
IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
92

11
--

FR
+E

N
G

RESEARCH
REPORT
N° 9211
October 2018

Project-Team TADaaM and Roma

Reservation Strategies for
Stochastic Jobs
(Extended Version)
Guillaume Aupy, Ana Gainaru, Valentin Honoré, Padma Raghavan,
Yves Robert, Hongyang Sun

RESEARCH CENTRE
BORDEAUX – SUD-OUEST

200 avenue de la Vieille Tour
33405 Talence Cedex

Reservation Strategies for Stochastic Jobs
(Extended Version)

Guillaume Aupy*, Ana Gainaru�, Valentin Honoré*, Padma

Raghavan�, Yves Robert�, Hongyang Sun �

Project-Team TADaaM and Roma

Research Report n° 9211 � October 2018 � 34 pages

Abstract: In this paper, we are interested in scheduling stochastic jobs on a reservation-based
platform. Speci�cally, we consider jobs whose execution time follows a known probability distri-
bution. The platform is reservation-based, meaning that the user has to request �xed-length time
slots. The cost then depends on both (i) the request duration (pay for what you ask); and (ii)
the actual execution time of the job (pay for what you use). A reservation strategy determines a
sequence of increasing-length reservations, which are paid for until one of them allows the job to
successfully complete. The goal is to minimize the total expected cost of the strategy. We provide
some properties of the optimal solution, which we characterize up to the length of the �rst reserva-
tion. We then design several heuristics based on various approaches, including a brute-force search
of the �rst reservation length while relying on the characterization of the optimal strategy, as well
as the discretization of the target continuous probability distribution together with an optimal
dynamic programming algorithm for the discrete distribution. We evaluate these heuristics using
two di�erent platform models and cost functions: The �rst one targets a cloud-oriented platform
(e.g., Amazon AWS) using jobs that follow a large number of usual probability distributions (e.g.,
Uniform, Exponential, LogNormal, Weibull, Beta), and the second one is based on interpolating
traces from a real neuroscience application executed on an HPC platform. An extensive set of sim-
ulation results show the e�ectiveness of the proposed reservation-based approaches for scheduling
stochastic jobs.

Key-words: scheduling, stochastic cost, computing platform, sequence of requests, neuroscience
applications

* Inria & Labri, Univ. Bordeaux
� Department of EECS, Vanderbilt University, Nashville, TN, USA
� Laboratoire LIP, ENS Lyon & University of Tennessee Knoxville, Lyon, France

Stratégies de réservation pour l'ordonnancement de tâches
stochastiques

Résumé : Dans ce papier, nous nous intéressons à l'ordonnancement de tâches stochastiques
exécutées sur une plateforme à réservations, où l'utilisateur réalise des requêtes successives de
temps de calcul. Le temps d'exécution des tâches considérées n'est pas connu à l'avance. Ce temps
est représenté par une loi de probabilité, décrite sous la forme d'une densité de probabilité. Nous
nous intéressons à ordonnancer une instance d'une telle tâche, c'est à dire que nous ne connaissons
pas son temps d'éxécution qui reste constant tout au long de l'ordonnancement. Dans ce cas,
le coût de l'ordonnancement dépend à la fois de la durée des requêtes et du temps d'exécution
de la tâche considérée. L'objectif de ce travail est de déterminer une stratégie de réservation
optimale qui minimise le coût total de l'ordonnancement. Une stratégie de réservations est
une séquence de requêtes croissantes, qui sont payées les unes à la suite des autres en ordre
croissant jusqu'à complétion de la tâche. Pour ce faire, nous fournissons quelques propriétés de
cette stratégie optimale, notamment l'importance de la taille de la première réservation. Nous
proposons aussi di�érentes heuristiques basées sur de nombreuses approches, dont une heuristique
calculant par brute-force la taille de la première réservation au regard de la caractérisation
de la solution optimale. Nous fournissons également une heuristique basée sur une procédure
de discrétisation de la densité de probabilité considérée couplée à un algorithme optimal de
programmation dynamique pour la loi de probabilité discrète. Nous procédons à l'évaluation de
la performance de nos heuristiques en utilisant deux modèles de plateforme di�érents, la première
est une plateform orientée cloud-computing (i.e., Amazon AWS) avec des tâches suivant un grand
nombre de lois de probabilité usuelles (i.e. Uniforme, Exponentielle, Log-Normale, Weibull, Beta
etc), et une deuxième basée sur l'interpolation de traces d'applications de neurosciences exécutées
sur une plateforme HPC. Des résults complets de simulation valident les stratégies de réservation
proposées pour l'ordonnancement de tâches stochastiques.

Mots-clés : ordonnancement, coût stochastic, plateformes de calcul, séquences de réservations,
applications de neurosciences

Reservation Strategies for Stochastic Jobs 3

Contents

1 Introduction 4

2 Framework 6
2.1 Stochastic jobs . 7
2.2 Cost model . 7
2.3 Objective . 7

3 Characterizing the optimal solution 8
3.1 Cost function . 9
3.2 Upper bound on to1 and �nite expected cost . 9
3.3 Properties of optimal sequences . 11
3.4 Uniform distributions . 13
3.5 Exponential distributions . 14

4 Heuristics for arbitrary distributions 15
4.1 Brute-force procedure . 15
4.2 Discretization-based dynamic programming . 15

4.2.1 Truncating and discretizing continuous distributions 15
4.2.2 Dynamic programming for discrete distributions 16

4.3 Other heuristics . 17

5 Performance evaluation 18
5.1 Evaluation methodology . 18
5.2 Results for ReservationOnly scenario . 19
5.3 Results for NeuroHpc scenario . 21

6 Related work 23

7 Conclusion 25

A Properties of di�erent probability distributions (see Table 5) 28

B Recursive formulas to compute sequence of reservations for theMean-by-Mean

heuristic 29
B.1 Exponential distribution . 30
B.2 Weibull distribution . 30
B.3 Gamma distribution . 30
B.4 LogNormal distribution . 31
B.5 TruncatedNormal distribution . 31
B.6 Pareto distribution . 32
B.7 Uniform distribution . 32
B.8 Beta distribution . 33
B.9 BoundedPareto distribution . 33

C Extension to convex cost functions 34

RR n° 9211

4 Aupy, Gainaru, Honoré, Raghavan, Robert and Sun

1 Introduction

Scheduling a job onto a computing platform typically involves making a reservation of the re-
quired resources, say of duration t1 seconds, and running the job on the platform until either the
job has successfully completed, or the reservation time has elapsed, whichever comes �rst.

While in some instances the exact duration of the job may be known, in many other cases it
is not known a priori (see, for examples, two neuroscience applications shown in Fig. 1, whose
execution times have been characterized to exhibit input-dependent yet unpredictable behavior).
In the latter case, the user has to guess a good value for t1. Indeed, if the job does not complete
successfully within these t1 seconds, the user has to resubmit the job, this time requiring a longer
reservation, say of length t2 > t1. If the job still does not complete successfully within t2 seconds,
the user has to try again, using a reservation of length t3 > t2, and so on until the job would
succeed eventually. The cost to the user is then the cost associated with all the reservations that
were necessary to the successful completion of the job.

A reservation strategy could well depend on the context, the type of jobs and the platform.
As an example, the MASI Lab [1] at Vanderbilt takes the average execution time from the last
few instances of a neuroscience job to determine the �rst reservation time for its next instance.
If the reservation is not enough, a standard practice is to resubmit the job using between 1.5x
and 2x the requested time in the last failed run, e�ectively doubling the reservation time. As
another example, on HPC platforms, some users tend to reserve a walltime that �guarantees�
execution success (say up to the 99th execution quantile). If this is not enough, they can ask for
the 99th execution quantile of the remaining possibilities, etc.

(a) Functional MRI quality assurance (fMRIQA) [11] (b) Voxel-based morphometry quality assurance (VB-
MQA) [17]

Figure 1: Traces of over 5000 runs (historgrams in purple) from July 2013 to October 2016 of
two neuroscience applications from the Vanderbilt's medical imaging database [15]. We �t the
data to LogNormal distributions (dotted lines in orange) with means and standard deviations
shown on top.

This reservation-based approach is agnostic of the type of the job (sequential or parallel;
single task or work�ow) and of the nature of the required computing resources (processors of a
large supercomputer, virtual machines on a cloud platform, etc.). The user just needs to make
good guesses for the values of successive reservation durations, hoping to minimize the associated
cumulated cost. Here, we refer to cost as a generic metric. It could be paid either in terms of
budget (e.g., a monetary amount as a function of what is requested and/or used in a cloud

Inria

Reservation Strategies for Stochastic Jobs 5

service), or in terms of time (e.g., the waiting time of the job in an HPC queue that depends on
the requested runtime as shown in Fig. 2).

(a) Jobs that requested 204 procs. (b) Jobs that requested 409 procs.

Figure 2: Average wait times of the jobs run on the same number of processors (204 and 409) as
a function of the requested runtimes (data from [22]). All jobs are clustered into 20 groups, each
with similar requested runtimes. Each point (in blue) shows the average wait time of all jobs in
a group and the dotted lines (in orange) represent a�ne functions that �t the data.

The cost is usually proportional to the reservation length, with a possible initial and �xed
value (start-up overhead). One example is the Reserved Instance model available on Amazon
AWS [3], which is up to 75% cheaper than the �exible On-Demand model that does not require
advanced reservations. We also investigate scenarios where an additional cost is paid in propor-
tion to the actual execution time, again with a possible start-up overhead. This latter scenario
is relevant when submitting jobs to large supercomputing platforms, where each user requests a
set of resources for a given number of hours, but only pays for the hours actually spent; however,
the assigned waiting queue, and hence the job's waiting time, both depend upon the number of
hours asked for in the request.

Altogether, the cost function1 for a job with a reservation of length t1 and an actual execution
duration of length t can be expressed as:

αt1 + βmin(t1, t) + γ (1)

where α, β and γ are constant parameters that depend on the platform and the cost model.
Again, if t > t1, another reservation should be made and paid for.

Although we do not know the exact execution time of the job to be scheduled, we do not
schedule completely in the dark. Instead, we assume that there are many jobs of similar type
and that their execution times obey the same (known) probability distribution (e.g., see Fig. 1).
Each job is deterministic, meaning that a second execution of the same job will last exactly as
long as the �rst one. However, the exact execution time of a given job is not known until that
job has successfully completed. Our only assumption is that job execution times are randomly
and uniformly sampled from a target probability distribution.

1Other cost functions could be envisioned. In particular, the cost for a reservation could be a more general
function than a simple a�ne one. Several results of this paper can be extended to convex cost functions (see
Appendix C). We focus on a�ne costs because of their wide applicability under various scenarios.

RR n° 9211

6 Aupy, Gainaru, Honoré, Raghavan, Robert and Sun

While the core of the theoretical results of this paper are valid for general continuous probabil-
ity distributions, we focus on the usual distributions for the evaluation. In particular, we consider
Uniform, Beta and Bounded Pareto distributions if the execution times are upper-bounded, i.e.,
they belong to some interval [a, b]; and we consider Exponential, Weibull, LogNormal and a few
others if there is no upper bound for the execution times (see Section 5 for details). Note that
the LogNormal distribution has been advocated to model �le sizes [10], and we assume that job
durations could naturally obey this distribution too. Note that we only consider distributions
whose support is included in [0,∞), because execution times must have positive values. This
precludes the use of Normal distribution, for instance.

This paper aims at proposing e�ective strategies to the following reservation problem: given
a probability distribution, determine a (possibly in�nite) sequence of reservations

S = (t1, t2, . . . , ti, ti+1, . . .)

such that the expected cost to execute a job, whose execution time is randomly and uniformly
sampled from the distribution, is minimized. Of course, any reservation sequence induces a
greedy scheduling algorithm: for any given job, make (and pay for) a reservation of length t1,
then a reservation of length t2 if the job has not succeeded (meaning its execution time t was
greater than t1), and so forth until success. The natural objective is to minimize the average
cost of this algorithm over all possible job durations, hence the quest for a reservation sequence
whose expected cost is minimal.

From a theoretical perspective, it is not clear that there always exists a reservation sequence
with �nite expected cost. However, we show that it is true for any continuous distribution with
�nite expectation and variance, which is the case for all the distributions considered in this work.

The main contributions of this work are the following:

� The characterization of an optimal reservation sequence up to the value of its �rst reser-
vation duration t1. While we do not know how to compute t1 analytically, we provide an
upper bound that allows us to limit the range of a numerical search for its value;

� The design of several heuristics based on various approaches: one explores a brute-force
search for t1 while relying on the optimal characterization mentioned above; one discretizes
the target continuous distribution and uses an optimal dynamic programming algorithm
for the discrete distribution; and some rely on standard measures (e.g., mean, variance,
quantiles) of the distribution.

� An extensive set of simulation results under two di�erent platform models and cost func-
tions that show the e�ectiveness of the proposed strategies. The �rst one targets a cloud-
oriented platform using jobs that follow a large number of usual distributions and the
second one is based on interpolating traces from a real neuroscience application executed
on an HPC platform.

The rest of the paper is organized as follows. Section 2 introduces the framework and main no-
tations. Section 3 discusses the properties of the optimal solution. We propose several heuristics
in Section 4, and evaluate their performance under two platform models in Section 5. Section 6
is dedicated to related work. Finally, we provide concluding remarks and hints for future work
in Section 7.

2 Framework

In this section, we introduce some notations and formally de�ne the optimization problem.

Inria

Reservation Strategies for Stochastic Jobs 7

2.1 Stochastic jobs

We consider stochastic jobs whose execution times are unknown but (i) deterministic, so that
two successive executions of the same job will have the same duration; and (ii) randomly and
uniformly sampled from a given probability distribution law D, whose density function is f and
cumulative distribution function (CDF) is F . The probability distribution is assumed to be
nonnegative, since we model execution times, and is de�ned either on a �nite support [a, b],
where 0 ≤ a < b, or on an in�nite support [a,∞) where 0 ≤ a. Hence, the execution time of a
job is a random variable X, and

P(X ≤ T) = F (T) =

∫ T

a

f(t)dt

For notational convenience, we sometimes extend the domain of f outside the support of D by
letting f(t) = 0 for t ∈ [0, a].

2.2 Cost model

To execute a job, the user makes a series of reservations, until the job successfully executes within
the length of the last reservation. For a reservation of length t1, and for an actual duration t
of the job, the cost is αt1 + βmin(t1, t) + γ, as stated in Equation (1), where α > 0, β ≥ 0
and γ ≥ 0. If t > t1, another reservation should be paid for. Hence, the user needs to make a
(possibly in�nite) sequence of reservations S = (t1, t2, . . . , ti, ti+1, . . .), where:

1. ti < ti+1 for all i ≥ 1. Indeed, because jobs are deterministic, it is redundant to have
a duration in the sequence that is not strictly larger than the previous one, hence that
duration can be removed from the sequence;

2. all possible execution times of the job are indeed smaller than or equal to some ti in the
sequence. This simply means that the sequence must tend to in�nity if job execution times
are not upper-bounded.

Throughout the paper, we assume that both properties hold when speaking of a reservation
sequence. For notational convenience, we de�ne t0 = 0, in order to simplify summations.

Now, for a sequence S = (t1, t2, . . . , ti, ti+1, . . .), and for a job execution time t, the cost is

C(k, t) =

k−1∑
i=1

(αti + βti + γ) + αtk + βt+ γ (2)

where k is the smallest index in the sequence such that t ≤ tk (or equivalently, tk−1 < t ≤ tk;
recall that t0 = 0).

2.3 Objective

The goal is to �nd a scheduling strategy, i.e., a sequence of increasing reservation durations, that
minimizes the cost in expectation. Formally, the expected cost for a sequence S = (t1, t2, . . . , ti, ti+1, . . .)
can be written as:

E(S) =

∞∑
k=1

∫ tk

tk−1

C(k, t)f(t)dt (3)

Indeed, when tk−1 < t ≤ tk, the cost is C(k, t), which we weight with the corresponding proba-
bility.

Here are two examples:

RR n° 9211

8 Aupy, Gainaru, Honoré, Raghavan, Robert and Sun

� Uniform(a, b): for a uniform distribution over the interval [a, b] where 0 < a < b, we have
f(t) = 1

b−a if a ≤ t ≤ b, and f(t) = 0 otherwise. Given a �nite sequence S = (a+b
2 , b), the

expected cost is

E(S) =

∫ a+b
2

a

(α
a+ b

2
+ βt+ γ)

1

b− a
dt

+

∫ b

a+b
2

(
(α
a+ b

2
+ β

a+ b

2
+ γ) + (αb+ βt+ γ)

) 1

b− a
dt

The �rst term is for values of t that are in [a, a+b
2] and the second term is for larger values

of t in [a+b
2 , b]. For the latter term, we pay a constant cost

α
a+ b

2
+ β

a+ b

2
+ γ

for the �rst reservation, which was unsuccessful, and then a cost that depends upon the
value of t for the second reservation if β 6= 0.

� Exp(λ): for an exponential distribution with rate λ and support in [0,∞), we have f(t) =
λe−λt for all t ≥ 0. Given an in�nite and unbounded sequence S = (1

λ ,
2
λ , . . . ,

i
λ ,

i+1
λ , . . .),

the expected cost is

E(S) =

∞∑
k=1

∫ k
λ

k−1
λ

(k−1∑
i=1

(α
i

λ
+ β

i

λ
+ γ) + α

k

λ
+ βt+ γ

)
λe−λtdt

Again, when t ∈ [k−1
λ , kλ], we pay a �xed cost for the k−1 �rst reservations, and a possibly

variable cost for the k-th reservation. Looking at the expression of E(S) above, we easily
see that the given sequence S has a �nite expected cost E(S). In fact, there are many
sequences with �nite expected cost, such as those de�ned by ti = ui+ v for i ≥ 1, where u
and v are positive constants.

We are now ready to state the optimization problem:

De�nition 1 (Stochastic). Given a probability distribution (with CDF F) for the execution
times of stochastic jobs, and given a cost function given by Equation (1) (with parameters α, β
and γ), �nd a reservation sequence S with minimal expected cost E(S) as given in Equation (3).

We further de�ne ReservationOnly to be the instance of Stochastic where the cost is a
linear function of the reservation length only, i.e., when β = γ = 0. For ReservationOnly, we
can further consider α = 1 without loss of generality. For instance, such costs are incurred when
making reservations of resources to schedule jobs on some cloud platforms, with hourly or daily
rates.

Throughout the paper, we focus on the usual probability distributions, hence we assume that
the density function f and the CDF F of D are smooth (in�nitely di�erentiable), and that D
has �nite expectation.

3 Characterizing the optimal solution

In this section, we establish key properties of an optimal solution in the general setting.

Inria

Reservation Strategies for Stochastic Jobs 9

3.1 Cost function

We start by establishing a simpler expression for the cost function of Stochastic.

Theorem 1. Given a sequence S = (t1, t2, . . . , ti, ti+1, . . .), the cost function given by Equa-
tion (3) (with parameters α, β and γ) can be rewritten as (with t0 = 0):

E(S) = β · E[X]+

∞∑
i=0

(αti+1+βti+γ)P(X ≥ ti) (4)

Proof. We �rst expand Equation (3) as follows:

E(S)=

∞∑
k=1

(∫ tk

tk−1

(k∑
i=1

(αti+γ)+

k−1∑
i=1

βti+βt
)
f(t)dt

)
(5)

We compute the three terms on the right-hand side separately. By de�ning t0 = 0, the �rst term
can be expressed as:

∞∑
k=1

(∫ tk

tk−1

(k∑
i=1

(αti + γ)
)
f(t)dt

)
=

∞∑
k=1

k∑
i=1

(αti + γ)

∫ tk

tk−1

f(t)dt

=

∞∑
k=1

k∑
i=1

(αti + γ)P(X ∈ [tk−1, tk])

=

∞∑
i=1

∞∑
k=i

(αti + γ)P(X ∈ [tk−1, tk])

=

∞∑
i=1

(αti + γ)P(X ≥ ti−1)

Similarly, we obtain the second term:

∞∑
k=1

(∫ tk

tk−1

(k−1∑
i=1

βti

)
f(t)dt

)
=

∞∑
i=1

βtiP(X ≥ ti)

and the third term:
∞∑
k=1

(∫ tk

tk−1

βtf(t)dt

)
= β · E[X]

Plugging these three terms back into Equation (5), we get the desired expression for the cost
function as given by Equation (4).

3.2 Upper bound on to1 and �nite expected cost

In this section, we extract an upper bound for the �rst request to1 of an optimal sequence So

to Stochastic, which allows us to show that the expected cost E(So) is upper bounded too,
and hence �nite. This result holds in a general setting, namely, for any distribution D such that
E(X2) <∞.

Obviously, if the distribution's support is upper bounded, such as for Uniform(a, b), a solu-
tion is to choose that upper bound for to1 (e.g., to1 ≤ b for Uniform(a, b)). Hence, we focus on
distributions with in�nite support [a,∞) and aim at restricting the search for an optimal to1 to
a bounded interval [a,A1] for some A1. We derive the following result.

RR n° 9211

10 Aupy, Gainaru, Honoré, Raghavan, Robert and Sun

Theorem 2. For any distribution D with in�nite support [a,∞) such that E[X2] <∞, the value
to1 of an optimal sequence So = (to1, t

o
2, . . . , t

o
i , t

o
i+1, . . .) satis�es t

o
1 ≤ A1, and E(So) ≤ A2, where

A1 = E[X]+1+
α+β

2α
(E[X2]−a2)+

α+β+γ

α
(E[X]−a) (6)

A2 = β · E(X) + αA1 + γ (7)

Proof. We consider the sequence S = (t1, t2, . . . , ti, ti+1, . . .) with ti = a + i for i ≥ 1 (and
t0 = 0), and compute:

E(S)− β · E[X] =

∞∑
i=0

(αti+1 + βti + γ)P(X ≥ ti)

=

∞∑
i=0

(α(a+ i+ 1) + β(a+ i) + γ)P(X ≥ a+ i)

= α(a+ 1) + γ +

∞∑
i=1

(α+ β)(a+ i)P(X ≥ a+ i) + (α+ γ)

∞∑
i=1

P(X ≥ a+ i)

= α(a+ 1) + γ + (α+ β)

∞∑
i=1

∫ a+i

a+i−1

(a+ i)P(X ≥ a+ i)dt

+ (α+ γ)

∞∑
i=1

∫ a+i

a+i−1

P(X ≥ a+ i)dt

Note that for all t ∈ [a+ i− 1, a+ i], we have both

a+ i ≤ t+ 1

and
P(X ≥ a+ i) ≤ P(X ≥ t)

Thus,
(a+ i)P(X ≥ a+ i) ≤ (t+ 1)P(X ≥ t)

Hence, we can write:

E(S)− β · E[X] ≤ α(a+ 1) + γ + (α+ β)

∞∑
i=1

∫ a+i

a+i−1

(t+ 1)P(X ≥ t)dt

+ (α+ γ)

∞∑
i=1

∫ a+i

a+i−1

P(X ≥ t)dt

= α(a+ 1) + γ + (α+ β)

∫ ∞
a

(t+ 1)P(X ≥ t)dt+ (α+ γ)

∫ ∞
a

P(X ≥ t)dt

≤ α(a+ 1) + γ + (α+ β)

∫ ∞
a

t · P(X ≥ t)dt+ (2α+ β + γ)

∫ ∞
a

P(X ≥ t)dt

For the last inequality, we have split ∫ ∞
a

(t+ 1)P(X ≥ t)dt

Inria

Reservation Strategies for Stochastic Jobs 11

into ∫ ∞
a

tP(X ≥ t)dt

and ∫ ∞
a

P(X ≥ t)dt

Extending the support of D to [0,∞) by letting f(t) = 0 for 0 ≤ t ≤ a, and hence P(X ≥
t) = 1 for 0 ≤ t ≤ a, we have the following property for any integer p ≥ 1:∫ ∞

0

tp−1 · P(X ≥ t)dt =

∫ ∞
t=0

tp−1

∫ ∞
x=t

f(x)dxdt

=

∫ ∞
x=0

f(x)

∫ x

t=0

tp−1dtdx

=

∫ ∞
0

xp

p
f(x)dx

=
E[Xp]

p

Hence, using p = 1, we have:∫ ∞
a

P(X≥ t)dt=
∫ ∞

0

P(X≥ t)dt−
∫ a

0

P(X≥ t)dt

= E[X]−a

and using p = 2, we get:∫ ∞
a

t · P(X ≥ t)dt =

∫ ∞
0

t · P(X ≥ t)dt−
∫ a

0

t · P(X ≥ t)dt

=
E[X2]− a2

2

Altogether, we derive that:

E(S) ≤ β · E[X] + αA1 + γ (8)

where A1 is given by Equation (6). From Equation (4), the expected cost of any sequence S
satis�es E(S) ≥ β · E[X] + αt1 + γ (cost of expected execution time and cost of �rst request).
Hence, necessarily in an optimal sequence, the �rst reservation to1 satis�es to to1 ≤ A1. Thus,
Equation (6) gives the desired bound on to1.

3.3 Properties of optimal sequences

We now derive a recurrence relation between the successive requests in the optimal sequence for
Stochastic.

Theorem 3. Let So = (toi)i≥1 denote an optimal sequence for Stochastic. For all i ≥ 1, if toi
is not the last element of the sequence and F (toi) 6= 1, we have the following property:

αtoi+1 + βtoi + γ = α
1− F (toi−1)

f(toi)
+ β

1− F (toi)

f(toi)
(9)

RR n° 9211

12 Aupy, Gainaru, Honoré, Raghavan, Robert and Sun

Proof. We �x an index j ≥ 1 such that F (toj) 6= 1 and consider the expected cost when we replace
toj by an arbitrary value t ∈ [toj−1, t

o
j+1]. This amounts to using the sequence

Soj (t) = (to1, t
o
2, · · · , toj−1, t, t

o
j+1, · · ·)

whose expected cost, according to Equation (4), is the following:

E(Soj (t)) = β · E[X] +
∑

i6=j−1,j

(αtoi+1 + βtoi + γ)P(X ≥ toi)

+ (αt+ βtoj−1 + γ)P(X ≥ toj−1)

+ (αtoj+1 + βt+ γ)P(X ≥ t)

which we can rewrite as:

E(Soj (t)) = Cj + αt(1− F (toj−1)) + (αtoj+1 + βt+ γ)(1− F (t))

where Cj is some constant independent of t. By de�nition, the minimum of E(Soj (t)) on
[toj−1, t

o
j+1] is achieved at t = toj (and potentially at other values). Because E(Soj (t)) is smooth,

we have that: its derivative at toj , which is not an extremity of the interval [toj−1, t
o
i+1], must be

equal to zero, i.e.,
∂E(Soj (t))

∂t = 0. This gives:

α(1− F (toj−1))+β(1− F (toj))− (αtoj+1+βtoj+γ)f(toj) = 0 (10)

To get the �nal result, it remains to show that f(toj) 6= 0. Otherwise, we would get from
Equation (10) that:

α(1− F (toj−1)) + β(1− F (toj)) = 0

which implies that:
F (toj−1) = 1

because α > 0 (and β(1− F (toj)) ≥ 0). But then,

F (toj) ≥ F (toj−1) = 1

which contradicts the initial assumption. Hence, f(toj) 6= 0, and rewriting Equation (10) directly
leads to Equation (9).

Note that the condition F (toi) 6= 1 in Theorem 3 applies to distributions with bounded
support, such as Uniform(a, b), where F (b) = 1. For the usual distributions with unbounded
support, such as Exp(λ), we have F (t) < 1 for all t ∈ [0,∞) and an optimal sequence must be
in�nite. In essence, Theorem 3 suggests that an optimal sequence is characterized solely by its
�rst value to1:

Proposition 1. For a smooth distribution with unbounded support, solving Stochastic reduces
to �nding to1 that minimizes

∞∑
i=0

(αti+1+βti+γ)P(X ≥ ti)

where to0 = 0, and for all i ≥ 2,

toi =
1− F (toi−2)

f(toi−1)
+
β

α

(
1− F (toi−1)

f(toi−1)
− toi−1

)
− γ

α
(11)

For a smooth distribution with bounded support, the recurrence in Equation (11) still holds but
the optimal sequence stops as soon as it reaches toi with F (toi) = 1.

Inria

Reservation Strategies for Stochastic Jobs 13

Proposition 1 provides an optimal algorithm for general smooth distributions, up to the
determination of to1. However, computing the optimal to1, remains a di�cult problem, except for
simple distributions such as Uniform(a, b) (see Section 3.4).

3.4 Uniform distributions

In this section, we discuss the optimal strategy for a uniform distribution Uniform(a, b), where
0 < a < b. Intuitively, one could try and make a �rst reservation of duration, say, t1 = a+b

2 , and
then a second reservation of duration t2 = b. However, we show that the best approach is to
make a single reservation of duration t1 = b, for any value of the parameters α, β and γ:

Theorem 4. For a uniform distribution Uniform(a, b), the optimal sequence for Stochastic
is So = (b).

Proof. We proceed by contradiction and assume there is an optimal sequence S = (t1, t2, . . . , ti, ti+1, . . .)
for Stochastic where t1 < b. Necessarily, this sequence contains more elements: either it is
�nite of length n and then necessarily tn = b (hence n ≥ 2): otherwise tn < b and E(S) = ∞
because the interval [tn, b] has non-zero measure; or it is in�nite and then the conclusion holds
(note that in that case, limi→∞ ti = b: otherwise the strictly increasing sequence (ti)i≥1 con-
verges to some value b′ < b and E(S) = ∞ because the interval [b′, b] has non-zero measure).
Altogether, t2 always exists and t1 < t2 ≤ b.

We can compute E(S) by distinguishing whether the job execution time t satis�es: (i) a ≤
t ≤ t1; or (ii) t1 ≤ t ≤ t2; or (iii) t2 ≤ t ≤ b. Note that the last case (iii) may disappear if t2 = b.
We obtain:

E(S) =
t1 − a
b− a

(αt1 + β
a+ t1

2
+ γ) +

t2 − t1
b− a

(αt1 + βt1 + γ + αt2 + β
t1 + t2

2
+ γ)

+
b− t2
b− a

(αt1 + βt1 + γ + αt2 + βt1 + γ + Z)

In the equation above, we have used the fact that:

β

∫ t1

a

tP(X = t|a ≤ t ≤ t1)dt = β
a+ t1

2

and similarly,

β

∫ t2

t1

tP(X = t|t1 ≤ t ≤ t2)dt = β
t1 + t2

2

Also, b−t2b−a Z represents the expected cost of the third and following reservations for t ∈ [t2, b].
Now, we suppress t1 in the optimal sequence S and get a new sequence

S′ = (t2, t3, . . . , ti, ti+1, . . .)

We can compute its expected cost just as before:

E(S′) =
t2 − a
b− a

(αt2 + β
a+ t2

2
+ γ) +

b− t2
b− a

(αt2 + βt2 + γ + Z)

where Z has the same value as above, because only the beginning of the sequence has been
modi�ed. We can then derive that:

E(S)− E(S′) =
1

b− a
(αu+ βv + γw)

where u = t1(b− t2)+a(t2− t1) > 0, v = t1(b− t1) > 0, and w = b− t1 > 0. Hence E(S) > E(S′),
and S was not an optimal sequence, the desired contradiction.

RR n° 9211

14 Aupy, Gainaru, Honoré, Raghavan, Robert and Sun

3.5 Exponential distributions

In this section, we provide partial results for the ReservationOnly problem (β = γ = 0
and α = 1) with an exponential distribution Exp(λ). From Theorem 2 (and the example in
Section 2.3), we know that there exist sequences of �nite expected cost. We further characterize
the optimal solution as follows:

Proposition 2. Let S1 = (s1, s2, . . . , si, si+1, . . .) denote the optimal sequence for Reserva-
tionOnly with X1 ∼ Exp(1). It is the sequence that minimizes

E(S1) = s1 + 1 +

∞∑
i=1

e−si ,

such that, s2 = es1 , and for i ≥ 3,

si = esi−1−si−2 (12)

We denote by E1 = s1 + 1 +
∞∑
i=1

e−si . The optimal sequence for ReservationOnly for

Xλ ∼ Exp(λ) is the in�nite sequence Sλ = (t1, t2, . . . , ti, ti+1, . . .) such that ti = si
λ for i ≥ 1.

Its expected cost is E(Sλ) = 1
λE1.

Proof. The results on S1 (Eq. (12) and E1) follow directly from Proposition 1 and Equation (11).
Consider an Exp(λ) distribution: Xλ. From Equation (4), the expected cost of the optimal

sequence Sλ is

E(Sλ) =

∞∑
i=0

ti+1e
−λti

where t0 = 0, t1 is unknown, and the value of ti for i ≥ 2 is given by Equation (11) as

ti =
eλ(ti−1−ti−2)

λ

for i ≥ 2. We de�ne ui = λti for all i ≥ 0, we derive that

E(Sλ) =
1

λ

∞∑
i=0

ui+1e
−ui

with ui = eui−1−ui−2 for all i ≥ 2. Hence ui is the sequence that minimizes

E(Sλ) =

∞∑
i=0

ti+1e
−λti

=
1

λ

∞∑
i=0

ui+1e
−ui

=
1

λ

(
u1 + 1 +

∞∑
i=1

e−ui

)

We can notice that the sequence U = (u1, u2, · · · , ui, · · ·) solves the same system of equations
as S1, hence S1 is a valid solution for U .

Hence the result.

Inria

Reservation Strategies for Stochastic Jobs 15

Again, the optimal sequence is fully characterized by the value of t1 or s1. Here, s1 is
independent of λ. In other words, the solution for Exp(1) is generic, and the solution for Exp(λ)
for an arbitrary λ can be directly derived from it. Unfortunately, we do not know how to compute
s1 analytically. However, a brute-force search provides the value s1 ≈ 0.74219, which means that
the �rst reservation for Exp(λ) should be approximately three quarters of the mean value 1

λ of
the distribution, for any λ > 0.

4 Heuristics for arbitrary distributions

The results of the preceding section provide an optimal strategy for Stochastic up to the
determination of the optimal to1 , since Theorem 3 and Proposition 1 allow us to compute the
subsequent toi 's. However, while we have derived an upper bound on to1, we do not know how
to compute its exact value for an arbitrary distribution. In this section, we introduce several
heuristics for solving the problem.

4.1 Brute-force procedure

We �rst present a procedure called Brute-Force that simply tries di�erent values for the �rst
reservation length t1 in a sequence S, and then computes the subsequent values according to
Equation (11). Speci�cally, we try M di�erent values of t1 on the interval [a, b], where a is the
lower bound of the distribution and b is the upper bound if the distribution is �nite. Otherwise,
we set b = A1, which is an upper bound on the optimal to1 as given in Equation (6). For each
m = 1, . . . ,M , we generate a sequence that starts with

t1 = a+m · b− a
M

Given a sequence S, its expected cost is evaluated via a Monte-Carlo process, as described
in Section 5.1: we randomly draw N execution times from the distribution, and compute the
expected cost incurred by the sequence over the N samples. We �nally return the minimum
expected cost found over all the M values of t1. Note that some values of t1 may not lead to
any result, because the sequence computed based on it and using Equation (11) may not be
strictly increasing. In this case, we simply ignore the sequence. The complexity of this heuristic
is O(MN).

We point out that the actual optimal value for the �rst request to1 would possibly lie in between
two successive values of t1 that we try. However, because we deal with smooth probability
distributions, we expect to return a t1 and an associated expected cost that are close to the
optimal when M and N are su�ciently large. In the performance evaluation, we set M = 5000
and N = 1000.

4.2 Discretization-based dynamic programming

We now present a heuristic that approximates the optimal solution for Stochastic by �rst
discretizing the continuous distribution and then computing an optimal sequence for the discrete
problem via dynamic programming.

4.2.1 Truncating and discretizing continuous distributions

If a continuous distribution has �nite support [a, b], where 0 ≤ a < b, then we can directly
discretize it. Otherwise, for a distribution with in�nite support [a,∞), where 0 ≤ a, we need to

RR n° 9211

16 Aupy, Gainaru, Honoré, Raghavan, Robert and Sun

�rst truncate it in order to operate on a bounded interval. In the latter case, we de�ne

b = Q(1− ε)

where
Q(x) = inf{t|F (t) ≥ x}

is the quantile function. That is, we discard the �nal ε ∈ (0, 1) quantile of the distribution,
which for usual distributions ensures that b is �nite. In either case, the discretization will then
be performed on the interval [a, b]. Let n denote the number of discrete values we will sample
from the continuous distribution. The result will be a set of n pairs (vi, fi)i=1...n, where the
vi's represent the possible execution times of the jobs, and the fi's represent the corresponding
probabilities. We envision two schemes for the discretization:

� Equal-probability: This scheme ensures that all the discrete execution times have the
same probability. Thus, for all i = 1, 2, . . . , n, we can compute

vi = Q
(
i · F (b)

n

)
with associated

fi =
F (b)

n

� Equal-time: This scheme makes the discrete execution times equally spaced in the interval
[a, b]. Thus, for all i = 1, 2, . . . , n, the execution times and their probabilities are computed
as

vi = a+ i · b− a
n

associated to
fi = F (vi)− F (vi−1)

Note that when the continuous distribution has unbounded support, the probabilities for the
n discrete execution times do not sum up to 1, i.e.,

n∑
i=1

fi = F (b) = 1− ε

A smaller value of ε and a larger number n will provide a better sampling of the continuous
distribution in either discretization scheme. In the performance evaluation, we set ε = 10−7 and
n = 1000.

4.2.2 Dynamic programming for discrete distributions

We now present a dynamic programming algorithm to compute the optimal sequence for any
discrete probability distribution. It will be used with the discretization schemes to approximate
the optimal solution for an arbitrary continuous distribution.

Theorem 5 (Discrete distribution). If X ∼ (vi, fi)i=1...n, then Stochastic can be solved opti-
mally in polynomial time.

Inria

Reservation Strategies for Stochastic Jobs 17

Proof. Let E∗i denote the optimal expected cost given that X ≥ vi. In this case, to compute the
optimal expected cost, the probability distribution of X needs to be �rst updated as

f ′k =
fk
n∑
j=i

fj

,∀k = i, . . . , n

which guarantees that
n∑
k=i

f ′k = 1.

We can then express E∗i based on the following dynamic programming formulation:

E∗i = min
i≤j≤n

(
αvj+γ+

j∑
k=i

f ′k · βvk +
(n∑
k=j+1

f ′k

)(
βvj+E∗j+1

))

In particular, to compute E∗i , we make a �rst reservation of all possible discrete values (vj)j=i...n
and select the one that incurs the minimum total expected cost. For each vj considered, if the

job's actual execution time is greater than vj (with probability
n∑

k=j+1

f ′k), the total cost also

includes the optimal cost E∗j+1 for making subsequent reservations.
The dynamic program is initialized with E∗n = αvn+βvn+γ, and the optimal total expected

cost is given by E∗1. The complexity is O(n2), since each E∗i depends on n − i other expected
costs, with associated probability updates and summations that can be computed in O(n − i)
time. The optimal sequence of reservations can be obtained by backtracking the decisions made
at each step.

Note that the sequence obtained by dynamic programming always ends with the largest value
vn = b. When applying it back to a continuous distribution with unbounded support, more values
will be needed, because the sequence must tend to in�nity as explained in Section 2.2. In this
case, additional values can be appended to the sequence by using other heuristics, such as the
ones presented next in Section 4.3.

4.3 Other heuristics

We �nally present some simple heuristics that are inspired by common resource allocation strate-
gies in the literature. These heuristics do not explore the structure of the optimal solution nor
the probability distribution, but rely on simple incremental methods to generate reservation
sequences.

In the following, we will use µ = E(X) to denote the mean of a given distribution, σ2 =
E(X2)−µ2 to denote its variance, andm = Q(1

2) to denote its median, whereQ(x) = inf{t|F (t) ≥
x} represents the quantile function. The di�erent heuristics are de�ned as follows:

� Mean-by-Mean: start with the mean (i.e., t1 = µ) and then make each subsequent
reservation request by computing the conditional expectation of the distribution in the
remaining interval, i.e.,

ti = E(X|X > ti−1) =

∫∞
ti−1

tf(t)dt

1− F (ti−1)
, ∀i ≥ 2

� Mean-Stdev: start with the mean (i.e., t1 = µ) and then increment the reservation length
by one standard deviation (σ) for each subsequent request, i.e.,

ti = µ+ (i− 1)σ, ∀i ≥ 2

RR n° 9211

18 Aupy, Gainaru, Honoré, Raghavan, Robert and Sun

� Mean-Doubling: start with the mean (i.e., t1 = µ) and then double the reservation
length for each subsequent request, i.e.,

ti = 2i−1µ, ∀i ≥ 2

� Median-by-Median: start with the median (i.e., t1 = m) and then make each subsequent
reservation request by using the median of the distribution in the remaining interval, i.e.,

ti = Q(1− 1

2i
), ∀i ≥ 2

The sequence of reservations for all heuristics above can be easily computed for the usual
distributions considered in this paper. Appendix A provides some key parameters (e.g., mean,
variance, quantile) to facilitate the computation. Note that deriving the sequence forMean-by-

Mean is straightforward for some distributions (e.g., exponential, uniform), but more involved
for others. Recursive formulas are provided in Appendix B to compute the sequence for this
heuristic under di�erent distributions.

5 Performance evaluation

In this section, we evaluate the di�erent heuristics presented in Section 4, and compare their
performance. The code and setup of the experiments presented in this section are publicly
available on https://gitlab.inria.fr/vhonore/ipdps_2019_stochastic-scheduling.

5.1 Evaluation methodology

For each heuristic that generates a reservation sequence S = (t1, t2, . . . , ti, ti+1, . . .) under a par-
ticular probability distribution D, we approximate its expected cost via a Monte-Carlo process2:
we randomly sample N possible execution times from the distribution, and then average over
the cost of all the N samples, i.e.,

Ẽ(S) =
1

N

N∑
i=1

C(k, t)|t←D (13)

where C(k, t) is the cost for a speci�c execution time t drawn from the distribution, computed
using Equation (2). For the presented evaluation results, we set N = 1000.

To get uniform results, we normalize the expected cost of each heuristic by the expected cost
of an omniscient scheduler, which knows the job execution time t a priori, and thus would make
a single request of length t1 = t. Averaging over all possible values of t from the distribution D,
the omniscient scheduler has an expected cost:

Eo =

∫ ∞
0

(αt+ βt+ γ)f(t)dt = (α+ β) · E[X] + γ

Hence the normalized ratio will always be larger than or equal to 1, and a smaller ratio means
a better result.

We perform the evaluation of the heuristics under two di�erent reservation-based scenarios.

2The possibly in�nite sequence prevents us from analytically evaluating its expected cost.

Inria

https://gitlab.inria.fr/vhonore/ipdps_2019_stochastic-scheduling

Reservation Strategies for Stochastic Jobs 19

Table 1: Probability distributions and parameter instantiations

Distribution PDF f(t) Instantiation Support

Distributions with in�nite support

Exponential (λ) λe−λt λ = 1.0 t ∈ [0,∞)

Weibull(λ, κ) κ
λ

(
t
λ

)κ−1 e
−
(
t
λ

)κ λ = 1.0
κ = 0.5

t ∈ [0,∞)

Gamma(α, β) βα

Γ(α)
tα−1e−βt

α = 2.0
β = 2.0

t ∈ [0,∞)

LogNormal
(
µ, σ2

)
1

tσ
√

2π
e
− 1

2

(
ln t−µ
σ

)2 µ = 3.0
σ = 0.5

t ∈ (0,∞)

TruncatedNormal(µ, σ2, a) 1
σ

√
2
π ·

e
− 1

2

(
t−µ
σ

)2
1−erf

(
a−µ
σ
√

2

) µ = 8.0
σ2 = 2.0
a = 0.0

t ∈ [a,∞)

Pareto(ν, α) ανα

tα+1
ν = 1.5
α = 3.0

t ∈ [ν,∞)

Distributions with �nite support

Uniform(a, b) 1
b−a

a = 10.0
b = 20.0

t ∈ [a, b]

Beta(α, β)
tα−1·(1−t)β−1

B(α,β)

α = 2.0
β = 2.0

t ∈ [0, 1]

BoundedPareto(L,H, α) αHαLαt−α−1

Hα−Lα

L = 1.0
H = 20.0
α = 2.1

t ∈ [L,H]

� ReservationOnly (Section 5.2): This scenario is based on the Reserved Instance pricing
scheme available in AWS [3], where the user pays exactly what is requested. Hence, we
set α = 1, β = γ = 0. We consider nine probability distributions in this case, six of
which have in�nite support and the remaining three have �nite support. Table 1 lists these
distributions with instantiations of their parameters used in the evaluation.

� NeuroHpc (Section 5.3): This scenario is based on executing large jobs on HPC platforms,
where the cost, as represented by the total turnaround time of a job, is the sum of its waiting
time in the queue and its actual execution time. We set β = 1 for the execution time and
instantiate the waiting time function (α, γ) by curve-�tting the data from Fig. 2b. The
probability distribution is derived from execution traces of neuroscience applications as
shown in Fig. 1b.

5.2 Results for ReservationOnly scenario

Table 2 presents, for each heuristic, the normalized expected cost, i.e., Ẽ(S)/Eo, under di�erent
probability distributions. The Brute-Force heuristic tries M = 5000 values of t1, and both
discretization heuristics set the truncation parameter to be ε = 10−7 and use n = 1000 samples.
First, the normalized costs allow us to compare the performance of these heuristics with that
of the omniscient scheduler to access the relative bene�ts of using Reserved Instance (RI) vs.
On-Demand (OD). Indeed, if the per-hour price for RI is cRI and the corresponding price for OD
is cOD, it is bene�cial to use RI and compute a reservation sequence S, if cRI · Ẽ(S) ≤ cOD · Eo,
that is Ẽ(S)/Eo ≤ cOD/cRI. In the case of Amazon AWS [3], the price for the two types of
services can di�er by a factor of 4, i.e., cOD/cRI = 4.

We can see in the table that the normalized costs of all heuristics satisfy Ẽ(S)/Eo < 4 for all
distributions. Overall, the results show the bene�t of using the reservation-based approach for
the considered problem. We also observe that, compared with other heuristics, Brute-Force
has better performance (see values in the brackets in the table), and this is because it computes
a reservation sequence by exploring the properties of the optimal solution (Section 3.3). To
validate this observation, we plot Figure 3 that shows the normalized cost using the Brute-

RR n° 9211

20 Aupy, Gainaru, Honoré, Raghavan, Robert and Sun

0 2 4 6 8 10 12 14 16 18

Standard Deviation (minutes)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

N
or

m
al

iz
ed

E
xp

ec
te

d
C

os
t

BRUTE-FORCE

Figure 3: Normalized expected cost of the Brute-Force heuristic using a LogNormal distribu-
tion when σ varies from 0 to 2µ (µ ≈ 8min).

Table 2: Normalized expected costs of di�erent heuristics in the ReservationOnly scenario
under di�erent distributions. The values in the brackets show the expected costs normalized by
those of the Brute-Force heuristic.

Distribution Brute-Force Mean-by-Mean Mean-Stdev Mean-Doub. Med-by-Med Equal-time Equal-prob.

Exponential 2.15 2.36 (1.10) 2.39 (1.11) 2.42 (1.13) 2.83 (1.32) 2.31 (1.07) 2.36 (1.10)
Weibull 2.12 2.76 (1.30) 3.58 (1.69) 3.03 (1.43) 3.05 (1.44) 2.40 (1.13) 2.22 (1.05)
Gamma 2.02 2.26 (1.12) 2.18 (1.08) 2.24 (1.11) 2.51 (1.24) 2.20 (1.09) 2.13 (1.05)

Lognormal 1.85 2.19 (1.19) 2.09 (1.13) 1.95 (1.06) 2.30 (1.24) 1.87 (1.01) 1.93 (1.04)
TruncatedNormal 1.36 1.98 (1.46) 1.83 (1.35) 1.98 (1.46) 2.16 (1.60) 1.38 (1.02) 1.36 (1.00)

Pareto 1.62 1.82 (1.12) 2.18 (1.34) 1.75 (1.08) 2.26 (1.39) 1.71 (1.05) 1.66 (1.03)
Uniform 1.33 2.21 (1.66) 1.90 (1.43) 1.67 (1.26) 2.21 (1.66) 1.33 (1.00) 1.33 (1.00)
Beta 1.75 2.02 (1.15) 2.11 (1.20) 1.98 (1.13) 2.45 (1.40) 1.79 (1.02) 1.80 (1.02)

BoundedPareto 1.80 1.84 (1.02) 2.09 (1.16) 1.83 (1.01) 2.81 (1.56) 2.00 (1.11) 1.91 (1.06)

Force heuristic for a Lognormal distribution3 of mean µ ≈ 8 min when the standard deviation
varies between 0 and 2µ. We see that, for this instantiation, it is always bene�cial to use RI
rather than OD when using the Brute-Force heuristic.

We now study the Brute-Force heuristic in more detail. Table 3 shows the best t1 found,
which we denote by tbf1 , and some other values of t1 at di�erent quantiles of the distributions
with their normalized costs (in brackets). First, we can see that some values of t1 can lead to
invalid sequences that are not increasing (i.e., ti+1 < ti for some i), which are indicated by null
cost values in the table. Moreover, even if the sequence is valid, compared to using tbf1 , randomly
guessing a t1 can result in a cost that is not good enough in most cases. Fig. 4 further shows the
Monte-Carlo simulations of the normalized cost of Brute-Force while trying di�erent values
of t1 in the search interval for all considered distributions. One can observe some "gaps" in
the �gure (e.g., Fig. 4a between 0.25 and 0.75), which are due to the "bad" choices of t1 that
lead to invalid sequences. Although we can sometimes extract t1's that could give a reasonable
cost (e.g., in the case of Exponential distribution, t1 = 0 results in a cost that is close to that

3Recall that we assume that job durations can obey LogNormal distribution.

Inria

Reservation Strategies for Stochastic Jobs 21

Table 3: The best tbf1 found by the Brute-Force heuristic and other values of t1 at di�erent
quantiles of the distributions with their normalized expected costs (in brackets) in the Reser-
vationOnly scenario.

Distribution tbf1 (assoc. cost)
Other values of t1 (associated cost)

Q(0.25) Q(0.5) Q(0.75) Q(0.99)
Exponential 0.73 (2.15) 0.29 (−) 0.69 (−) 1.39 (2.67) 4.61 (4.83)
Weibull 0.18 (2.12) 0.08 (2.51) 0.48 (2.35) 1.92 (3.87) 21.21 (13.49)
Gamma 1.23 (2.02) 0.48 (−) 0.84 (−) 1.35 (2.11) 3.32 (3.36)

Lognormal 29.64 (1.85) 14.34 (−) 20.09 (−) 28.14 (−) 64.28 (2.97)
TruncatedNormal 10.22 (1.36) 7.05 (−) 8.00 (−) 8.95 (−) 11.29 (1.42)

Pareto 2.59 (1.62) 1.65 (−) 1.89 (−) 2.38 (−) 6.96 (4.23)
Uniform 19.95 (1.33) 12.50 (−) 15.00 (−) 17.50 (−) 19.90 (−)
Beta 0.81 (1.75) 0.33 (−) 0.50 (−) 0.67 (−) 0.94 (1.89)

BoundedPareto 2.10 (1.80) 1.15 (−) 1.39 (−) 1.93 (−) 8.27 (4.64)

Table 4: Normalized expected costs of the two discretization-based heuristics with di�erent
numbers of samples in the ReservationOnly scenario.

Distribution
Equal-time Equal-probability

n = 10 n = 25 n = 50 n = 100 n = 250 n = 500 n = 1000 n = 10 n = 25 n = 50 n = 100 n = 250 n = 500 1000
Exponential 2.61 2.40 2.33 2.33 2.39 2.35 2.31 3.68 2.76 2.56 2.59 2.28 2.34 2.36
Weibull 17.03 7.19 4.11 3.14 2.66 2.95 2.40 15.77 7.46 5.75 4.24 3.47 2.84 2.22
Gamma 2.22 2.17 2.17 2.13 2.12 2.08 2.20 2.66 2.39 2.38 2.23 2.27 2.27 2.13

Lognormal 1.93 1.86 1.96 1.89 1.93 1.96 1.87 2.93 2.52 2.18 2.00 1.92 1.91 1.93
TruncatedNormal 1.38 1.34 1.36 1.38 1.37 1.37 1.38 1.41 1.39 1.39 1.38 1.36 1.36 1.36

Pareto 31.54 13.02 6.88 3.80 2.09 1.74 1.71 32.05 12.99 3.76 5.09 2.97 1.99 1.66
Uniform 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33
Beta 1.82 1.82 1.81 1.86 1.78 1.79 1.79 1.79 1.82 1.78 1.81 1.79 1.81 1.80

BoundedPareto 2.18 1.88 1.84 2.04 1.98 1.91 2.00 2.59 2.17 1.90 1.99 1.91 1.94 1.91

given by tbf1), it is di�cult in general to guess a good value for t1 without using a systematic
approach. We point out that more e�cient algorithms may exist to search for the best t1, but
our Brute-Force procedure takes just a few seconds to run on an Intel i7 core with M = 5000
and N = 1000, thus providing a practical solution that is close to the optimal for the problem.

Table 4 shows the performance of the two discretization-based heuristics as presented in
Section 4.2 with di�erent numbers of discrete samples. We can see that, for all distributions
considered, the normalized costs of both heuristics improve as we increase the number n of
samples. The performance converges and gets close to that of Brute-Force when n = 1000,
despite the di�erences in the convergence rate under di�erent distributions and discretization
schemes (Equal-time and Equal-probability). Again, both heuristics take just a few seconds
to run on an Intel i7 core, and the results provide good approximate solutions to the problem
with su�cient samples.

5.3 Results for NeuroHpc scenario

We now present the evaluation results for theNeuroHpc scenario when using a real job execution
time distribution under an HPC cost model. The distribution (shown in Fig. 1b) is generated
from the execution traces of a neuroscience application (VBMQA [4]). It follows a LogNormal
law with parameters (µ = 7.1128, σ = 0.2039) obtained by �tting the execution time data to
the distribution curve, and this gives a mean of µd = 1253.37s ≈ 0.348 hour and a standard
deviation of σd = 258.261s ≈ 0.072 hour. The average waiting time function (shown in Fig. 2b)
is obtained by analyzing the logs from 20 groups of jobs run on 409 processors of Intrepid [22]
with di�erent reservation requests. We get an a�ne function with parameters (α = 0.95, γ =
3771.84s ≈ 1.05 hour) obtained also by curve �tting. The execution time parameter is set to
β = 1.

RR n° 9211

22 Aupy, Gainaru, Honoré, Raghavan, Robert and Sun

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t1

2.0

2.5

3.0

3.5

4.0

4.5

5.0

N
or

m
al

iz
ed

E
xp

ec
te

d
C

os
t

(a) Exponential Distribution

0 2 4 6 8 10 12 14 16
t1

0

2

4

6

8

10

12

14

N
or

m
al

iz
ed

E
xp

ec
te

d
C

os
t

(b) Weibull Distribution

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
t1

0

2

4

6

8

10

12

N
or

m
al

iz
ed

E
xp

ec
te

d
C

os
t

(c) Gamma Distribution

0 50 100 150 200 250 300
t1

0

2

4

6

8

10

12

14

16

N
or

m
al

iz
ed

E
xp

ec
te

d
C

os
t

(d) Lognormal Distribution

0 2 4 6 8 10 12 14 16
t1

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

N
or

m
al

iz
ed

E
xp

ec
te

d
C

os
t

(e) TruncatedNormal Distribution

0 1 2 3 4 5 6
t1

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

N
or

m
al

iz
ed

E
xp

ec
te

d
C

os
t

(f) Pareto Distribution

0 5 10 15 20
t1

1.330

1.332

1.334

1.336

1.338

1.340

N
or

m
al

iz
ed

E
xp

ec
te

d
C

os
t

(g) Uniform Distribution

0.0 0.2 0.4 0.6 0.8 1.0
t1

1.7

1.8

1.9

2.0

2.1

2.2

2.3

N
or

m
al

iz
ed

E
xp

ec
te

d
C

os
t

(h) Beta Distribution

0 1 2 3 4 5 6 7
t1

1.5

2.0

2.5

3.0

3.5

4.0

4.5

N
or

m
al

iz
ed

E
xp

ec
te

d
C

os
t

(i) BoundedPareto Distribution

Figure 4: Monte-Carlo simulations of the normalized costs of the Brute-Force heuristic with
di�erent values of t1 in the ReservationOnly scenario under all considered distributions.

Figure 5 plots the normalized expected costs of di�erent heuristics in this scenario. To eval-
uate the robustness of the results, we also vary the distribution parameters so that its mean
and standard deviation are increased by up to a factor of 10 from their original values4, i.e.,
up to µd ≈ 3.48 hours and σd ≈ 0.72 hour. We can see from the �gures that, regardless of
the parameter variations, Brute-Force and the two discretization-based heuristics (Equal-
time and Equal-probability) have very close performance, which is signi�cantly better than
the performance of the other heuristics. The results are consistent with those observed in Sec-
tion 5.2 for the ReservationOnly scenario, and altogether they demonstrate the e�ectiveness
and robustness of the proposed Brute-Force and discretization schemes for the Stochastic
problem.

4Given a desired mean µd and a standard deviation σd, the LogNormal distribution can be instantiated with

parameters σ =
√

ln((σ
d

µd
)2 + 1) and µ = ln

(
µd − σd

2

2

)
.

Inria

Reservation Strategies for Stochastic Jobs 23

0.5 1.0 1.5 2.0 2.5 3.0

Mean (hours)

0

1

2

3

4

5

N
or

m
al

iz
ed

E
xp

ec
te

d
C

os
t

BRUTE-FORCE

MEAN-BY-MEAN

MEAN-STDEV

MEAN-DOUB.
MED-BY-MED

EQUAL-TIME

EQUAL-PROB.

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Standard Deviation (hours)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

E
xp

ec
te

d
C

os
t

BRUTE-FORCE

MEAN-BY-MEAN

MEAN-STDEV

MEAN-DOUB.
MED-BY-MED

EQUAL-TIME

EQUAL-PROB.

(b)

Figure 5: Normalized expected costs of the di�erent heuristics in the NeuroHpc scenario with
di�erent values for the mean (in hours) and standard deviation (in hours) of the LogNormal
distribution (µ = 7.1128, σ = 0.2039) with α = 0.95, β = 1.0, γ = 1.05.

6 Related work

In this section, we review some related work on HPC/cloud resource scheduling and cost models,
as well as on stochastic scheduling of jobs with uncertain execution times.

HPC resource scheduling. Most schedulers for HPC systems use an iterative repetitive
algorithm triggered by state changes, such as new job submission, job starting or ending, or
timeout. They use di�erent policies to determine which job should execute when and on what
resources. Jobs are usually placed in one or multiple queues with di�erent priorities before being
scheduled onto the available resources. For example, the Slurm scheduler [28] uses two queues,
one for high-priority jobs and the other for low-priority jobs. A job is placed in a queue based
on its resource requirement, generally with long-running jobs that require a large amount of
resources having higher priorities. Jobs that are kept in the waiting queue for a long period of
time could also be upgraded and moved up in the queue. Slurm schedules the jobs from the
top of the high-priority queue and moves down. Even though larger jobs (in term of time and
space) have higher priorities, generally the lack of resource availability in the system leads to
longer wait times. On the other hand, smaller jobs, despite having lower priorities, are usually
scheduled quickly thanks to the back�lling algorithms that place them in the unused time slots
between successive large jobs.

Some studies (e.g., [18, 21, 27]) have analyzed the impact of scheduling strategies on the
performance of applications in large HPC centers. Some of these studies show that the penalty
for jobs with longer requested walltimes and/or larger numbers of nodes is higher than that for
jobs with shorter elapsed times and smaller numbers of nodes. This is observed, for example,
in [27] for the K computer from Riken Advanced Institute for Computational Science. The study
shows that, for applications requesting similar computing resources, the wait time generally
increases with larger requested processing times and can cause delays of hours for large scienti�c
applications, although it is also dependent on other workloads submitted to the system. Some
HPC centers divide the resources into seasons for users to utilize the reserved resources. Users
tend to submit more jobs toward the end of a season causing contention at the scheduler level

RR n° 9211

24 Aupy, Gainaru, Honoré, Raghavan, Robert and Sun

which results in even longer waiting times. The study in [21] presents a trend of the evolution
of the workload of HPC systems and the corresponding scheduling policies as we move from
monolithic MPI applications to high-throughput and data-intensive jobs. The paper shows that
the cost paid in terms of the wait time of applications in the queue has generally increased over
the years with less uniform workloads. The study in [18] shows that systems that give each
job a partition of the resources for exclusive use and allocate such partitions in the order of job
arrivals could su�er from severe fragmentation, leading to low utilization. The authors propose
an aggressive back�lling algorithm for dealing with such fragmentation. However, users are still
expected to provide accurate runtime estimates. The study shows that over-estimation may lead
to a long wait time and possibly excessive CPU quota loss, while under-estimations can lead
to job terminations before completion. Some recent schedulers [19] consider the distribution of
execution time of the submitted jobs to take their scheduling decision in order to increase their
overall utility.

Stochastic job scheduling. Many works deal with stochastic job scheduling (e.g., [6, 9, 23�
25]). Various models [5] have been proposed to model the performance of executing stochastic
jobs on computing platforms. For instance, in [16], stochastic jobs are modeled as a DAG of
tasks whose execution times and communication times are stochastically independent. In this
paper, we model jobs by an execution time following a probability distribution. The authors
in [23] propose a model based on resource load in grid systems. Several re�nements can be
envisioned, such that improving scheduler performances by including distribution features in
order to optimize �nal performance. Also, dealing with heterogeneous nodes increases problem
complexity [24]. We refer the reader to the book by Pinedo [20] which contains a comprehensive
survey of stochastic scheduling problems, and to the book chapter [12] for a detailed comparison
of stochastic task-resource systems.

Pricing and reservation schemes in the cloud. Cloud computing platforms have emerged
as another option for executing HPC applications. Job scheduling in the cloud has an even bigger
challenge [14], since it needs to deal with highly heterogeneous resources with a wide range of
processor con�gurations, interconnects, virtualization environments, etc.

Di�erent pricing and reservation schemes are also available for users who submit jobs to a
cloud service. Several works have been done to study these schemes in the cloud, and from a
computer science perspective, many of these studies focus on the pricing strategies and service
management of platform providers [2, 7, 8, 26]. Some works consider modeling the delays for
users [2] and how providers manage the idle resources [8]. The work in [26] studies the pricing
practices of Amazon AWS [3] when the price is dynamically adapted to real-time demand and
idle resources. In [7], authors provide an analytical model of pricing for reservation-based scheme
(used by Amazon AWS) and utilization-based scheme (used by Google GCP [13]). They show
that the e�ective price mainly depends on the variation of platform usage and the competition
for customers. Some tools are also provided for users to perform cost evaluation in order to
select which type of platform to use. They show that users with high-volatility demand should
consider using AWS o�ers while one should use GCP in the other case. Our experimental results
in this paper suggest that, compared with on-demand or utilization-based services, reservation
strategies can provide cost-e�ective options for executing stochastic jobs when there is signi�cant
di�erence in the o�ered price.

Inria

Reservation Strategies for Stochastic Jobs 25

7 Conclusion

In this paper, we have studied the problem of scheduling stochastic jobs on a reservation-based
platform. We have shown the existence of an optimal reservation sequence when the job execution
time follows a set of classical distributions, and we have characterized the optimal solution up to
the duration of the �rst reservation. We do not know how to compute this duration analytically,
but we have provided an upper bound and a brute-force procedure to generate a solution that
is close to the optimal. We have also introduced several heuristics, one based upon discretizing
the continuous distribution and some relying on standard measures, such as the mean, variance
and quantile of the distribution. We have demonstrated the e�ectiveness of these heuristics via
comprehensive simulations conducted using both classical distributions and execution traces of
a real neuroscience application.

Future work will include allowing requests with variable amount of resources, hence o�ering a
combination of a reservation time and a number of processors. Another interesting direction is to
include checkpoint snapshots at the end of some reservations. We expect the solutions such as the
one introduced in this work not to work because of the di�culty of choosing which reservations
to checkpoint. Indeed we do not expect the strategy �checkpoint all reservations� to be optimal.
Hence the checkpointing approach calls for a complicated trade-o� between doing useful work
through the reservations and sacri�cing some time/budget in order to avoid restarting the job
whenever its execution time exceeds the length of the current reservation. The cost will then
depend both on the length of the reservation and on a conditional probability based on previous
checkpointing decisions.

Acknowledgments

We thank Bennett Landman and his MASI Lab at Vanderbilt for sharing the medical imaging
database used to extract the execution time distributions. This research was supported in part by
the National Science Foundation grant CCF1719674, Vanderbilt Institutional Fund, and Inria-
Vanderbilt associated team Keystone. Part of this work was done while Valentin Honoré was
visiting Vanderbilt University.

References

[1] Medical-image Analysis and Statistical Interpretation (MASI) Lab. https://my.

vanderbilt.edu/masi/.

[2] M. Afanasyev and H. Mendelson. Service provider competition: Delay cost structure,
segmentation, and cost advantage. Manufacturing & Service Operations Management,
12(2):213�235, 2010.

[3] Amazon. AWS pricing information. https://aws.amazon.com/ec2/pricing/. Accessed:
2018-10-11.

[4] P.-L. Bazin, J. L. Cuzzocreo, M. A. Yassa, W. Gandler, M. J. McAuli�e, S. S. Bassett, and
D. L. Pham. Volumetric neuroimage analysis extensions for the mipav software package.
Journal of Neuroscience Methods, 165(1):111 � 121, 2007.

[5] L.-C. Canon, A. K. W. Chang, Y. Robert, and F. Vivien. Scheduling independent stochastic
tasks under deadline and budget constraints. Research Report 9178, INRIA, June 2018.

RR n° 9211

https://my.vanderbilt.edu/masi/
https://my.vanderbilt.edu/masi/
https://aws.amazon.com/ec2/pricing/

26 Aupy, Gainaru, Honoré, Raghavan, Robert and Sun

[6] L.-C. Canon and E. Jeannot. Evaluation and optimization of the robustness of dag schedules
in heterogeneous environments. IEEE Transactions on Parallel and Distributed Systems,
21(4):532�546, 2010.

[7] S. Chen, H. Lee, and K. Moinzadeh. Pricing schemes in cloud computing: Utilization-based
versus reservation-based. Production and Operations Management, 2017.

[8] L. Dierks and S. Seuken. Cloud pricing: the spot market strikes back. In The Workshop on
Economics of Cloud Computing, 2016.

[9] F. Dong, J. Luo, A. Song, and J. Jin. Resource load based stochastic DAGs scheduling
mechanism for Grid environment. In 2010 IEEE 12th International Conference on High
Performance Computing and Communications (HPCC), pages 197�204, Sept 2010.

[10] D. Feitelson. Workload modeling for computer systems performance evaluation. Version
1.0.3, pages 1�607, 2014.

[11] L. Friedman and G. H. Glover. Report on a multicenter fMRI quality assurance protocol.
Journal of Magnetic Resonance Imaging, 23(6):827�839, 2006.

[12] B. Gaujal and J.-M. Vincent. Comparisons of stochastic task-resource systems. In Intro-
duction to Scheduling, page Chapter 10. Springer, 2009.

[13] Google. GCP pricing information. https://cloud.google.com/pricing/. Accessed: 2018-
10-16.

[14] A. Gupta, P. Faraboschi, F. Gioachin, L. V. Kale, R. Kaufmann, B. Lee, V. March, D. Milo-
jicic, and C. H. Suen. Evaluating and improving the performance and scheduling of HPC
applications in cloud. IEEE Transactions on Cloud Computing, 4(3):307�321, July 2016.

[15] R. L. Harrigan, B. C. Yvernault, B. D. Boyd, S. M. Damon, K. D. Gibney, B. N. Conrad,
N. S. Phillips, B. P. Rogers, Y. Gao, and B. A. Landman. Vanderbilt university institute of
imaging science center for computational imaging XNAT: A multimodal data archive and
processing environment. NeuroImage, 124:1097�1101, 2016.

[16] K. Li, X. Tang, B. Veeravalli, and K. Li. Scheduling precedence constrained stochastic tasks
on heterogeneous cluster systems. IEEE Transactions on Computers, 64(1):191�204, 2015.

[17] A. Mechelli, C. J. Price, K. J. Friston, and J. Ashburner. Voxel-based morphometry of
the human brain: methods and applications. Current Medical Imaging Reviews, 1:105�113,
2005.

[18] A. W. Mu'alem and D. G. Feitelson. Utilization, predictability, workloads, and user runtime
estimates in scheduling the IBM SP2 with back�lling. IEEE Transactions on Parallel and
Distributed Systems, 12(6):529�543, June 2001.

[19] J. W. Park, A. Tumanov, A. Jiang, M. A. Kozuch, and G. R. Ganger. 3sigma: distribution-
based cluster scheduling for runtime uncertainty. In Proceedings of the Thirteenth EuroSys
Conference, page 2. ACM, 2018.

[20] M. L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer, 3rd edition, 2008.

Inria

https://cloud.google.com/pricing/

Reservation Strategies for Stochastic Jobs 27

[21] G. P. Rodrigo Álvarez, P.-O. Östberg, E. Elmroth, K. Antypas, R. Gerber, and L. Ramakr-
ishnan. HPC system lifetime story: Workload characterization and evolutionary analyses on
NERSC systems. In Proceedings of the 24th International Symposium on High-Performance
Parallel and Distributed Computing, HPDC '15, pages 57�60, New York, NY, USA, 2015.
ACM.

[22] W. Tang, Z. Lan, N. Desai, D. Buettner, and Y. Yu. Reducing fragmentation on torus-
connected supercomputers. In Parallel & Distributed Processing Symposium (IPDPS), 2011
IEEE International, pages 828�839. IEEE, 2011.

[23] X. Tang, K. Li, G. Liao, K. Fang, and F. Wu. A stochastic scheduling algorithm for
precedence constrained tasks on grid. Future Gener. Comput. Syst., 27(8):1083�1091, Oct.
2011.

[24] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Performance-e�ective and low-complexity task
scheduling for heterogeneous computing. IEEE TPDS, 13(3):260�274, March 2002.

[25] G. Weiss. Turnpike optimality of smith's rule in parallel machines stochastic scheduling.
Math. Oper. Res., 17(2):255�270, May 1992.

[26] H. Xu and B. Li. Dynamic cloud pricing for revenue maximization. IEEE Transactions on
Cloud Computing, 1(2):158�171, July 2013.

[27] K. Yamamoto and al. The K computer operations: Experiences and statistics. Procedia
Computer Science, 29:576 � 585, 2014.

[28] A. B. Yoo, M. A. Jette, and M. Grondona. Slurm: Simple linux utility for resource man-
agement. In Workshop on Job Scheduling Strategies for Parallel Processing, pages 44�60.
Springer, 2003.

RR n° 9211

28 Aupy, Gainaru, Honoré, Raghavan, Robert and Sun

A Properties of di�erent probability distributions (see Ta-
ble 5)

Numerical functions referenced in the table include:

� erf(x) = 2√
π

∫ x
0
e−t

2

dt: the error function;

� erf−1(z) = inf{x| 2√
π

∫ x
0
e−t

2

dt = z}: the inverse error function;
� Γ(x) =

∫∞
0
tx−1e−tdt: the gamma function;

� Γ(x, y) =
∫∞
y
tx−1e−tdt: the upper incomplete gamma function;

� Γ−1(x, z) = inf{y|
∫∞
y
tx−1e−tdt = z}: the inverse upper incomplete gamma function;

� B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt: the beta function.

� B(a;x, y) =
∫ a

0
tx−1(1− t)y−1dt: the incomplete beta function.

� B−1(z;x, y) = inf{a|
∫ a

0
tx−1(1− t)y−1dt = z}: the inverse incomplete beta function.

Table 5: Properties of di�erent probability distributions.

Distribution CDF: F (t) Mean: µ Variance: σ2 x-Quantile: Q(x)

Exponential (λ) 1− e−λt 1
λ

1
λ2 − ln(1−x)

λ

Weibull(λ, κ) 1− e−(tλ)
κ

λΓ(1 + 1
κ) λ2

(
Γ(1 + 2

κ)−
(
Γ(1 + 1

κ)
)2)

λ κ
√
− ln(1− x)

Gamma(α, β) 1− Γ(α,βt)
Γ(α)

α
β

α
β2

Γ−1
(
α,(1−x)Γ(α)

)
β

LogNormal
(
µ, σ2

)
1
2 + 1

2erf
(

ln t−µ√
2σ

)
eµ+σ2

2

(
eσ

2 − 1
)
e2µ+σ2

e
√

2σ·erf−1(2x−1)+µ

TruncatedNormal(µ, σ2, a)
erf
(
t−µ
σ
√

2

)
−erf

(
a−µ
σ
√

2

)
1−erf

(
a−µ
σ
√

2

) µ+ σ
√

2
π · η(a), where

η(a) = e
− 1

2 (a−µσ)
2

1−erf
(
a−µ
σ
√

2

) σ2
(
1 + a−µ

σ · η(a)− η(a)2
) µ+ σ

√
2 · erf−1 (z), where

z = x+ (1− x)erf
(
a−µ
σ
√

2

)
Pareto(ν, α) 1−

(
ν
t

)α αν
α−1 (for α > 1) αν2

(α−1)2(α−2) (for α > 2) ν
α
√

1−x

Uniform(a, b) t−a
b−a

a+b
2

(b−a)2

12 (1− x)a+ xb

Beta(α, β) B(t;α,β)
B(α,β)

α
α+β

αβ
(α+β)2(α+β+1) B−1(xB(α, β);α, β)

BoundedPareto(L,H, α) Hα(1−Lαt−α)
Hα−Lα

α
α−1 ·

HαL−HLα
Hα−Lα

(for α 6= 1)

α
α−2 ·

HαL2−H2Lα

Hα−Lα

−
(

α
α−1 ·

HαL−HLα
Hα−Lα

)2

(for α 6= 1, 2)

L
α
√

1−(1−(LH)
α
)x

Inria

Reservation Strategies for Stochastic Jobs 29

B Recursive formulas to compute sequence of reservations
for the Mean-by-Mean heuristic

In this section, we present recursive formulas to compute the sequence of reservations S =
(t1, t2, . . . , ti, ti+1, . . .) using the Mean-by-Mean heuristic for the considered distributions. As
described in Section 4.3, the heuristic computes a new reservation value ti from the previous
value ti−1 as follows:

ti = E(X|X > ti−1) =

∫∞
ti−1

tf(t)dt

1− F (ti−1)
, for all i ≥ 2 (14)

The following subsections present the derivations of the formulas for di�erent distributions, while
Table 6 summarizes results for all distributions.

Table 6: Recursive formulas to compute sequence of reservations for Mean-by-Mean.

Distribution Sequence of ti's for i ≥ 1

Exponential(λ) ti =

{
1
λ , if i = 1

ti−1 + 1
λ , otherwise

Weibull(λ, κ) ti =

λΓ
(
1 + 1

κ

)
, if i = 1

λe

(
ti−1
λ

)κ
Γ
(

1 + 1
κ ,
(
ti−1

λ

)κ)
, otherwise

Gamma(α, β) ti =

{
α
β , if i = 1
1
β

(
α+ (βti−1)αe−βti−1

Γ(α,βti−1)

)
, otherwise

LogNormal(µ, σ2) ti =

eµ+σ2

2 , if i = 1

eµ+σ2

2 ·
1−erf

(
ln ti−1−µ
σ
√

2
− σ√

2

)
1−erf

(
ln ti−1−µ
σ
√

2

) , otherwise

TruncatedNormal(µ, σ2, a) ti =

µ+ σ

√
2
π ·

e
− 1

2 (a−µσ)
2

1−erf
(
a−µ
σ
√

2

) , if i = 1

µ+ σ
√

2
π ·

e
− 1

2

(
ti−1−µ

σ

)2

1−erf
(
ti−1−µ
σ
√

2

) , otherwise

Pareto(ν, α) ti =

{
α
α−1ν, if i = 1
α
α−1 ti−1, otherwise

(for α > 1)

Uniform(a, b) ti =

{
1
2 (a+ b), if i = 1
1
2 (ti−1 + b), otherwise

Beta(α, β) ti =

{
α

α+β , if i = 1
B(α+1,β)−B(ti−1;α+1,β)

B(α,β)−B(ti−1;α,β) , otherwise

BoundedPareto(L,H, α) ti =

α
α−1 ·

H1−α−L1−α

H−α−L−α , if i = 1

α
α−1 ·

H1−α−t1−αi−1

H−α−t−αi−1

, otherwise
(for α > 1)

RR n° 9211

30 Aupy, Gainaru, Honoré, Raghavan, Robert and Sun

B.1 Exponential distribution

For Exponential (λ), substituting f(t) = λe−λt and F (t) = 1− e−λt into Equation (14), we get:

ti =

∫∞
ti−1

tλe−λtdt

e−λti−1

=
[−te−λt]∞ti−1

+
∫∞
ti−1

e−λtdt

e−λti−1
(integrating by parts)

=
ti−1e

−λti−1 + [− 1
λe
−λt]∞ti−1

e−λti−1

=
ti−1e

−λti−1 + 1
λe
−λti−1

e−λti−1

= ti−1 +
1

λ

B.2 Weibull distribution

For Weibull(λ, κ), substituting f(t) = κ
λ

(
t
λ

)κ−1
e−(tλ)

κ

and F (t) = 1−e−(tλ)
κ

into Equation (14)
and simplifying, we get:

ti =

∫∞
ti−1

κ
(
t
λ

)κ
e−(tλ)

κ

dt

e
−
(
ti−1
λ

)κ

=

∫∞(
ti−1
λ

)κ λx 1
κ e−xdx

e
−
(
ti−1
λ

)κ
(
by letting x =

(t
λ

)κ)
= λe

(
ti−1
λ

)κ
Γ

(
1 +

1

κ
,

(
ti−1

λ

)κ)
where Γ(x, y) =

∫∞
y
tx−1e−tdt denotes the upper incomplete gamma function.

B.3 Gamma distribution

For Gamma(α, β), substituting f(t) = βα

Γ(α) t
α−1e−βt and F (t) = 1 − Γ(α,βt)

Γ(α) into Equation (14)
and simplifying, we get:

ti =

∫∞
ti−1

βαtαe−βtdt

Γ (α, βti−1)

=
1

β
·

∫∞
βti−1

xαe−xdx

Γ (α, βti−1)
(by letting x = βt)

=
1

β
·
α
∫∞
βti−1

xα−1e−xdx− [xαe−x]∞βti−1

Γ (α, βti−1)
(integrating by parts)

=
1

β
· αΓ (α, βti−1) + (βti−1)αe−βti−1

Γ (α, βti−1)

=
1

β

(
α+

(βti−1)αe−βti−1

Γ(α, βti−1)

)
where Γ(x, y) =

∫∞
y
tx−1e−tdt denotes the upper incomplete gamma function.

Inria

Reservation Strategies for Stochastic Jobs 31

B.4 LogNormal distribution

For LogNormal(µ, σ2), substituting f(t) = 1
tσ
√

2π
e−

1
2 (ln t−µ

σ)
2

and F (t) = 1
2 + 1

2erf
(

ln t−µ√
2σ

)
into

Equation (14) and simplifying, we get:

ti =
1

σ

√
2

π
·

∫∞
ti−1

e−
1
2 (ln t−µ

σ)
2

dt

1− erf
(

ln ti−1−µ
σ
√

2

)
= eµ+σ2

2 ·
2√
π

∫∞
ln ti−1−µ
σ
√

2
− σ√

2

e−x
2

dx

1− erf
(

ln ti−1−µ
σ
√

2

) (
by letting x =

ln t− µ
σ
√

2
− σ√

2

)

= eµ+σ2

2 ·
2√
π

∫∞
0
e−x

2

dx− 2√
π

∫ ln ti−1−µ
σ
√

2
− σ√

2

0 e−x
2

dx

1− erf
(

ln ti−1−µ
σ
√

2

)
= eµ+σ2

2 ·
erf(∞)− erf

(
ln ti−1−µ
σ
√

2
− σ√

2

)
1− erf

(
ln ti−1−µ
σ
√

2

)
= eµ+σ2

2 ·
1− erf

(
ln ti−1−µ
σ
√

2
− σ√

2

)
1− erf

(
ln ti−1−µ
σ
√

2

)

where erf(x) = 2√
π

∫ x
0
e−t

2

dt denotes the error function.

B.5 TruncatedNormal distribution

For TruncatedNormal(µ, σ2, a), substituting f(t) = 1
σ

√
2
π ·

e
− 1

2 (t−µσ)
2

1−erf
(
a−µ
σ
√

2

) and F (t) =
erf
(
t−µ
σ
√

2

)
−erf

(
a−µ
σ
√

2

)
1−erf

(
a−µ
σ
√

2

)
into Equation (14) and simplifying, we get:

RR n° 9211

32 Aupy, Gainaru, Honoré, Raghavan, Robert and Sun

ti =
1

σ

√
2

π
·

∫∞
ti−1

te−
1
2 (t−µσ)

2

dt

1− erf
(
ti−1−µ
σ
√

2

)
=

2√
π
·

∫∞
ti−1−µ
σ
√

2

(xσ
√

2 + µ)e−x
2

dx

1− erf
(
ti−1−µ
σ
√

2

) (
by letting x =

t− µ
σ
√

2

)

=
2√
π
·
σ
√

2
∫∞
ti−1−µ
σ
√

2

xe−x
2

dx+ µ

(∫∞
0
e−x

2

dx−
∫ ti−1−µ

σ
√

2

0 e−x
2

dx

)
1− erf

(
ti−1−µ
σ
√

2

)

=
2√
π
·
σ
√

2
[
− 1

2e
−x2
]∞
ti−1−µ
σ
√

2

+ µ
√
π

2

(
erf(∞)− erf

(
ti−1−µ
σ
√

2

))
1− erf

(
ti−1−µ
σ
√

2

)

=
2√
π
·
σ
√

2

(
0 + 1

2e
−
(
ti−1−µ
σ
√

2

)2
)

+ µ
√
π

2

(
1− erf

(
ti−1−µ
σ
√

2

))
1− erf

(
ti−1−µ
σ
√

2

)
= µ+ σ

√
2

π
· e

− 1
2

(
ti−1−µ

σ

)2

1− erf
(
ti−1−µ
σ
√

2

)
where erf(x) = 2√

π

∫ x
0
e−t

2

dt denotes the error function.

B.6 Pareto distribution

For Pareto(ν, α) with α > 1, substituting f(t) = ανα

tα+1 and F (t) = 1 −
(
ν
t

)α
into Equation (14)

and simplifying, we get:

ti =
α
∫∞
ti−1

t−αdt

t−αi−1

=
α

1− α
·

[t1−α]∞ti−1

t−αi−1

=
α

1− α
·

0− t1−αi−1

t−αi−1

=
α

α− 1
ti−1

B.7 Uniform distribution

For Uniform(a, b), substituting f(t) = 1
b−a and F (t) = t−a

b−a into Equation (14), we get:

Inria

Reservation Strategies for Stochastic Jobs 33

ti =

∫ b
ti−1

t 1
b−adt

1− ti−1−a
b−a

=
b2 − t2i−1

2(b− ti−1)

=
b+ ti−1

2

B.8 Beta distribution

For Beta(α, β), substituting f(t) = tα−1(1−t)β−1

B(α,β) and F (t) = B(t;α,β)
B(α,β) into Equation (14) and

simplifying, we get:

ti =

∫ 1

ti−1
tα(1− t)β−1dt

B (α, β)− B (ti−1;α, β)

=

∫ 1

0
tα(1− t)β−1dt−

∫ ti−1

0
tα(1− t)β−1dt

B (α, β)− B (ti−1;α, β)

=
B (α+ 1, β)− B (ti−1;α+ 1, β)

B (α, β)− B (ti−1;α, β)

where B(x, y) =
∫ 1

0
tx−1(1 − t)y−1dt represents the beta function and B(a;x, y) =

∫ a
0
tx−1(1 −

t)y−1dt represents the incomplete beta function.

B.9 BoundedPareto distribution

For BoundedPareto(L,H, α), substituting f(t) = αHαLαt−α−1

Hα−Lα and F (t) = Hα(1−Lαt−α)
Hα−Lα into

Equation (14) and simplifying, we get:

ti =
αHα

∫H
ti−1

t−αdt

Hαt−αi−1 − 1

=
α

1− α
·
Hα(H1−α − t1−αi−1)

Hαt−αi−1 − 1

=
α

α− 1
·
H1−α − t1−αi−1

H−α − t−αi−1

RR n° 9211

34 Aupy, Gainaru, Honoré, Raghavan, Robert and Sun

C Extension to convex cost functions

We brie�y show that the results of this paper can be easily extended to convex cost functions.
To do so, we extend Theorem 3 and Proposition 1 in the case of a general convex cost function.

Theorem 6. Let So = (toi)i≥1 denote an optimal sequence for Stochastic. For all i ≥ 1, if toi
is not the last element of the sequence and F (toi) 6= 1, we have the following property:

G
(
toi+1

)
+ βtoi = G′ (toi) ·

1− F (toi−1)

f(toi)
+ β

1− F (toi)

f(toi)
(15)

where G (x) is a convex cost function.

The proof follows the same principle as the one for Theorem 3.

Proposition 3. For a smooth distribution with unbounded support and a convex cost function
G (x), solving Stochastic reduces to �nding to1 that minimizes

∞∑
i=0

(
G (ti+1)+βti

)
P(X ≥ ti)

where to0 = 0, and for all i ≥ 2,

toi = G−1

(
G′
(
toi−1

)
·

1− F (toi−2)

f(toi−1)
+ β

(
1− F (toi−1)

f(toi−1)
− toi−1

))
(16)

For a smooth distribution with bounded support, the recurrence in Equation (16) still holds but
the optimal sequence stops as soon as it reaches toi with F (toi) = 1.

Proof. Directly comes from rewriting Equation (15).

Inria

RESEARCH CENTRE
BORDEAUX – SUD-OUEST

200 avenue de la Vieille Tour
33405 Talence Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Framework
	Stochastic jobs
	Cost model
	Objective

	Characterizing the optimal solution
	Cost function
	Upper bound on to1 and finite expected cost
	Properties of optimal sequences
	Uniform distributions
	Exponential distributions

	Heuristics for arbitrary distributions
	Brute-force procedure
	Discretization-based dynamic programming
	Truncating and discretizing continuous distributions
	Dynamic programming for discrete distributions

	Other heuristics

	Performance evaluation
	Evaluation methodology
	Results for ReservationOnly scenario
	Results for NeuroHpc scenario

	Related work
	Conclusion
	Properties of different probability distributions (see Table 5)
	Recursive formulas to compute sequence of reservations for the Mean-by-Mean heuristic
	Exponential distribution
	Weibull distribution
	Gamma distribution
	LogNormal distribution
	TruncatedNormal distribution
	Pareto distribution
	Uniform distribution
	Beta distribution
	BoundedPareto distribution

	Extension to convex cost functions

