefore are both O(CL)-
competitive. In a direct comparison with A-Greedy in terms of
the bounds, ABG tends to perform better when the transition fac-
tor of the job is small. However, when the job has large swaying
parallelism over different quanta and hence exhibits a large CL,
ABG may perform worse. A-Greedy is oblivious of the transi-
tion factor in its analysis because of its multiplicative-increase
multiplicative-decrease strategy, whose symmetric structure al-
lows it to bypass this difficulty. However, A-Greedy does pos-
sess large multiplicative constants inside the O-notations for its
performance bounds [1, 11].

7 Simulations

7.1 Simulation Setup

Our simulations use similar setups as the one used to test A-
Greedy [12]. In particular, we test the schedulers on data-parallel
jobs that have fork-join structures, which alternate between se-
rial and parallel phases. In order to examine the effect of a job’s
transition factor on the performance of the schedulers, we gen-
erate jobs with different transition factors by varying the level of
parallelism in the parallel phases. For a specific transition fac-
tor, we also generate jobs with variable work and critical-path
length by changing the length of each serial and parallel phase.
In the simulation, 50 jobs are generated for each transition factor
ranging from 2 to 100. The number of processors is set to be
P = 128 and the quantum length is set to be L = 1000 steps.
The scheduling overheads due to reallocation of processors and
processor request calculations are ignored.

To set the parameters for the schedulers, we choose r = 0.2

for the convergence rate3 of ABG, and maintain the same param-
eter settings for A-Greedy as in [12]. Note that the choice of the
convergence rate in this case does not satisfy r < 1/CL for val-
ues of CL that are greater than or equal to 5, and hence cannot
guarantee the theoretical performance bounds on the processor
waste, makespan and mean response time. Nevertheless, as will
be seen shortly, the simulation results do not seem to be affected
practically.

We conduct two sets of simulations. The first set features in-
dividual jobs with different transition factors running on the P

processors alone, which is aimed at measuring running time and
processor waste of the schedulers in an unconstrained environ-
ment. The second set of simulation features job sets with differ-
ent loads space-sharing all processors in the system. We measure
in this case the global performances, that is, the makespan and
the mean response time to show how the schedulers perform in
the multiprogrammed environment.

7.2 Simulation Results

In the first set of simulations where only a single job is run
each time, according to our setup, all processor requests from
both schedulers are granted. This allows us to evaluate the per-
formances of both schedulers under a favorable circumstance,
for otherwise the advantage of a more efficient processor request
calculation scheme can not be reflected. Figure 5 shows the ef-
fects of the transition factor on the running time and the pro-
cessor waste for both schedulers. In Figure 5(a), the running
time is normalized in terms of the critical-path length of the job,
which in the unconstrained environment is the optimal running
time, and in Figure 5(c), the processor waste is normalized in
terms of the job’s total work. Each point in Figures 5(a) and 5(c)
is averaged 50 different job runs with the same transition factor.
Figures 5(b) and 5(d) show the running time and processor waste
ratios of A-Greedy over ABG for each run.

As can be seen, except for some small values of the transition
factor, where both task schedulers perform comparably, ABG
performs consistently better than A-Greedy for most values of

3We have tried varying the value for the convergence rate. The results do not
deviate too much for all values of convergence rate less than 0.6.

the transition factor. An average of 20% improvement in running
time and 50% reduction in processor waste can be observed. In
addition, unlike what the theoretical bounds in Section 6 predict,
increasing the value of transition factor does not seem to have
much effect on ABG while it continues to affect the performance
of A-Greedy. This is probably because the theoretical analysis
assumes the worst case scenario, which is unlikely to happen in
a practical setting here. Also notice that A-Greedy responds to
the increase of the transition factor for both running time and
processor waste in an oscillatory and complementary fashion.
This is due to the multiplicative-increase nature of its proces-
sor request calculation, which effectively doubles the processor
request whenever the average parallelism of the job exceeds a
certain threshold.

In the second set of simulations, we group together jobs with
different transition factors to form job sets that have different
loads on the system. The load is defined to be the average par-
allelism of the entire job set normalized by the total number of
processors. For heavy system loads, therefore, some processor
requests may not be granted. We couple both task schedulers
with dynamic equi-partitioning OS allocator in the simulation.
A total of 5000 job sets of different loads are run and Figure 6
shows the performance of ABG and A-Greedy in terms of their
makespan and mean response time on these job sets. Figures
6(a) and 6(c) compare the average makespan and mean response
time of both schedulers with the theoretical lower bounds at dif-
ferent loads.4 Figures 6(b) and 6(d) show the makespan and the
mean response time ratios of A-Greedy over ABG for each of
the 5000 job sets.

We can see that under light system loads, where processor re-
quests tend to be granted for both schedulers, ABG performs bet-
ter than A-Greedy by 10% to 15% on average in both makespan
and mean response time. This is because of ABG’s more effi-
cient processor request calculation. However, under heavy sys-
tem loads, the processor requests tend to be deprived and the
advantage of ABG diminishes since neither of the schedulers
have direct control over the processor allocations. Therefore, the
performance of both schedulers are comparably similar. Note
that Figures 6(a) and 6(c) in particular resemble the performance
shown for A-Greedy in [12], which verifies that our simulation
provides a fair comparison between the two schedulers.

8 Related Work

Agrawal et al. [1–3] studied adaptive task scheduling both
theoretically and empirically using parallelism feedback, and
proposed two task schedulers based on the multiplicative-
increase multiplicative-decrease strategy, namely a centralized
A-Greedy and a distributed A-Steal. They also introduced trim
analysis, and proved that both schedulers are efficient in terms
of the running time and processor waste. He et al. [11, 12] com-
bined the task schedulers with dynamic equi-partitioning [18]

4Figures 6(a) and 6(c) indicate that both makespan and mean response time
ratios increase with the system load initially and decrease after a peak value.
Similar effects can be observed in the simulations by [12]. This results from the
fact that we use two theoretical lower bounds for both makespan and mean re-
sponse time, and the scheduler’s performance ratio to one lower bound increases
with the system load and tends to dominate when the load is small while the ratio
to the other lower bound decreases with the system load and tends to dominate
when the system load is high. The peaks represent the intersections of the ratios
to the two lower bounds.

and round-robin OS allocators, and proved that the resulting two-
level schedulers are O(1)-competitive in terms of the makespan
and mean response time for a set of jobs. They also provided
generalized proof techniques and improved results [13] for these
global measures. In this paper, we adopted the trim analysis and
proved the efficiency of ABG.

Other existing work in adaptive task scheduling includes an
ABP scheduler [4] that is based on distributed and randomized
work-stealing, but without using parallelism feedback. The em-
pirical study in [2] showed that A-Steal gives much better per-
formance than ABP. In addition, Sen [21], Nguyen et al. [19]
and Corbalán et al. [7] measured certain job characteristics such
as average parallelism, speedup, efficiency, etc. at runtime and
used them as some kind of feedback in task scheduling empir-
ically. Similar job characteristics are also considered by Sev-
cik [22] when designing static processor allocation policies. In
this paper, we introduced another job characteristic, which is the
transition factor, and incorporated it into our analysis.

Adaptive scheduling has also been studied from control-
theoretic perspective. Related work in this area tends to focus
on the transient performances in terms of control-theoretic prop-
erties. Lu et al. [16, 17] presented a feedback control real-time
scheduling framework for adaptive real-time systems, and devel-
oped a feedback-control earliest-deadline-first (FC-EDF) sched-
uler to control real-time CPU utilizations as well as an integral
controller to control delays in web servers scheduling. Goel et
al. [9] designed an adaptive controller that schedules real-rate
applications by estimating the application’s progress with time-
stamps in a feedback loop. Using adaptive control, Padala et
al. [20] developed a resource management system to optimize
the resource utilization and at the same time to meet specific
QoS goals for multi-tier applications. Similar approaches are
also used in [15, 24] for dynamically adjusting the resource par-
titioning for enterprize servers. In this paper, we applied control
theory to scheduling malleable jobs in multiprocessor systems,
and showed that our scheduler possesses good control-theoretic
behaviors.

9 Conclusion and Future Work

Many researchers have applied control theory to design com-
puting and resource management systems, and these control-
inspired algorithms often demonstrate robust system behaviors.
However, as far as we know, there is little existing work in the
literature that incorporates performance metrics from both con-
trol and algorithmic perspectives. We have presented an adap-
tive control-based job scheduling algorithm ABG for schedul-
ing malleable jobs in a multiprogrammed multiprocessor sys-
tem. We have analyzed the scheduler from both control-theoretic
and algorithmic perspectives, and demonstrated its good perfor-
mance through control-theoretic specifications and algorithmic
bounds. We have also compared the performance of ABG with
A-Greedy via simulations and observed ABG’s superior perfor-
mances from both view points.

Possible future research in this area may include dynamically
adjusting the quantum length and other parameters to achieve
better system wide adaptivity. Also, beside the transition fac-
tor, alternative job characteristics such as the frequency on the
change of parallelism, or the variance, etc. can be considered
when analyzing adaptive schedulers. Finally, our analysis on

0 20 40 60 80 100
1

1.2

1.4

1.6

1.8

Transition factor

R
un

ni
ng

 T
im

e
/ C

rit
ic

al
−

P
at

h
Le

ng
th

A−Greedy
ABG

(a)

0 20 40 60 80 100
0.9

1

1.1

1.2

1.3

1.4

1.5

Transition factor

R
un

ni
ng

 T
im

e
R

at
io

A−Greedy / ABG

(b)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Transition factor

W
as

te
 /

W
or

k

A−Greedy
ABG

(c)

0 20 40 60 80 100
0

2

4

6

8

Transition factor

W
as

te
 R

at
io

A−Greedy / ABG

(d)

Figure 5. The running time and the processor waste of ABG and A-Greedy.

0 1 2 3 4 5 6
1

1.1

1.2

1.3

1.4

1.5

1.6

Load

M
ak

es
pa

n
/ O

pt
im

al

A−Greedy
ABG

(a)

0 1 2 3 4 5 6
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

Load

M
ak

es
pa

n
R

at
io

A−Greedy / ABG

(b)

0 1 2 3 4 5 6 7
1

1.5

2

2.5

Load

M
ea

n
R

es
po

ns
e

T
im

e
/ O

pt
im

al

A−Greedy
ABG

(c)

0 2 4 6 8
0.95

1

1.05

1.1

1.15

1.2

1.25

Load

M
ea

n
R

es
po

ns
e

T
im

e
R

at
io

A−Greedy / ABG

(d)

Figure 6. The makespan and the mean response time of ABG and A-Greedy.

ABG restricts the value of the convergence rate to attain the de-
sirable performance bounds. To achieve tighter analysis without
this constraint will be another interesting challenge.

Acknowledgements

The first author would like to thank Yuxiong He for pointing
out the interpretation of simulation results in Figure 6(a) and Fig-
ure 6(c). He also thanks Yuxiong, Hui Fang, and Shin Yee Chung
for many enjoyable discussions.

References

[1] K. Agrawal, Y. He, W.-J. Hsu, and C. E. Leiserson. Adaptive scheduling
with parallelism feedback. In PPoPP, pages 100 – 109, New York City,
NY, USA, 2006.

[2] K. Agrawal, Y. He, and C. E. Leiserson. An empirical evaluation of work
stealing with parallelism feedback. In ICDCS, pages 19 – 29, Lisbon, Por-
tugal, 2006.

[3] K. Agrawal, Y. He, and C. E. Leiserson. Adaptive work stealing with
parallelism feedback. In PPoPP, pages 112–120, San Jose, California,
USA, 2007.

[4] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scheduling for mul-
tiprogrammed multiprocessors. In SPAA, pages 119–129, Puerto Vallarta,
Mexico, 1998.

[5] K. J. Åström and B. Wittenmark. Adaptive Control. Addison-Wesley, 1989.

[6] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computa-
tions by work stealing. Journal of the ACM, 46(5):720–748, 1999.

[7] J. Corbalán, X. Martorell, and J. Labarta. Performance-driven proces-
sor allocation. IEEE Transactions on Parallel and Distributed Systems,
16(7):599–611, 2005.

[8] D. G. Feitelson. Job scheduling in multiprogrammed parallel systems
(extended version). Technical report, IBM Research Report RC 19790
(87657) 2nd Revision, 1997.

[9] A. Goel, J. Walpole, and M. Shor. Real-rate scheduling. In RTAS, pages
434–441, Toronto, Canada, 2004.

[10] R. L. Graham. Bounds on multiprocessing anomalies. SIAM Journal on
Applied Mathematics, 17(2):416–429, 1969.

[11] Y. He, W.-J. Hsu, and C. E. Leiserson. Provably efficient two-level adaptive
scheduling. In JSSPP, Saint-Malo, France, 2006.

[12] Y. He, W.-J. Hsu, and C. E. Leiserson. Provably efficient online non-
clairvoyant adaptive scheduling. In IPDPS, pages 1–10, Long Beach, Cal-
ifornia, USA, 2007.

[13] Y. He, H. Sun, and W.-J. Hsu. Adaptive scheduling of parallel jobs on
functionally heterogeneous resources. In ICPP, Xi’an, China, 2007.

[14] J. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury. Feedback Control of
Computing Systems. Wiley-Interscience, 2004.

[15] X. Liu, X. Zhu, S. Singhal, and M. Arlitt. Adaptive entitlement control of
resource containers on shared servers. In IFIP/IEEE International Sympo-
sium on Integrated Network Management, pages 163–176, Nice, France,
2005.

[16] C. Lu, T. F. Abdelzaher, J. A. Stankovic, and S. H. Son. A feedback control
approach for guaranteeing relative delays in web servers. In RTAS, pages
51–62, Taipei, Taiwan, 2001.

[17] C. Lu, J. A. Stankovic, S. H. Son, and G. Tao. Feedback control real-time
scheduling: Framework, modeling, and algorithms. Real-Time Systems,
23(1-2):85–126, 2002.

[18] C. McCann, R. Vaswani, and J. Zahorjan. A dynamic processor alloca-
tion policy for multiprogrammed shared-memory multiprocessors. ACM
Transactions on Computer Systems, 11(2):146–178, 1993.

[19] T. D. Nguyen, R. Vaswani, and J. Zahorjan. Maximizing speedup through
self-tuning of processor allocation. In IPPS, pages 463–468, Honolulu,
Hawaii, USA, 1996.

[20] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Mer-
chant, and K. Salem. Adaptive control of virtualized resources in utility
computing environments. In EuroSys, pages 289–302, Lisbon, Portugal,
2007.

[21] S. Sen. Dynamic processor allocation for adaptively parallel jobs. Master’s
thesis, Massachusetts Institute of technology, 2004.

[22] K. C. Sevcik. Characterizations of parallelism in applications and their
use in scheduling. In SIGMETRICS, pages 171–180, Oakland, California,
USA, 1989.

[23] H. Sun and W.-J. Hsu. Adaptive B-Greedy (ABG): A simple yet ef-
ficient scheduling algorithm. Technical Report TR-07-03. School of
Computer Engineering, Nanyang Technological University, Singapore.
http://www.ntu.edu.sg/sunh0007/papers/ABG.pdf.

[24] Z. Wang, X. Zhu, and S. Singhal. Utilization vs. SLO-based control for dy-
namic sizing of resource partitions. In DSOM, pages 133–144, Barcelona,
Spain, 2005.

