
Adaptive Scheduling of Parallel Jobs on Functionally Heterogeneous Resources

Yuxiong He†‡ Hongyang Sun† Wen-Jing Hsu†‡

†Nanyang Technological University
‡Singapore-MIT Alliance

Abstract

A parallel program usually incurs operations on multi-
ple processing resources, interleaving computations, I/Os,
and communications, where each task can only be exe-
cuted on a processor of a matching category. Many parallel
systems also embed special-purpose processors like vector
units, floating-point co-processors, and various I/O proces-
sors. Presently, there is no provably good scheduling algo-
rithm that ensures efficient use of multiple resources with
functional heterogeneity.

This paper presents K-RAD, an algorithm that adap-
tively schedules parallel jobs on multiple processing re-
sources without requiring prior information about the jobs,
such as their release times and parallelism profiles. Let
K denote the number of categories of heterogenous re-
sources and Pmax denote the maximum number of proces-
sors among all categories. We show that, for any set of jobs
with arbitrary release times, K-RAD is (K +1− 1/Pmax)-
competitive with respect to the makespan. This competitive
ratio is provably the best possible for any non-clairvoyant
deterministic algorithms for K-resource scheduling. We
also show that K-RAD is (4K + 1 − 4K/(|J | + 1))-
competitive with respect to the mean response time for any
batched job set J . For the special case of K = 1, i.e.,
scheduling on homogeneous resources, the best existing
mean response time bound for online non-clairvoyant al-
gorithm is 2 +

√
3 ≈ 3.73 proved by Edmonds et al. in

STOC’97. We show that K-RAD is 3-competitive with re-
spect to the mean response time when K = 1, which offers
the best competitive ratio to date.

1 Introduction
Scheduling parallel jobs on multiprocessors has been an im-
portant area of research in computer science. Most prior
work is dedicated to the scheduling of jobs that require a
single type of processing resources. However, many paral-
lel systems embed special-purpose processors such as vec-
tor units, floating-point co-processors and various I/O pro-
cessors. Application programs also generally involve inter-
leaving of different types of tasks, where a task of a spe-
cific type can only be carried out on the matching type of

resource. A scheduler that can handle heterogeneous re-
sources is therefore needed.

Menasce and Almeida [21] define two distinct forms
of heterogeneity in high-performance computing systems.
Performance heterogeneity exists in systems that contain
general-purpose processors of different speeds. A task can
execute on any of the processors, but it will execute faster
on some than others. Functional heterogeneity, on the other
hand, exists in systems that contain various types of proces-
sors, such as vector units, floating-point co-processors, and
I/O processors. With functional heterogeneity, not all of the
tasks can be executed on all of the functional units.

Hamidzadeh et al. [11] propose a generic model that in-
corporates performance heterogeneity by assigning an in-
finite computation time to a task on the unmatched func-
tional units. They study a dynamic self-adjusting schedul-
ing algorithm for this type of heterogeneous systems em-
pirically. Other forms of functional heterogeneity are also
defined on a coarse level for machines with different types
of parallel architectures such as SIMD, MIMD and vectors,
etc. in [15,16] and more recently for the cell processors [1].
However, to the best of our knowledge, there is no general
algorithm that offers provable efficiency for scheduling par-
allel applications on functionally heterogeneous resources.

We propose a K-resource scheduling model for func-
tionally heterogeneous resources and present a provably ef-
ficient scheduling algorithm. In the K-resource model, the
processors and the tasks are classified into K categories,
and a task of a given category can only be executed on a
processor of the matching category. Any two tasks of a job
can be executed concurrently as long as they do not violate
the precedence constraints. Moreover, we study the online
non-clairvoyant version of this problem, where the charac-
teristics of the jobs such as the release times and the paral-
lelism profiles are unknown to the scheduling algorithm a
priori.

We present a non-clairvoyant scheduling algorithm
K-RAD, which extends the homogeneous resource
scheduling algorithm RAD [12, 13] to the heterogeneous
resources. RAD is a scheduling algorithm that combines
the dynamic equi-partitioning (DEQ) algorithm [20,26,30]
with the round robin (RR) algorithm. In [12, 13], we show
that RAD is provably efficient in terms of both makespan
and mean response time for the scheduling of heteroge-

neous resources. The good performance of RAD motivates
us to extend it to heterogenous resource scheduling.

Related Work
Parallel job scheduling on homogeneous resources has been
studied both empirically [19,20,26,29] and theoretically [5,
9, 10, 12, 13, 22, 25]. Many researchers have proven various
competitive ratios in terms of makespan and mean response
time for the problem of scheduling n jobs on P identical
processors.

For makespan, Shmoys et al. [25] prove lower bounds
of online non-clairvoyant scheduling. They show that the
competitive ratio is at least (2 − 1/P) for any deterministic
online algorithm, and at least (2 − 1/

√
P) for any random-

ized online algorithm with an oblivious adversary. Brecht
et al. [5] show that DEQ using instantaneous parallelism is
(2 − 1/P)-competitive, and therefore is optimal.

For mean response time of batched jobs, Motwani et
al. [22] show that round robin is 2-competitive, which is the
best online competitive ratio that matches the lower bound.
Deng and Dymond [9] prove that DEQ with instantaneous
parallelism is (4 − 4/n)-competitive. Edmonds et al. [10]
show that equi-partitioning is (2 +

√
3)-competitive. In our

previous work [12, 13], we introduce RAD and show its
O(1) competitiveness by using history-based feedback.

Scheduling with performance heterogeneity has been
studied by many researchers [6–8, 25]. Shmoys et al.
[25] present an O(log P)-competitive algorithm in terms of
makespan for uniformly related machines, which matches
the lower bound. Davis and Jaffe [8] show a number of
O(

√
m)-competitive algorithms for unrelated machines.

Scheduling functionally heterogenous resources is stud-
ied mostly under the job-shop scheduling [17, 18, 24]. In
the job-shop model, each job consists of a chain of hetero-
geneous tasks and there is only one machine from each type
of resources. Shmoys et al. [24] generalize the job-shop
scheduling to the DAG-shop scheduling with multiple pro-
cessors from each resource. In the DAG-shop model, rather
than a chain, a partial order among the tasks of a job may
be specified. However, no two tasks from the same job can
be executed concurrently. In addition, the job-shop model
usually uses offline scheduling, which assumes that all the
jobs’ resource requirements are known in advance.

Our Results
We propose a K-resource scheduling model that cap-
tures the functional heterogeneity of resources on multi-
processors. We extend the RAD algorithm for homoge-
neous resources to K-RAD for the K-resource scheduling
and prove the efficiency of K-RAD with respect to both
makespan and mean response time. Our main analytical re-
sults and contributions are:

• We show that any deterministic online non-clairvoyant
algorithm is at best (K + 1− 1/Pmax)-competitive for
makespan in K-resource system, where Pmax denotes
the maximum number of processors among the K cat-
egories of resources.

• We show that K-RAD is (K+1−1/Pmax)-competitive
with respect to the makespan for any job set with
arbitrary release times. Since it matches the lower
bound, K-RAD is indeed optimal for deterministic
non-clairvoyant K-resource scheduling in terms of the
makespan.

• We show that K-RAD is (4K + 1 − 4K/(|J | + 1))-
competitive with respect to the mean response time
for any batched job set J . For the special case of
K = 1, i.e., scheduling of homogeneous resources, we
show that K-RAD is 3-competitive with respect to the
mean response time for batched jobs. To the best of
our knowledge, this offers the best competitive ratio to
date.

The remainder of the paper is organized as follows.
Section 2 describes the job model, K-resource scheduling
model, and the objective functions. Section 3 presents the
K-RAD algorithm. Section 4 shows the lower bound of
makespan, followed by the competitive analysis of K-RAD
on makespan in Section 5. Section 6 and Section 7 present
the analysis of K-RAD for mean response time. Section 8
briefly concludes the paper.

2 Models and Objective Functions
Our scheduling problem consists of a collection of inde-
pendent jobs J =

{
J1, J2, . . . , J|J |

}
to be scheduled on a

collection of processors in K-resource systems. The pro-
cessors and the tasks are categorized into K types, and a
task can only be executed on a processor with the matching
type. We refer to the processors belonging to a category α

as α-processors, and the tasks running on α-processors as
α-tasks. For each category α ∈ {1, . . . , K}, there are Pα

number of α-processors in the system.

Job Model
We model the execution of a multi-threaded job Ji as a
dynamically unfolding directed acyclic graph (dag) such
that Ji = (V (Ji), E(Ji)), where V (Ji) and E(Ji) represent
the sets of Ji’s vertices and edges respectively. As a nat-
ural extension to the conventional dag [2–4, 23], a paral-
lel job with heterogenous tasks is represented as a K-color
dag, or K-DAG. A K-DAG has up to K types of ver-
tices, and each α-vertex represents a unit-time α-task where
α = 1, . . . , K. For a job Ji ∈ J , V (Ji, α) represents the set
of α-vertices of the job. Define V (Ji) = ∪K

α=1V (Ji, α).
The α-work T1 (Ji, α) corresponds to the total number of
α-vertices in the K-DAG, i.e., T1 (Ji, α) = |V (Ji, α)|. Each
edge e ∈ E(Ji) from vertex u to v represents a dependency
between the two corresponding tasks, regardless of their
types. The precedence relationship u ≺ v holds if and only
if there exists a path from vertex u to v in E(Ji). The span
or the critical path length T∞ (Ji) corresponds to the num-
ber of nodes on the longest chain of the precedence depen-
dencies. The release time r(Ji) is the time at which job Ji

is first available for processing. Figure 1 shows an example
of a 3-DAG job with three different types of tasks.

Figure 1: A 3-DAG job with 3 different types of tasks.

K-Resource Scheduling Model
A schedule χ = (τ, π1, π2, . . . , πK) of a job set J is de-
fined by K + 1 mappings. The function τ : ∪Ji∈J V (Ji) →
{1, 2, . . . ,∞} maps the vertices of the jobs in the job set
J to the set of time steps. For each resource category
α ∈ {1, . . . , K}, the function πα : ∪Ji∈J V (Ji, α) →
{1, 2, . . . , Pα} maps the set of α-vertices of the jobs in the
job set J to the set of α-processors. A valid schedule must
preserve the precedence relationship of each job. For any
two vertices u, v ∈ V (Ji) of the job Ji, if u ≺ v, then
τ(u) < τ(v). A valid schedule must also ensure that one
processor can only be assigned to one job at any given
time. For any two vertices u, v ∈ ∪Ji∈J V (Ji, α), both
τ(u) = τ(v) and πα(u) = πα(v) are true if and only if u = v.

Objective Functions
Our scheduler uses makespan and mean response time as
the performance metrics, which are defined as follows.

Definition 1 The completion time T(Ji) of a job Ji under a
schedule χ is the time at which the job completes execution,
i.e., T(Ji) = maxv∈V (Ji)

τ(v). The makespan T(J) of a
job set J is the time taken to complete all jobs in the job set
J , i.e., T(J) = maxJi∈J T(Ji).

Definition 2 The response time R(Ji) of a job Ji is the du-
ration between its release time r(Ji) and completion time
T(Ji), i.e., R(Ji) = T(Ji) − r(Ji). The total response time
of a job set J is given by R(J) =

∑
Ji∈J R(Ji) and the

mean response time is R(J) = R(J)/ |J |.

We will use competitive analysis, which compares an
online non-clairvoyant algorithm against an optimal offline
algorithm. Let T∗(J) denote the makespan produced by
the optimal algorithm S on a job set J , and T(J) de-
note the makespan produced by a online deterministic al-
gorithm A for the same job set. Algorithm A is said to be
c-competitive in terms of the makespan if there exists a con-
stant b such that T(J) ≤ c · T∗(J) + b holds for any job set
J .

3 K-RAD Algorithm
In this section, we present K-RAD algorithm, which is an
extension of RAD algorithm [12,13] that schedules jobs on
homogeneous resources. RAD unifies the space-sharing
dynamic equi-partitioning (DEQ) algorithm and the time-
sharing round robin (RR) algorithm to handle different lev-
els of workload. Specifically, when the number of jobs in

the system exceeds the number of processors, RAD sched-
ules the jobs in a batched round-robin fashion, which al-
locates one processor to each job with an equal share of
time. When the number of jobs in the system is not more
than the number of processors, RAD utilizes DEQ algo-
rithm, which gives each job an equal share of spatial allot-
ments unless a job requests for less. To schedule jobs with
heterogeneous tasks on heterogeneous processors, K-RAD
assigns one RAD scheduler to each category α of proces-
sors to manage the α-tasks of all jobs in the job set, where
α = 1, . . . , K. In the remaining part of this section, we will
discuss the RAD algorithm in detail.

For each job Ji ∈ J , define the α-desire d(Ji, α, t)

to be the total number of ready α-tasks or the instanta-
neous α-parallelism of Ji at time step t and the α-allotment
a (Ji, α, t) to be the total number of α-processors allot-
ted to Ji. Note that an uncompleted job Ji at any time t

has total desire
∑K

α=1 d(Ji, α, t) ≥ 1, although for some
α ∈ {1, . . . , K}, its α-desire might be zero. At a given time
step t, if a job Ji has non-zero α-desire, we say that Ji is
α-active; otherwise, it is α-inactive. For each category α

of processors, let J (α, t) denote the set of α-active jobs at
time step t, i.e., J (α, t) = {Ji ∈ J : d(Ji, α, t) > 0}.

Whenever |J (α, t)| ≤ Pα, RAD uses DEQ to partition
processors among the active jobs. Under DEQ, all jobs re-
questing less than fair share of processors tend to get what
they request, while the other jobs requesting larger numbers
of processors will get an equal number of processors, which
we call mean deprived allotment.

Once |J (α, t)| > Pα, RAD will start a round-robin (RR)
cycle to allot processors among the α-active jobs. In order
to ensure fairness, all α-active jobs that have been sched-
uled once in the RR cycle will be marked and kept in a
queue denoted as Q. Other α-active jobs that have not been
scheduled since the beginning of the RR cycle is kept in an-
other queue denoted as Q′. At any time step in the cycle, if
there are more than Pα jobs in Q, RAD always schedules
Pα jobs at the beginning of Q. When there are less than Pα

jobs in Q, in order not to waste processors, RAD will move
min

(∣∣Q′∣∣ , Pα − |Q|
)

jobs from queue Q′ to Q, and partition
the processors to the jobs in Q using DEQ. Such a time step
also indicates the completion of the RR cycle, and all the
jobs will be unmarked.

Figure 2 shows the pseudo-code of RAD algorithm. At
any time step t for a category α of processors, an active
job Ji can be either α-satisfied if its α-allotment is equal
to its α-desire, i.e., a (Ji, α, t) = d(Ji, α, t), or α-deprived
if its α-allotment is less than its α-desire, i.e., a (Ji, α, t) <

d(Ji, α, t). Moreover, we define a job Ji to be ∀-satisfied
if it is α-satisfied for all α = 1, . . . , K, and the job is ∃-
deprived otherwise.

4 Makespan Lower Bounds
We will present two lower bounds on the makespan for
scheduling any job set with arbitrary release time. We will
also show a lower bound on the competitive ratio for any

DEQ (α, t, Q, P)

1 if Q = ∅ return
2 S ← {Ji ∈ Q : d(Ji, α, t) ≤ P/ |Q|}
3 if S = ∅
4 for each Ji ∈ Q
5 a (Ji, α, t)← P/ |Q|
6 return
7 else
8 for each Ji ∈ S
9 a (Ji, α, t)← d(Ji, α, t)

10 DEQ(α, t, Q− S, P −
∑

Ji∈S
d(Ji, α, t))

ROUND-ROBIN (α, t, Q, P)

1 S ← the first P jobs from Q
2 for each Ji ∈ S
3 a (Ji, α, t)← 1
4 mark Ji

RAD (α, t,J , P)

1 Q← {Ji ∈ J : Ji is unmarked and α-active}
2 Q′ ← {Ji ∈ J : Ji is marked and α-active}
3 if |Q| > P
4 ROUND-ROBIN(α, t, Q, P)
5 else
6 Move min (|Q′| , P − |Q|) jobs from Q′ to Q
7 DEQ(α, t, Q, P)
8 unmark all jobs

Figure 2: Pseudo-code for RAD algorithm, which includes
the main procedure RAD, and two sub-procedures DEQ and
ROUND-ROBIN.

deterministic online non-clairvoyant algorithm.

Definition 3 The total α-work of a job set J is

T1 (J , α) =
∑

Ji∈J
T1 (Ji, α) , (1)

where T1 (Ji, α) is the α-work of job Ji ∈ J .

Let T∗(J) denote the makespan of the job set J scheduled
by an optimal clairvoyant scheduler. Since any scheduler
on K-DAG can do no better than the optimal scheduler on
any single type of tasks in the K-DAG, based on the lower
bounds [5] for jobs with a single type of tasks, we obtain the
following two lower bounds on the makespan for any set of
jobs represented by K-DAGs with arbitrary release times:

T∗(J) ≥ max
Ji∈J

(r(Ji) + T∞ (Ji)) ,

T∗(J) ≥ max
α=1,...,K

(T1 (J , α) /Pα) .

We will now show a lower bound on the competitive ra-
tio for any deterministic online algorithm.

Theorem 1 Any deterministic online non-clairvoyant al-
gorithm for K-resource scheduling can be no better than
(K + 1 − 1/Pmax)-competitive with respect to makespan,
where Pmax = maxα=1,...,K Pα.

Figure 3: This example shows a set of n jobs that forces any
deterministic online scheduler to have a competitive ratio of K +
1 − K/Pmax in terms of makespan in an adversary setting. The
total number of nodes at each level is indicated on the right of the
figure.

Proof. Without loss of generality, assume PK = Pmax.
Consider a job set J with n = mP1PK jobs as shown in
Figure 3, where m is a large integer. All except one of the
n jobs have only one unit of 1-task. Job Ji’s critical path is
highlighted by the darkened nodes in the figure with length
T∞ (Ji) = K + mPK − 1. Level 1 of Ji has one unit of 1-
task. Each subsequent level α ∈ {2, . . . , K − 1} has exactly
mPαPK units of α-task, all of which depend on a single task
from the previous level. Level K has mPK(PK−1)+1 units
of K-task, one of which is followed by a chain of K-task of
length mPK − 1.

To schedule this set of jobs, an optimal offline scheduler
S will always execute the ready tasks of the job Ji on the
critical path first so that the tasks at the subsequent level
can be executed as early as possible by the other types of
processors. For α = 1, . . . , K, all α-tasks of the job Ji will
be ready at time α−1. The K-tasks, as the last type of tasks,
can be completed in mPK time steps by executing one unit
of K-task on the critical path at each step. Therefore, the
optimal scheduler S produces a makespan of T∗(J) = K +

mPK − 1.

To schedule the same set of jobs, any deterministic non-
clairvoyant algorithm A can be prevented from performing
well by the adversary in such a way that the tasks of the job
Ji on the critical path are always executed last among the
ready tasks. Such an adversarial strategy forces algorithm
A to execute different types of tasks in a sequential manner.
Therefore, in the worst case, A will take T(J) ≥ mKPK +

mPK − m time steps.

Let m
 K so that (K − 1)/m approaches 0. Thus, the
competitive ratio is

T(J)

T∗(J)
≥ mKPK + mPK − m

K + mPK − 1

=
KPK + PK − 1

(K − 1)/m + PK
= K + 1 − 1

Pmax
.

5 Makespan Analysis
This section shows that K-RAD is (K + 1 − 1/Pmax)-
competitive with respect to the makespan. Suppose that
T(J) is the makespan of job set J scheduled by K-RAD.
Let I = [1, 2, . . . , T(J)] denote the time interval in which
K-RAD schedules the job set. Since J denotes a job set
with arbitrary job release time, we may have subintervals of
I, in which no job is active. We will refer to any subinter-
val l = [t1, . . . , t2] ∈ I as an idle interval if no job is active
in l, i.e., all jobs released before l are completed by t1 − 1,
and no new jobs are released until t2 + 1. Thus no work
is done during interval l. In order to analyze the makespan
of K-RAD, we will first prove a lemma that bounds the
makespan of any job set scheduled by K-RAD without any
idle interval. Then we will relax this constraint and give the
main theorem.

Lemma 2 Suppose that K-RAD schedules a job set J on
Pα number of α-processors for each α = 1, . . . , K. If there
are no idle intervals during the schedule, then job set J
completes in

T(J) ≤
K∑

α=1

T1 (J , α)

Pα
+

(
1 − 1

Pmax

)
max
Ji∈J

(T∞ (Ji) + r(Ji)) (2)

time steps.

Proof. Suppose that job Jk is the last job completed
among the jobs in J . Let R(Jk) denote the set of time
steps before Jk is released and let S(Jk) and D(Jk) de-
note the sets of ∀-satisfied and ∃-deprived time steps for
Jk respectively. Since Jk is the last job completed, and
R(Jk), S(Jk) and D(Jk) are clearly disjoint sets, we have
T(J) = |R(Jk)| + |S(Jk)| + |D(Jk)|. Now, we will bound
these three sets separately.

(1) To bound |R(Jk)|: Clearly, there are r(Jk) time steps
before the release of job Jk, i.e., |R(Jk)| = r(Jk).

Let T ′
1(J , α) denote the total α-work done before the re-

lease of Jk. Since there are no idle intervals, each step in
R(Jk) completes at least one unit of work. Thus, we have∑K

α=1 T ′
1(J , α) ≥ |R(Jk)| = r(Jk).

(2) To bound |S(Jk)|: On each ∀-satisfied step t for job
Jk, all of the ready tasks of Jk are executed, so the span
of Jk is reduced by 1. Therefore, the total number of ∀-
satisfied steps for job Jk is at most the span T∞ (Jk) of Jk,
i.e., |S(Jk)| ≤ T∞ (Jk).

Let T ′′
1 (J , α) denote the total α-work done on S(Jk).

Since each step completes at least one unit of work, we have∑K
α=1 T ′′

1 (J , α) ≥ |S(Jk)|.
(3) To bound |D(Jk)|: Let D(Jk, α) denote the set of α-

deprived steps for job Jk. According to K-RAD, on each
deprived step t ∈ D(Jk, α), all α-processors must have been
allotted to jobs. Thus, the total α-allotment on such a step is
always equal to the total number of α-processors Pα. Since
jobs always use allotted processors productively, there are

Pα units of α-work done on such a time step. Since the total
amount of α-work done on D(Jk, α) steps is T1 (J , α) −
T ′

1(J , α) − T ′′
1 (J , α) and D(Jk) = ∪K

α=1D(Jk, α), we have

|D(Jk)| ≤
K∑

α=1

|D(Jk, α)|

≤
K∑

α=1

T1 (J , α) − T ′
1(J , α) − T ′′

1 (J , α)

Pα

≤
K∑

α=1

T1 (J , α)

Pα
− r(Jk) + |S(Jk)|

Pmax
.

To bound T(J): from the bounds for |R(Jk)|, |S(Jk)|
and |D(Jk)|, we obtain the makespan of the job set J ,

T(J)

= |R(Jk)| + |S(Jk)| + |D(Jk)|

≤ r(Jk) + |S(Jk)| +
K∑

α=1

T1 (J , α)

Pα
− r(Jk) + |S(Jk)|

Pmax

≤
K∑

α=1

T1 (J , α)

Pα
+

(
1 − 1

Pmax

)
max
Ji∈J

(T∞ (Ji) + r(Ji)) .

The following theorem gives the competitive ratio of
K-RAD with respect to the makespan.

Theorem 3 K-RAD is (K +1−1/Pmax)-competitive with
respect to the makespan for any set of jobs with arbitrary
release time, where Pmax = maxα=1,...,K Pα.

Proof. Recall that I = [1, 2, . . . , T(J)] is the time interval
in which K-RAD schedules the job set J . We will consider
two cases depending on whether I contains any idle inter-
vals or not.
Case 1 : I does not contain idle intervals.

If I does not contain any idle interval, the
makespan can be bounded by Inequality (2). Since∑K

α=1 T1 (J , α) /Pα ≤ K maxα=1,...,K T1 (J , α) /Pα

and both maxα=1,...,K T1 (J , α) /Pα and
maxJi∈J (T∞ (Ji) + r(Ji)) are lower bounds for
makespan. Therefore, in this case we obtain
T(J) ≤ (K + 1 − 1/Pmax) T∗(J).
Case 2 : I contains idle intervals.

If I contains idle intervals, let l = [t1, . . . , t2] be the last
such interval in I. Clearly, job set J can be divided into two
disjoint subsets J1 and J2, such that J1 contains all the jobs
completed before t1 and J2 contains all the jobs released
after t2. Since K-RAD completes J1 in t1 − 1 time steps,
an optimal scheduler S completes J1 in no more than that
amount of time. Therefore both K-RAD and S will wait till
time t2 + 1 to start scheduling J2. Let T∗(J2) denote the
makespan of J2 scheduled by the optimal scheduler S, then
we have T∗(J) = t2 + T∗(J2). From case 1, we know that
K-RAD completes J2 in T(J2) ≤ (K+1−1/Pmax)T∗(J2)

time steps. The makespan of job set J scheduled by
K-RAD is then

T(J) = t2 + T(J2)

≤ t2 +
(
K + 1 − 1

Pmax

)
T∗(J2)

≤
(
K + 1 − 1

Pmax

)(
t2 + T∗(J2)

)

=
(
K + 1 − 1

Pmax

)
T∗(J) .

Hence, in both cases, K-RAD achieves (K + 1 −
1/Pmax)-competitive with respect to the makespan.

Since the competitive ratio of K-RAD matches the
lower bound given in Section 4, K-RAD is optimal for a
deterministic online algorithm in terms of makespan.

6 Mean Response Time Lower
Bounds

We present two lower bounds on the mean response time
for scheduling any batched job set. We first introduce some
useful definitions.

Definition 4 Given a list 〈ai〉 of m nonnegative numbers,
let f be a permutation on {1, 2, . . . , m} that satisfies af(1) ≤
af(2) ≤ · · · ≤ af(m). The squashed sum of list 〈ai〉 is
defined as

sq-sum(〈ai〉) =

m∑
i=1

(m − i + 1)af(i) . (3)

By observing that the above permutation f on the list 〈ai〉
gives the minimum value for the squashed sum formulation
described by Equation (3), we obtain the following equiva-
lent definition for the squashed sum of list 〈ai〉

sq-sum(〈ai〉) = min
g∈Υ

m∑
i=1

(m − i + 1)ag(i) , (4)

where Υ is the set of all permutations on {1, 2, . . . , m}.

Definition 5 The squashed α-work area of a job set
J on Pα number of α-processors is swa (J , α) =

sq-sum(〈T1 (Ji, α)〉)/Pα, where T1 (Ji, α) is the α-work of
job Ji ∈ J . The aggregate span of a job set J is T∞ (J) =∑

Ji∈J T∞ (Ji) where T∞ (Ji) is the span of job Ji ∈ J .

Let R∗(J) denote the mean response time of the job
set J scheduled by an optimal offline scheduler. Since
any scheduler on K-DAG can do no better than the opti-
mal scheduler on any single type of tasks in the K-DAG,
from the mean response time lower bounds [9, 27, 28] for
jobs having single type of tasks, we obtain the following
two lower bounds for the mean response time on any set of
batched jobs represented by K-DAGs:

R∗(J) ≥ T∞ (J) / |J | ,

R∗(J) ≥ max
α=1,...,K

swa (J , α) / |J | .

Thus the optimal total response time R∗(J) has lower
bounds of T∞ (J) and maxα=1,...,K swa (J , α).

7 Mean Response Time Analysis
In this section, we will analyze the mean response time of
K-RAD algorithm. We first present a supporting lemma
and a notation to assist the analysis.

Lemma 4 Let 〈ai〉 and 〈bi〉 be two lists of m nonnegative
numbers that satisfy bi = ai + si, where 0 ≤ si ≤ h for
i = 1, 2, . . . , m, and h is a positive number. Let l denote
the number of instances of si that have value h, i.e., l =

|{si|si = h}| and P =
∑m

i=1 si. If l > 0, then we have

sq-sum(〈bi〉) ≥ sq-sum(〈ai〉) + P (l + 1)/2 .

Proof Sketch. Intuitively, when the algebraic sum of list
〈si〉 is given by a fixed amount P , the squashed sum of 〈si〉
is minimized if the values are distributed only on the largest
elements of 〈si〉. Moreover, the squashed sum of 〈si〉 is
always no more than the squashed sum difference between
〈ai〉 and 〈bi〉. Please refer to our technical report [14] for
detailed derivation.

We will introduce a notation — t-suffix, in order to sim-
plify the presentation of the response time analysis. For any
time step t, t-suffix of a job Ji ∈ J , denoted as Ji

(−→
t
)
, is

defined to be the portion of the job that executes on or after
time step t. The t-suffix of the job set J is then defined as
J

(−→
t
)

=
{
Ji

(−→
t
)

: Ji ∈ J
}

.
Now we will consider two cases for the system work-

load and analyze the performance of K-RAD in each case
separately. Recall that at any time t, J (α, t) denotes the set
of α-active jobs for α = 1, . . . , K. We say that the system
has light workload when |J (α, t)| ≤ Pα at any time t for
all α = 1, . . . , K. In this case, K-RAD utilizes only the
DEQ algorithm. On the other hand, the system is consid-
ered to have heavy workload when |J (α, t)| > Pα for some
α = 1, . . . , K at some time t. In this case K-RAD utilizes
both DEQ and RR algorithms.

Analysis of K-RAD under light workload
The following theorem gives the competitive ratio of K-
RAD for the mean response time under light workload.

Theorem 5 K-RAD is (2K+1−2K/(|J |+1))-competitive
with respect to the mean response time for any batched job
set J , if at any time t, |J (α, t)| ≤ Pα for each α = 1, . . . , K.

Proof. We will show that the total response time of J can
be bounded by

R(J) ≤
(

2 − 2

|J | + 1

) K∑
α=1

swa (J , α) + T∞ (J) . (5)

Since
∑K

α=1 swa (J , α) ≤ K maxα=1,...,K swa (J , α) and
both maxα=1,...,K swa (J , α) and T∞ (J) are lower bounds
for the total response time, Inequality (5) indicates that
K-RAD is (2K+1−2K/(|J |+1))-competitive with respect
to the total response time, or the mean response time under
light workload. We will prove Inequality (5) by induction
on the t-suffix of the job set J

(−→
t
)
.

Basis: t = T(J) + 1. We have J
(−→

t
)

= ∅. It follows that
R

(
J

(−→
t
))

= 0, swa
(
J

(−→
t
)

, α
)

= 0 for α = 1, . . . , K, and
T∞

(
J

(−→
t
))

= 0. Thus, the claim holds trivially.
Induction: 1 ≤ t ≤ T(J). Let n =

∣∣J (−→
t
)∣∣ de-

note the number of uncompleted jobs at time t and let
c = 2 − 2/(n + 1). Since n ≥

∣∣J (−−→
t + 1

)∣∣, we have
c ≥ 2 − 2/

(∣∣J (−−→
t + 1

)∣∣ + 1
)
. Suppose that Inequality (5)

holds at t + 1, which implies

R
(
J

(−−→
t + 1

))
≤ c

K∑
α=1

swa
(
J

(−−→
t + 1

)
, α

)
+T∞

(
J

(−−→
t + 1

))
.

(6)
We will prove that it still holds at t, i.e.,

R
(
J

(−→
t
))

≤ c

K∑
α=1

swa
(
J

(−→
t
)

, α
)

+ T∞
(
J

(−→
t
))

. (7)

The following notations denote the changes in, respec-
tively, the total response time, the squashed α-work area,
and the aggregate span from time step t and t + 1:

∆ r = R
(
J

(−→
t
))

− R
(
J

(−−→
t + 1

))
,

∆ swa (α) = swa
(
J

(−→
t
)

, α
)
− swa

(
J

(−−→
t + 1

)
, α

)
,

∆T∞ = T∞
(
J

(−→
t
))

− T∞
(
J

(−−→
t + 1

))
.

Given the induction hypothesis (Inequality (6)), we need
only prove the following inequality in order to prove our
claim (Inequality (7)),

∆ r ≤ c

K∑
α=1

∆ swa (α) + ∆T∞ . (8)

We divide the proof of Inequality (8) into four steps.
(1) To bound ∆ r : At any time t, the total number of

uncompleted jobs is
∣∣J (−→

t
)∣∣ = n. Since each uncompleted

job in J
(−→

t
)

adds one time step to the total response time
during step t, we have ∆ r = n.

(2) To bound ∆T∞: At any time t, the uncompleted jobs
can be partitioned as J

(−→
t
)

= JS(t) ∪ JD(t), represent-
ing the set of ∀-satisfied and ∃-deprived jobs at t, respec-
tively. If Ji ∈ JS(t), the span of Ji must reduce by 1. If
Ji ∈ JD(t), the span of Ji never increases. Therefore, the
aggregate span of J must reduce by at least |J S(t)| during
time step t, so we have ∆T∞ ≥ |JS(t)|.

(3) To bound ∆swa (α): At any time t, if a job Ji is
α-deprived, Ji has α-allotment a (Ji, α, t) = p̄ (α, t), where
p̄ (α, t) is the mean deprived allotment for α-processors. If a
job Ji is α-satisfied, Ji’s α-allotment is equal to its α-desire,
i.e., a (Ji, α, t) = d(Ji, α, t). Let JS(α, t) and JD(α, t) de-
note the set of α-satisfied and the set of α-deprived jobs at
time step t respectively. We will consider two cases.

Case 1. If there exist no α-deprived jobs at time t, i.e.,
|JD(α, t)| = 0. In this case, it is obvious that for α =

1, . . . , K, we have ∆swa (α) ≥ 0.
Case 2. If there exist α-deprived jobs at time t, i.e.,

|JD(α, t)| > 0. In this case, according to K-RAD, all

α-processors must have been allotted to the jobs. The α-
deprived jobs receive the same mean deprived allotment
p̄ (α, t), which is no less than the allotment for the α-
satisfied jobs. With this scenario in mind, Lemma 4 bounds
the change in the squashed sum of α-work. For Ji ∈ J ,
let ai = T1

(
Ji

(−−→
t + 1

)
, α

)
and bi = T1

(
Ji

(−→
t
)
, α

)
. Since∑

Ji∈J a (Ji, α, t) = Pα, according to Lemma 4, we have

sq-sum (〈bi〉) − sq-sum (〈ai〉) ≥ Pα (|JD(α, t)| + 1)

2
. (9)

From Inequality (9) and Definition 5, we get for α =

1, . . . , K, ∆ swa (α) ≥ (|JD(α, t)| + 1) /2

(4) To derive Inequality (8): Since the uncom-
pleted jobs at time t can be partitioned as J

(−→
t
)

=

JS(t) ∪ JD(t), we have |J S(t)| + |JD(t)| = n.
Also because JD(t) = ∪K

α=1 JD(α, t), we can obtain∑K
α=1 |JD(α, t)| ≥ |JD(α, t)| = n − |JS(t)|. Let K =

{1, . . . , K} and let K′ = {α ∈ K : |JD(α, t) > 0|}. Sup-
pose

∣∣K′∣∣ ≥ 1, then from the bounds for ∆ r , ∆T∞ and
∆ swa (α), we get

c

K∑
α=1

∆ swa (α) + ∆T∞

≥ 2n

n + 1

∑
α∈K′

|JD(α, t)| + 1

2
+ |J S(t)|

≥ n

n + 1

(
n − |JS(t)| +

∣∣K′∣∣) + |J S(t)|

≥ n − |JS(t)| n

n + 1
+ |J S(t)| ≥ n = ∆ r .

Thus we have shown that Inequality (8) holds. If
∣∣K′∣∣ = 0

on the other hand, we have ∆T∞ = |J S(t)| = n. Inequal-
ity (8) again holds trivially. The proof is complete.

Note that in the case where K = 1 for homogeneous
resource scheduling, Theorem 5 indicates that RAD is
(3 − 2/(|J | + 1))-competitive with respect to the mean re-
sponse time. Combining this result with our previous work
in [13], it is not hard to show that RAD is (3−2/(|J |+1))-
competitive under heavy workload as well. To the best of
our knowledge, RAD is the first algorithm that offers 3-
competitiveness with respect to mean response time for the
scheduling of parallel jobs under arbitrary workloads.

Analysis of K-RAD under heavy workload
Under heavy system workload, i.e., there exists some time t

and some α = 1, . . . , K for which |J (α, t)| > Pα, K-RAD
will utilize both DEQ and RR algorithms. Theorem 6 gives
the competitive ratio for the mean response time produced
by K-RAD scheduler under this more general case. As
Theorem 5, Theorem 6 can be shown using mathematical
induction on the suffix of a job set J . Please refer to our
technical report [14] for detailed analysis.

Theorem 6 K-RAD is (4K+1−4K/(|J |+1))-competitive
with respect to the mean response time for any batched job
set J .

8 Concluding Remarks
We have proposed a new scheduling model — K-resource
scheduling to incorporate the functional heterogeneity. We
have also presented a provably efficient algorithm —
K-RAD for scheduling parallel jobs under this model. Ul-
timately, efficient algorithms will be needed for scheduling
large parallel machines with both general-purpose proces-
sors of different speed and special-purpose processors with
different functionality. Therefore, one interesting challenge
is to develop scheduling models and algorithms that capture
both functional and performance heterogeneity.

References
[1] http://researchweb.watson.ibm.com/cell/.

[2] Guy Blelloch, Phil Gibbons, and Yossi Matias. Provably effi-
cient scheduling for languages with fine-grained parallelism.
Journal of the ACM, 46(2):281–321, 1999.

[3] Robert D. Blumofe. Executing Multithreaded Programs Ef-
ficiently. PhD thesis, Massachusetts Institute of Technology,
Cambridge, MA, USA, 1995.

[4] Robert D. Blumofe and Charles E. Leiserson. Scheduling
multithreaded computations by work stealing. Journal of
the ACM, 46(5):720–748, 1999.

[5] T. Brecht, Xiaotie Deng, and Nian Gu. Competitive dynamic
multiprocessor allocation for parallel applications. In Paral-
lel and Distributed Processing, pages 448 – 455, San Anto-
nio, TX, 1995.

[6] Chandra Chekuri and Michael Bender. An efficient approx-
imation algorithm for minimizing makespan on uniformly
related machines. Journal of Algorithms, 41(2):212–224,
2001.

[7] Fabi A. Chudak and David B. Shmoys. Approximation algo-
rithms for precedence-constrained scheduling problems on
parallel machines that run at different speeds. In SODA,
pages 581–590, Philadelphia, PA, USA, 1997.

[8] Ernest Davis and Jeffrey M. Jaffe. Algorithms for scheduling
tasks on unrelated processors. Journal of ACM, 28(4):721–
736, 1981.

[9] Xiaotie Deng and Patrick Dymond. On multiprocessor sys-
tem scheduling. In SPAA, pages 82–88, Padua, Italy, 1996.

[10] Jeff Edmonds, Donald D. Chinn, Tim Brecht, and Xiaotie
Deng. Non-clairvoyant multiprocessor scheduling of jobs
with changing execution characteristics (extended abstract).
In STOC, pages 120–129, 1997.

[11] B. Hamidzadeh, D. J. Lilja, and Y. Atif. Dynamic scheduling
techniques for heterogeneous computing systems. Concur-
rency: Practice and Experience, 7(7):633–652, 1995.

[12] Yuxiong He, Wen Jing Hsu, and Charles E. Leiserson. Prov-
ably efficient two-level adaptive scheduling. In JSSPP,
Saint-Malo, France, 2006.

[13] Yuxiong He, Wen Jing Hsu, and Charles E. Leiserson. Prov-
ably efficient adaptive scheduling through equalized allot-
ments. In IPDPS, Long Beach, California, USA, 2007.

[14] Yuxiong He, Hongyang Sun, and Wen Jing Hsu. Adap-
tive scheduling of parallel jobs on functionally het-
erogeneous resources. Technical Report 07-01, NTU,
http://people.csail.mit.edu/yxhe/paper/heterogeneous07.pdf.

[15] Ashfaq Khokhar, Viktor K. Prasanna, Muhammad Shaaban,
and Cho-Li Wang. Heterogeneous supercomputing: Prob-
lems and issues. In Workshop on Heterogeneous Processing,
1992.

[16] Thomas T. Kwan, Robert E. McGrath, and Daniel A. Reed.
Em3: A taxonomy of heterogeneous computing systems.
Computer, 28(12):68–70, 1995.

[17] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B.
Shmoys. Sequencing and scheduling: Algorithms and com-
plexity. Technical Report BS–R89xx, Centre for Mathemat-
ics and Computer Science, The Netherlands, 1989.

[18] Frank Thomson Leighton, Bruce M. Maggs, and Satish B.
Rao. Packet routing and job-shop scheduling in o (conges-
tion + dilation) steps. Combinatorica, 14(2):167–186, 1994.

[19] Scott T. Leutenegger and Mary K. Vernon. The performance
of multiprogrammed multiprocessor scheduling policies. In
SIGMETRICS, pages 226–236, Boulder, Colorado, United
States, 1990.

[20] Cathy McCann, Raj Vaswani, and John Zahorjan. A
dynamic processor allocation policy for multiprogrammed
shared-memory multiprocessors. ACM Transactions on
Computer Systems, 11(2):146–178, 1993.

[21] D. Menasce and V. Almeida. Heterogeneous supercomput-
ing: Is it cost-effective? In Supercomputing, pages 169–177,
1990.

[22] Rajeev Motwani, Steven Phillips, and Eric Torng. Non-
clairvoyant scheduling. In SODA, pages 422–431, Austin,
Texas, United States, 1993.

[23] Girija J. Narlikar and Guy E. Blelloch. Space-efficient
scheduling of nested parallelism. ACM Transactions on Pro-
gramming Languages and Systems, 21(1):138–173, 1999.

[24] Shmoys, Stein, and Wein. Improved approximation algo-
rithms for shop scheduling problems. In SODA, 1991.

[25] D. B. Shmoys, J. Wein, and D. P. Williamson. Schedul-
ing parallel machines online. In FOCS, pages 131–140, San
Juan, Puerto Rico, 1991.

[26] Andrew Tucker and Anoop Gupta. Process control and
scheduling issues for multiprogrammed shared-memory
multiprocessors. In SOSP, pages 159–166, New York, NY,
USA, 1989.

[27] John Turek, Walter Ludwig, Joel L. Wolf, Lisa Fleischer,
Prasoon Tiwari, Jason Glasgow, Uwe Schwiegelshohn, and
Philip S. Yu. Scheduling parallelizable tasks to minimize
average response time. In SPAA, pages 200–209, Cape May,
New Jersey, United States, 1994.

[28] John Turek, Uwe Schwiegelshohn, Joel L. Wolf, and
Philip S. Yu. Scheduling parallel tasks to minimize aver-
age response time. In SODA, pages 112–121, Philadelphia,
PA, USA, 1994.

[29] K. K. Yue and D. J. Lilja. Implementing a dynamic pro-
cessor allocation policy for multiprogrammed parallel ap-
plications in the SolarisTMoperating system. Concurrency
and Computation-Practice and Experience, 13(6):449–464,
2001.

[30] John Zahorjan and Cathy McCann. Processor scheduling
in shared memory multiprocessors. In SIGMETRICS, pages
214–225, Boulder, Colorado, United States, 1990.

