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Abstract

Datacenters have become an important part of today’s computing infrastructure. Recent studies
have shown the increasing importance of thermal considerations to achieve effective resource man-
agement. In this paper, we study thermal-aware scheduling for homogeneous high-performance
computing (HPC) datacenters under a thermal model that captures both spatial and temporal cor-
relations of the temperature evolution. We propose an online scheduling heuristic to minimize the
makespan for a set of HPC applications subject to a thermal constraint. The heuristic leverages
the novel notion of thermal-aware load to perform both job assignment and thermal management.
To respect the temperature constraint, which is governed by a complex spatio-temporal thermal
correlation, dynamic voltage and frequency scaling (DVFS) is used to regulate the job executions
during runtime while dynamically balancing the loads of the servers to improve makespan. Ex-
tensive simulations are conducted based on an experimentally validated datacenter configuration
and realistic parameter settings. The results show improved performance of the proposed heuristic
compared to existing solutions in the literature, and demonstrate the importance of both spatial
and temporal considerations. In contrast to some scheduling problems, where DVFS introduces
performance-energy tradeoffs, our findings reveal the benefit of applying DVFS with both perfor-
mance and energy gains in the context of spatio-temporal thermal-aware scheduling.

Keywords: HPC datacenters, thermal model, spatio-temporal correlation, thermal-aware
scheduling, makespan, energy consumption, DVFS

1. Introduction

Datacenters have become an important part of today’s computing infrastructure. With the
ever increasing power consumption and high packing density of servers, both the heat dissipated
in datacenters and the temperature have increased dramatically. High temperature is undesirable
in the operation of a datacenter for several reasons: (1) It reduces the reliability of the servers. In
particular, some studies have shown that the failure rate of computing nodes will double for every
10◦C increase in temperature [17, 38]. (2) Increased temperature induces a larger cooling cost,
which has been shown to increase nonlinearly with the temperature [27, 42]. (3) A higher tem-
perature also leads to more leakage current, which in turn increases the static power consumption
of the servers [23]. As a result, thermal management has been widely recognized as an important
technique for optimizing the application performance and reducing the energy consumption in
modern datacenters.

Modeling the thermal behavior of datacenters is an essential first step to the design of effective
thermal management techniques. The literature contains three main approaches to characterize
the thermal map of a datacenter. The first approach approximates the temperatures of the servers
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using simple analytical models, which are usually based on classical heat transfer laws and cyber-
physical properties of the datacenters [35, 42, 45]. The second approach applies complex predictive
models, which use more sophisticated techniques, such as machine learning and neural networks, to
predict the temperatures at various locations of a datacenter [26, 49]. The last approach employs
elaborate computational fluid dynamics (CFD) simulations to model the temperature evolution in
a datacenter [2, 10, 21]. Although the CFD-based approach offers the best accuracy, it is too slow
to facilitate fast and real-time decision making. In contrast, the first two approaches incur much
lower overheads while offering reasonable temperature estimates, which can be validated offline by
CFD simulations or calibrated online by ambient and onboard temperature sensors (if available).
Hence, many researchers have relied on the first two approaches for modeling the temperature in
datacenters and for designing scheduling solutions.

In this paper, we present a spatio-temporal analytical model to characterize the thermal be-
havior of datacenters, thus allowing the resource management system to make fast and online
scheduling decisions in real time. Indeed, recent studies [42, 45] have shown that the server
temperature in a datacenter exhibits both spatial and temporal correlations. Spatially, the in-
let temperatures of the servers are related to each other via a heat-distribution matrix, which
is determined by the complex airflow and heat recirculation in the datacenter. Temporally, the
temperature of each server at any time is related to both its current power consumption and its
historical temperature due to the physical law of cooling. Although the literature has considered
either model separately (see Section 2 for details), to the best of our knowledge, no previous work
has studied a holistic spatio-temporal thermal model, which is capable of providing more accurate
approximations to the datacenter thermal map. Moreover, the considered spatio-temporal model
does not require any knowledge or characteristic of the benchmarks, and conforms only to physical
laws and datacenter configurations.

Based on this spatio-temporal model, we study a thermal-aware scheduling problem for ho-
mogeneous high-performance computing (HPC) datacenters. The objective is to minimize the
makespan for a set of computation-intensive applications subject to a temperature threshold,
which cannot be violated at any time during the execution. Indeed, such a threshold is imposed
in many resource management systems for either energy reduction considerations or reliability
concerns [27, 38]. To tackle this problem, we introduce a novel notion, called thermal-aware load,
to capture more precisely the loads of the servers under the thermal constraint. We propose an on-
line scheduling heuristic that applies this notion to both job assignment and thermal management
aspects of the scheduling decision. For job assignment, we strategically choose the server to assign
each arriving job in such a way that leads to well-balanced loads (in the thermal-aware sense)
among all servers, which helps to minimize the makespan. For thermal management, we rely on
dynamic voltage and frequency scaling (DVFS) to regulate the job executions during runtime for
respecting the temperature threshold. To further improve the makespan, thermal-aware load is
again used for prioritizing the servers while applying DVFS to cope with the complex space-time
correlation of the temperature evolution. The proposed scheme guarantees to respect the thermal
threshold while reducing the makespan with low computational overhead. The use of DVFS also
allows the heuristic to significantly reduce the energy consumption.

We conduct extensive simulations to evaluate the effectiveness of our approach based on an
experimentally validated datacenter configuration and realistic parameter settings. The results
confirm that our algorithm outperforms several existing solutions in the literature, and hence
demonstrate the importance of both spatial and temporal considerations in the context of thermal-
aware scheduling. Finally, in contrast to some other scheduling problems, where DVFS introduces
performance-energy tradeoffs, our findings reveal the benefit of applying DVFS with both perfor-
mance and energy gains in the context of spatio-temporal thermal-aware scheduling.

The main contributions of this paper are summarized as follows:

• An analytical thermal model that captures both spatial and temporal behaviors of the tem-
perature evolution in datacenter environments.

• The formulation of a spatio-temporal thermal-aware scheduling problem for high-performance
computing (HPC) applications in homogeneous datacenters.
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• An online scheduling heuristic that applies the notion of thermal-aware load for both job
assignment and thermal management.

• A comprehensive set of simulations to demonstrate the effectiveness of the proposed heuristic
under a wide range of parameter settings in a realistic datacenter configuration.

Finally, we stress once again that our proposed solution works for computation-intensive jobs
and we leave the consideration of I/O-intensive and communication-intensive jobs for future work.
The rest of this paper is organized as follows. Section 2 reviews some related work on thermal
modeling and scheduling. Section 3 presents the spatio-temporal thermal model, based on which
we formulate a thermal-aware scheduling problem in Section 4. Section 5 describes our thermal-
aware scheduling heuristic. The simulation results are presented in Section 6. Finally, Section 7
concludes the paper with future directions.

2. Related Work

Many papers have studied thermal-aware scheduling in datacenters with either a spatial model
or a temporal model. In this section, we review some related work on thermal modeling and
scheduling. Interested readers can refer to [8] for a recent survey of the field.

2.1. Work on Spatial Correlation

To characterize the spatial correlation of the temperatures in a datacenter, Moore et al. [27]
first introduced the notion of heat recirculation. They also proposed “Weatherman”, a software
tool to predict the thermal profile of a datacenter by taking the topology and heat flow into
account [26]. Tang et al. [42] formally defined a heat-distribution matrix via an abstract heat flow
model, and applied it in the optimization of the cooling cost of a datacenter. This abstract spatial
model has been subsequently adopted by a series of research, and it was also successfully validated
by computational fluid dynamics (CFD) simulations in [43, 36]. Pakbaznia and Pedram [31]
considered the problem of minimizing the total energy consumption of a datacenter by performing
server consolidation while accounting for heat recirculation. Mukherjee et al. [28] considered a
similar problem while taking the temporal job placements into account (but without a temporal
thermal model). Sun et al. [41] studied performance-energy tradeoff in heterogeneous datacenters
with heat recirculation effect. They also proposed effective server placement strategies in order to
minimize the cooling cost. The latter problem was independently studied by Pahlavan et al. [30],
who utilized integer linear programming (ILP)-based methods to find the optimal location of each
server in the datacenter. By assuming specific heat recirculation patterns, Mukherjee et al. [29]
designed approximation algorithms for a couple of related thermal-aware scheduling problems.

2.2. Work on Temporal Correlation

The temporal temperature correlation has also attracted much attention. Ramos and Bian-
chini [35] presented “C-Oracle”, a software infrastructure to predict the servers’ temperatures in
a datacenter based on simple temporal models governed by heat transfer laws. Skadron et al. [39]
was the first to apply the lumped-RC model to capture the transient behavior of temperatures
in processors. They also developed “HotSpot”, a thermal modeling and simulation tool for mi-
croprocessor architectures [40]. This simple temporal model has then been widely adopted by a
lot of subsequent research. Wang et al. [45] applied the lumped RC model to predict the tem-
peratures of the servers in a datacenter in order to make workload placement decisions. Rajan
and Yu [34] relied on the same model to maintain the temperature threshold of the system by
using DVFS while maximizing the throughput. Zhang and Chatha [48] designed polynomial-time
approximation schemes for the discrete version of the problem (where there is only a discrete set of
DVFS levels) with the objective of minimizing the makespan. Yang et al. [46] proposed intelligent
ordering of the jobs based on their thermal characteristics for reducing the number of thermal
violations. Bansal et al. [6] designed competitive algorithms for the online scheduling problem of
minimizing the maximum temperature of a server subject to the deadlines of the jobs. Chrobak
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[11] proposed an online algorithm for the problem of maximizing the number of jobs that meet
their deadlines subject to a thermal threshold.

2.3. Other Work on Thermal-Aware Scheduling

Many other papers have been devoted to thermal-aware scheduling and resource management
for datacenters from different perspectives. Chavan et al. [9] proposed TIGER, a thermal-aware
technique specifically designed to reduce the cooling cost due to storage systems in datacenters.
Meng et al. [25] considered communication-bound HPC applications and studied joint optimiza-
tion of cooling and communication costs via job allocation. Pia̧tek [32] studied thermal-aware
load balancing with fan management in air-cooled server systems in order to improve the energy
efficiency. Polverini et al. [33] proposed a provably-efficient thermal-aware scheduler to dispatch
jobs across geographically distributed datacenters while taking the energy consumption (including
that due to cooling) into consideration. Abbasi and Gupta [1] considered a similar problem for
geo-distributed datacenters, but with the additional constraint of carbon capping requirement.
They proposed a predictive solution to handle the tradeoffs of energy cost and carbon footprint.
Cupertino et al. [12] provided a holistic approach, considering workload and application profiles,
power and cooling models, as well as resource management and scheduling policies while minimiz-
ing the energy consumption at different levels of a datacenter. Finally, Sarood et al. [37] proposed
thermal-aware load balancing for HPC datacenters using DVFS and implemented the algorithm
in the Charm++ runtime system. However, they considered neither heat recirculation nor the
temporal temperature evolution while minimizing the cooling energy consumption.

In this paper, we consider a spatio-temporal thermal model and an induced scheduling problem
by capturing both dimensions of the temperature correlation. To the best of our knowledge, this
is the first time such a model is studied in a datacenter environment and used by a scheduling
algorithm.

3. Spatio-Temporal Thermal Model

In this section, we present a spatio-temporal model to characterize the thermal behavior for
a set M = {M1,M2, · · · ,Mm} of m homogeneous computing nodes (or servers) in a typical
datacenter environment.

3.1. Spatial Model

Typical datacenters exhibit the heat recirculation phenomenon [27], where the hot air from the
server outlets recirculates in the room and is mixed with the supplied cool air from the Computer
Room Air Conditioning (CRAC) unit, causing the temperature at the server inlets to be higher
than that of the supplied cool air. We characterize this effect by a heat-distribution matrix [42],
which is a m-by-m matrix D and each element di,k ∈ D denotes the temperature increase at the
inlet of server Mi per unit of power consumed by server Mk. The inlet temperature T ini (t) of
server Mi at time t thus satisfies:

T ini (t) = Tsup +

m∑
k=1

di,kPk(t) , (1)

where Pk(t) denotes the power consumption of server Mk at time t and Tsup denotes the temper-
ature of the supplied air by the CRAC unit. In this paper, we assume that Tsup is fixed and leave
the investigation of varying the supplied air temperature (e.g., for cooling optimization) for future
work.

In an ideal (but unrealistic) datacenter without any heat recirculation, the heat generated by all
servers returns directly back to the CRAC unit, and the heat-distribution matrix becomes an all-
zero matrix. The inlet temperature of all nodes is then the same as the supplied air temperature.
In a typical datacenter, where the cool air is supplied through raised floors, previous research
[27, 42] has observed that the inlet temperature of servers at upper levels of the racks is affected
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Figure 1: The heat-distribution matrix of a datacenter consisting of 50 servers.

more by the power consumption of the servers at lower levels, but not the other way around.
This is because of the fact that hot air tends to move upwards. In general, the heat-distribution
matrix of a datacenter depends on the pattern of air movement, which is usually fixed for a given
datacenter configuration and physical layout.

Figure 1 plots the heat-distribution matrix of a datacenter consisting of 50 servers used for
the experimental study in Section 6. Note that the diagonal of the matrix is not zero, meaning
that the inlet temperature of a server is also affected by its own power consumption with heat
recirculation.

3.2. Temporal Model

We apply the lumped RC model [40] to characterize the temporal behavior of a computing
node’s temperature. In this model, the temperature is assumed to obey the Newton’s law of
cooling, that is, its rate of decrease is proportional to the temperature difference between the
node and the ambient environment, which in the case of a datacenter is the air from the server
inlet. The rate of temperature increase, on the other hand, is proportional to the server’s power
consumption. Let Ti(t) denote the temperature of node Mi ∈ M at time t. The overall rate of
change for Ti(t) can be described by the following ordinary differential equation:

dTi(t)

dt
= − 1

RC
(Ti(t)− T ini (t)) +

1

C
Pi(t) , (2)

where R and C denote the thermal resistance and thermal capacitance of server Mi, respectively,
Pi(t) denotes the power consumption of server Mi at time t, and T ini (t) denotes the inlet temper-
ature of server Mi at time t. We assume that time is divided into equal-length intervals, which
are called time steps, and each time step has length ∆t. Solving Equation (2), we can get the
temperature of node Mi at time t as follows:

Ti(t) =

∫ t

t−∆t

(
Pi(t

′)

C
+
T in(t′)

RC

)
e−

t−t′
RC dt′ + Ti(t−∆t)e−

∆t
RC . (3)

For simplicity, we scale the length of a time step so that ∆t = 1. Now, define f = e−
1
RC , and

suppose the inlet temperature and power consumption of node Mi are constant during time step t
or interval (t− 1, t], and they are denoted by T ini (t) and Pi(t), respectively. We can then simplify
Ti(t) as:

Ti(t) = (1− f)
(
Pi(t)R+ T ini (t)

)
+ fTi(t− 1) . (4)

According to Equation (4), the temperature of a node at any time t is affected by several fac-
tors, namely, the node’s temperature at previous time t − 1, the thermal resistance, the power
consumption as well as the inlet temperature during time step t.

Figure 2 plots the temperature variation of a server during the execution of a job alongside its
power consumption based on the thermal parameters described in Section 6.1. In this example,
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Figure 2: The temperature variation of a server with fixed inlet temperature.

the inlet temperature of the server is fixed, while, in practice, the inlet temperature could vary due
to the activities of other nodes according to the spatial model described above. While the actual
workload used in this example is not important, the point is to illustrate the temporal thermal
model by showing the temperature evolution.

3.3. Spatio-Temporal Model

The preceding two subsections presented a spatial model and a temporal model that character-
ize, respectively, the thermal behaviors of two different components in a datacenter. Specifically,
the spatial model describes the correlated behavior for the inlet temperatures of all the servers in
the room, while the temporal model describes the temperature evolution for an individual com-
puting node inside each server. Traditionally, these two different types of temperatures have not
been considered simultaneously by the literature: the inlet temperature is often linked to cooling
optimization, while the node temperature often comes as an optimization objective or constraint.
Since the two phenomena co-exist in practical datacenters and are orthogonal to each other, both
of them should be taken into account in order to accurately model the temperature evolution of
a computing node (as the temporal behavior of a computing node depends on its inlet tempera-
ture, which is in turned spatially correlated with other servers). In this subsection, we present a
spatio-temporal thermal model by combining the lumped RC model and heat recirculation model.

To this end, substituting Equation (1) into Equation (4), we get the following expression for
the temperature of computing node Mi at any time t:

Ti(t) = (1− f)

(
Pi(t)R+ Tsup +

m∑
k=1

di,kPk(t)

)
+ fTi(t− 1) . (5)

Define the steady-state temperature of node Mi at time t as

T ssi (t) = Pi(t)R+ Tsup +
m∑
k=1

di,kPk(t) . (6)

Then, we can write Ti(t) as

Ti(t) = (1− f)T ssi (t) + fTi(t− 1) . (7)

The thermal model described by Equation (7) essentially shows that the temperature evolution
of a computing node is determined by both spatial and temporal correlations. With constant
power consumption and supplied air temperature, the node’s transient temperature will converge
exponentially to the steady state after sufficiently long time. Due to heat recirculation, varying
the power consumption of any particular node may also lead to a new steady-state temperature
for all nodes.

While both spatial and temporal models have been separately studied and validated by the
literature (see Section 2), a holistic thermal model that incorporates both dimensions appears to
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be novel and has not been considered. Given the characteristics of the temperature evolution in a
datacenter, it is mandatory to consider such a model while designing effective resource management
and scheduling solutions.

4. Thermal-Aware Scheduling Problem

In this section, we consider a thermal-aware scheduling problem motivated by the spatio-
temporal thermal model for the online scheduling of high-performance computing (HPC) applica-
tions in homogeneous datacenters.

4.1. Models and Objective

We consider the scheduling of computation-intensive HPC applications (such as linear algebra
kernels: matrix multiplications or factorizations, etc.) in homogeneous datacenters. These applica-
tions arise in many scientific computing and machine learning domains, and can be implemented as
parallel jobs that execute on servers with multiple processors. Specifically, let J = {J1, J2, · · · , Jn}
denote a set of n independent jobs, and let M = {M1,M2, · · · ,Mm} denote a set of m homoge-
neous servers, where each server may contain multiple processors or cores. Each server Mi ∈ M
has a static power consumption Pstatic when it is idle. Each job Jj ∈ J is characterized by a
release time rj , a processing time (or work) wij and a dynamic power consumption pij on server
Mi. Since we assume homogeneous servers, the work and power are the same on all servers, i.e.,
wij = wj and pij = pj for all 1 ≤ i ≤ m. Jobs arrive over time in an online manner, and the
scheduler is unaware of a job before it arrives, but the work and power characteristics of the job
become known after arrival by prior profiling of the application or user estimates (e.g., based on
the size of the matrix to be factorized). We assume the moldable scheduling model [16], in which
a job upon arrival is configured to execute on all the processors of a server in parallel to minimize
the execution time with better data locality. Thus, each server is assumed to be able to host
only one job at any time for efficiency. Job migration is not allowed, as the cost associated with
migrating the job across different servers could be expensive in HPC datacenters. However, idle
time can be inserted during a job’s execution, which at times is necessary to cool the server down
so as to prevent its temperature from exceeding a critical threshold.

Dynamic voltage and frequency scaling (DVFS) is an effective technique to manage both power
and temperature on modern architectures. The dynamic power consumption of a server is well
known to be a convex function of its processing speed [7, 47]. Suppose the processing time wj
and dynamic power pj of a job Jj are measured with respect to the maximum speed smax of the
servers, which is scaled to be 1. The dynamic power consumption of a server when executing
job Jj at speed s ∈ [0, 1] can then be approximated by sαpj , where α > 1 denotes the power
parameter (usually 2 or 3 for CMOS-based processors), and the execution time of the job is wj/s.
Since practical systems only have a few discrete speeds to choose from, let S = {s0, s1, · · · , smax}
denote the set of available speeds. For convenience, we include the null speed s0 = 0 in S, which
corresponds to the server in the idle state without running any job. Let xij(t) ∈ {0, 1} be a binary
variable that takes value 1 if job Jj is executed on server Mi at time step t and 0 otherwise. Let
si(t) ∈ S denote the processing speed of server Mi at time step t. The total power consumption
of server Mi at time step t can be expressed as follows:

Pi(t) = Pstatic +

n∑
j=1

xij(t)si(t)
αpj . (8)

The temperature Ti(t) of the server at time t is governed by the spatio-temporal model presented
in the preceding section.

The completion time cj of job Jj is defined as the smallest time instance by which all the work
of the job is completed. The objective is to minimize the maximum completion time of the jobs, or
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the makespan, subject to a temperature threshold Tthresh for all servers at all time. The following
shows the optimization problem:

minimize Cmax = max
j
cj

subject to Ti(t) ≤ Tthresh,∀i, t

The temperature threshold is usually imposed by the datacenter resource management system for
the following considerations: (1) To reduce the additional energy cost (e.g., due to cooling and
linkage power) [27, 23]. (2) To reduce the failure rate of the processors for reliability concerns [38].
(3) To avoid hardware interrupt triggered by some chips when the temperature exceeds a certain
redline value, which can cause severe performance degradation and energy increase [46].

4.2. Dynamic Energy Consumption

Furthermore, we consider the dynamic energy consumed by executing the jobs as an additional
metric, which is defined as

Edyn =

∫ Cmax

0

m∑
i=1

n∑
j=1

xij(t)si(t)
αpjdt . (9)

We point out that energy is not an optimization objective in this paper; it is considered simply to
observe the impact of DVFS on the energy consumption, which can usually be traded off against
a performance metric (e.g., makespan) in many scheduling problems. In Section 6, we make the
interesting observation that makespan and energy can be improved simultaneously for the thermal-
aware scheduling problem presented above. Note that we only consider the dynamic energy due
to computing. For a fixed supplied air temperature Tsup, the literature [27, 42, 28] suggests that
reduced computing energy also leads to reduce cooling energy, thus improving the total energy
consumption. The quantitative optimization of cooling energy is out of scope of this paper, and
we leave it as future work.

4.3. Peak Power and Thermal Characterization

Based on the previously described thermal model and scheduling model, we now define the peak
power consumption of a server and derive a thermal characterization. First, since the contributions
of the supplied air and static power to the servers’ temperatures do not change over time, by scaling
the initial steady-state temperatures of the servers, we can simplify the model by setting Tsup = 0
and Pstatic = 0. According to Equation (7), the temperature of server Mi at any time t then
becomes

Ti(t) = (1− f)

(
P dyni (t)R+

m∑
k=1

di,kP
dyn
k (t)

)
+ fTi(t− 1) , (10)

where P dyni (t) denotes the dynamic power consumption of Mi at time t. We define the peak power
of any server (also known as the thermal design power) as follows.

Definition 1. The peak power P peaki of a node Mi is the maximum dynamic power that can be
consumed on the node such that the temperature threshold can be feasibly maintained, assuming the
node’s temperature starts at zero (e.g., by inserting sufficient idle time) and no cross interference

from other nodes. From Equation (10), by setting Ti(t − 1) = 0, P dynk (t) = 0 for ∀k 6= i, and by

enforcing Ti(t) ≤ Tthresh, we can get (1 − f)
(
P dyni (t)R+ di,iP

dyn
i (t)

)
≤ Tthresh. This leads to

the following expression for the peak power (or maximum dynamic power) of node Mi:

P peaki =
Tthresh

(1− f)(R+ di,i)
. (11)
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Thus, a job with dynamic power consumption above a server’s peak power cannot possibly be
scheduled using the maximum speed without violating the temperature threshold. However, the
power consumptions of practical workloads rarely exceed the thermal design power of the chips.
Furthermore, the temperature of an idle server cannot exceed the thermal threshold due to heat
recirculation alone, because the major contribution of heat still comes from local job execution.
Thus, for any server Mi at any time t, we should have

∑m
k=1 di,kP

dyn
k (t) ≤ Tthresh if P dynk (t) ≤

P peakk for all 1 ≤ k ≤ m. This implies, for any server Mi, the following property:

m∑
k=1

di,k
(1− f)(R+ dk,k)

≤ 1 . (12)

Note that Equation (12) provides a thermal characterization of a datacenter system, which should
be satisfied regardless of the workloads and scheduling strategies.

5. Spatio-Temporal Thermal-Aware Scheduling

In this section, we discuss the challenge of the thermal-aware scheduling problem and propose
a heuristic algorithm that consists in a job assignment policy and a thermal management policy
based on the novel notion of thermal-aware load.

5.1. Challenge and Strategy

The thermal-aware scheduling problem poses a complex optimization challenge due to its ther-
mal constraints from both temporal and spatial dimensions. The offline version of this problem
contains the classical multiprocessor makespan scheduling problem, which is known to be NP-hard
[18], as a special case. Hence, the thermal-aware problem is NP-hard as well. In this paper, we
focus on the online version of this problem. Besides the usual constraint that job arrival infor-
mation is not available to the scheduler a priori, the following describes two additional challenges
faced by the design of a scheduling solution because of the thermal constraints.

• From the temporal point of view, the thermal threshold may prevent the (full-speed) execu-
tion of a power-intensive job on a node at certain time steps.

• From the spatial point of view, the execution of a local job may also be restricted by the
cross interference from other nodes due to heat recirculation.

In particular, the second challenge requires the local scheduling decisions on each node to be
made with a more global perspective. To cope with the challenges, we complement conventional
scheduling with a thermal management policy, which uses DVFS to resolve any potential conflict
that may arise when the servers execute simultaneously their jobs. Specifically, we design policies
for the following two aspects of the scheduling problem.

• Job assignment : Decides to which server each arrived job should be assigned. The assigned
jobs are maintained in a local queue Qi for each server Mi. Each server has a load (commonly
referred to as the sum of the work of all the jobs currently in its local queue). Since the
loads are generally different on different servers due to the diversity in the jobs’ work, this
policy will strategically choose a server to assign each job so that more balanced loads can
be achieved, which helps to minimize the makespan.

• Thermal management : Decides at which speed each server should execute its local jobs
during each time step in order to respect the temperature threshold. This policy may reduce
the speed of, or even completely idle, a server. In the latter case, the temperature threshold
of the node is guaranteed to be respected because of the thermal characterization described
in Section 4.3. Note that, because of the speed adjustment, the makespan is also indirectly
affected by the thermal management policy.
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5.2. Thermal-Aware Load

We first introduce the notion of thermal-aware load, based on which the scheduling decisions
are performed. The following gives the relevant definitions.

Definition 2. The critical power P criti of a node Mi is the dynamic power that can be continuously
consumed on the node, such that the steady-state temperature does not violate the temperature
threshold, assuming no cross interference from other nodes. From the thermal model given by
Equation (7) and by setting Tsup = 0 and Ti(t− 1) = Ti(t), we get

P criti =
Tthresh
R+ di,i

. (13)

Note the difference between the peak power of a node given in Equation (11) and the critical power
given in Equation (13). The former may require inserting idle times during the execution in order
to respect the temperature threshold, while the latter could maintain the threshold without idle
times. Both quantities assume no interference from other nodes.

Definition 3. The critical speed scritij of executing job Jj on node Mi is the largest available speed
in S to run the job such that the critical power of the node is not exceeded, i.e.,

scritij = max
{
s ∈ S : sαpj ≤ P criti

}
, (14)

where pj denotes the full-speed power consumption of job Jj.

Intuitively, the critical speed represents the fastest continuous speed a job can be completed on

a node. If the value scritij obtained above is 0, the critical speed is then defined as scritij = α

√
P criti

pj
,

whose value is not in S but ensures that the notion of thermal-aware work below is properly
defined. In this case, the critical speed can be approximated by alternating the job execution
between a higher speed and a lower speed in S.

Definition 4. The thermal-aware work wTij(t) of job Jj on node Mi at any time t is the time to
execute the remaining work of the job using the critical speed, i.e.,

wTij(t) =
wj(t)

scritij

, (15)

where wj(t) denotes the remaining work of job Jj at time t.

Definition 5. The thermal-aware load LTi (t) of node Mi at any time t is the sum of the thermal-
aware work of all the jobs currently in its local queue, i.e.,

LTi (t) =
∑
Jj∈Qi

wTij(t) . (16)

In contrast to the thermal-aware load, the traditional definition of a server’s load is the sum of
the work (unit-speed execution time) of the jobs assigned to it. In this context, we can adapt the
traditional load definition by the following one using the sum of the jobs’ remaining work, and we
call it work-based load.

Definition 6. The work-based load LWi (t) of node Mi at any time t is the sum of the remaining
work of all the jobs currently in its local queue, i.e.,

LWi (t) =
∑
Jj∈Qi

wj(t) . (17)
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Algorithm 1 Job Assignment Policy

Input: newly arrived jobs during (t− 1, t], and existing load Li(t) of each server Mi ∈M at time t
Output: job assignment decision for time step t + 1
1: if new jobs arrived then
2: for each arrived job Jj do
3: i∗ = 0 and Lmin =∞
4: for i = 1 to m do
5: if Li(t) + wij(t) < Lmin then
6: Lmin = Li(t) + wij(t) and i∗ = i
7: end if
8: end for
9: assign job Jj to node Mi∗

10: update Li∗(t) = Li∗(t) + wi∗j(t)
11: end for
12: end if

Note that the term “load” is used in both definitions to follow the literature convention. It also
enables a generic approach to design job assignment and thermal management policies presented
shortly in the next two subsections. We point out that both load definitions do not take the cross
interference of the servers into account, thus can not guarantee exact prediction on the actual
execution time of a job. This would require knowledge of interaction among all servers at all time
steps, which is very difficult (if not impossible) to model with tractable complexity.

Compared to the work-based load, however, thermal-aware load is able to provide a more
relevant measure of a server’s actual load in the thermal-aware context, and therefore better ap-
proximates the time to execute the jobs without interference from the other servers. An important
contribution of our thermal-aware scheduling heuristic is to apply the concept of thermal-aware
load to make scheduling decisions in both job assignment (Section 5.3) and thermal management
(Section 5.4). The limitation of neglecting cross interference is handled by thermal management
policy, which prioritizes the servers based on their thermal-aware loads, and dynamically adjusts
priorities and speed assignments during runtime by incorporating the cross interference.

5.3. Job Assignment Policy

Algorithm 1 presents the generic job assignment policy, which is invoked at time t (the be-
ginning of time step t + 1) for all t ∈ Z≥0. Specifically, if there are newly arrived jobs during
the previous time step t, the policy assigns each new job to a server that results in the smallest
cumulative load, which shares the same spirit as the well-known LIST scheduling algorithm [19]
for homogeneous servers or the HEFT scheduling algorithm [44] for heterogeneous servers. Job
assignment policy is also commonly referred to as load balancing policy in the literature.

An interesting feature of the policy lies in its generality in a sense that different notions of
“load” can be applied for job assignment. Depending on the specified “load”, the part of the
pseudocode highlighted in red (Lines 5, 6 and 10) can be replaced by the corresponding definition.
For example, in case of thermal-aware load, we have Li(t) = LTi (t) and wij(t) = wTij(t). If

work-based load is used instead, we have Li(t) = LWi (t) and wij(t) = wj(t).
The complexity of assigning each job is linear in the number m of servers. If thermal-aware

load is used, the complexity is O(m logK), where K = | S | denotes the number of available speeds
in S. This is due to the computation of the job’s critical speed on each server by performing a
binary search on the list of speeds.

5.4. Thermal Management Policy

Algorithm 2 shows the thermal management policy, which applies DVFS to regulate the tem-
peratures of the servers during their execution. First, the servers are prioritized according to their
current loads: heavier load implies higher priority. In the pseudocode (Line 1), γ(·) denotes a
permutation of the servers sorted in the non-increasing order of load at time t. Again, as in the
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Algorithm 2 Thermal Management Policy

Input: local queue Qi, temperature Ti(t) and load Li(t) of each server Mi ∈M at time t
Output: thermal management decision for time step t + 1
1: sort the servers in non-increasing order of load, i.e., Lγ(1)(t) ≥ Lγ(2)(t) ≥ · · · ≥ Lγ(m)(t)
2: for i = 1 to m do
3: compute T̂i(t + 1) = Tthresh−f ·Ti(t)

1−f
4: end for
5: for i = 1 to m do
6: if Qγ(i) 6= ∅ then

7: compute server Mγ(i)’s power slack P̂γ(i)(t + 1) = min

(
T̂γ(1)(t+1)

dγ(1),γ(i)
, · · · , T̂γ(i−1)(t+1)

dγ(i−1),γ(i)
,
T̂γ(i)(t+1)

R+dγ(i),γ(i)

)
8: find largest speed s ∈ S that satisfies s ≤ α

√
P̂γ(i)(t+1)

pj
, where pj is the full-speed power consump-

tion of the first job Jj ∈ Qγ(i), and set sγ(i)(t + 1) = s

9: update T̂γ(i)(t + 1) = T̂γ(i)(t + 1)− sαpjR
10: for k = 1 to m do
11: update T̂k(t + 1) = T̂k(t + 1)− sαpjdk,γ(i)
12: end for
13: end if
14: end for

job assignment policy, the notion of “load” is also generic here: either thermal-aware load LTγ(i)(t)

or work-based load LWγ(i)(t) can be applied (highlighted in red).
In the event of potential conflict, the policy will try to maintain faster speed for servers with

higher priority (thus heavier load) while reducing the speed of low-priority servers. Intuitively,
this strategy provides better dynamic load balancing during runtime so as to minimize the overall
execution time. Specifically, the strategy relies on the following concepts.

Definition 7. The temperature slack T̂i(t) of node Mi in any time step t is the remaining steady-
state temperature allowed on the node so as to respect the temperature threshold.

Definition 8. The power slack P̂i(t) of node Mi in any time step t is the remaining power con-
sumption allowed on the node so as to respect the temperature slacks of all nodes.

For each node Mi, the algorithm computes its temperature slack T̂i(t+1) for the next time step
t+1 based on the temporal thermal model (Lines 2-4). In particular, by solving Ti(t+1) ≤ Tthresh
from Equation (7), we can get

T ssi (t+ 1) ≤ Tthresh − f · Ti(t)
1− f

= T̂i(t+ 1) . (18)

Since the steady-state temperature is related to the power consumptions of all servers based on the
spatial thermal model (see Equation (6)), the temperature slack of a server will drop as jobs start
to be assigned. The goal is to maximize the execution speeds (so as to maximize the throughput),
while keeping the temperature slacks nonnegative for all servers. To this end, servers are considered
one by one in the prioritized order, so that a high-priority server receives speed assignment first,
which helps to dynamically balance the loads of all servers during runtime. Hence, it is possible for
a high-priority server to delay the execution of a low-priority one, but not the other way around.

For each server Mγ(i), the algorithm computes its power slack P̂γ(i)(t + 1) (Line 7), based
on the temperature slack of the server itself as well as those of the higher priority servers, i.e.,
Mγ(1), · · · ,Mγ(i−1). These servers are considered because they have already received speed assign-
ments, and we need to ensure that their temperature slacks will not become negative due to the
new speed assignment for server Mγ(i). The lower priority servers, i.e., Mγ(i+1), · · · ,Mγ(m) need
not be considered, since no speed has been assigned to them yet for this time step. Hence, the
characteristic of the system (Equation (12)) guarantees that their temperatures will not exceed
the threshold (or equivalently, their temperature slacks will not be negative).
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From the spatio-temporal thermal model (Equation (6)), we know that the power consumption
of server Mγ(i) affects its own temperature slack through thermal resistance R and the temperature
slacks of all the nodes (including itself) through heat-distribution matrix D. Therefore, to keep

the thermal slacks nonnegative, the power slack P̂γ(i)(t+ 1) must satisfy the following constraints
simultaneously:

T̂γ(i)(t+ 1) ≥
(
R+ dγ(i),γ(i)

)
P̂γ(i)(t+ 1) , (19)

T̂γ(k)(t+ 1) ≥ dγ(k),γ(i)P̂γ(i)(t+ 1), ∀1 ≤ k < i . (20)

Hence, the power slack P̂γ(i)(t+ 1) is given by

P̂γ(i)(t+ 1) = min

(
T̂γ(1)(t+ 1)

dγ(1),γ(i)
,
T̂γ(2)(t+ 1)

dγ(2),γ(i)
, · · · ,

T̂γ(i−1)(t+ 1)

dγ(i−1),γ(i)
,
T̂γ(i)(t+ 1)

R+ dγ(i),γ(i)

)
. (21)

To execute the current job in the local queue Qγ(i), the processing speed of server Mγ(i)

is then set to be the largest one in the set of available speeds such that the resulting power
consumption does not exceed the power slack (Line 8). Finally, the temperature slacks are updated
by considering the contributions of actual power consumption of server Mγ(i) to itself by convection
(Line 9) and to all the nodes by heat recirculation (Lines 10-12).

The complexity of this procedure is dominated by the computation of power slack and the
update of temperature slack for each server, which takes O(m2) time. As a typical time step in
HPC servers is in the order of milliseconds or seconds, the overhead to compute the scheduling
decisions is in practice negligible in front of the job executions for current common datacenters.

Remark. We point out that both job assignment and thermal management policies presented
above can be generally applied to processors without DVFS. In this case, the set S of available
speeds contains only two values, i.e., {0, 1}. Hence, each server either executes a job with the full
speed or is left completely idle during a time step. The dynamic energy consumption will not be
affected by the scheduling heuristics, and is simply given by the total dynamic energy of all jobs
executed in full speed, i.e., Efulldyn =

∑n
j=1 wjpj .

5.5. An Illustrating Example

We now use a simple example to illustrate the performance of the thermal-aware scheduling
heuristic. This example applies the same experimental settings presented in Section 6.1. Specifi-
cally, the effective temperature threshold is Tthresh = 60◦C (after discounting the static tempera-
ture), the thermal parameters are R = 0.7, f = 0.5, and there are 4 non-idle speeds for the servers:
s1 = 0.6, s2 = 0.733, s3 = 0.866, s4 = 1. However, we consider only two servers M = {M1,M2}
and a 2 × 2 heat-distribution matrix whose elements are all 0.1. We point out that practical
datacenters should have more servers and the values of the heat-distribution matrix are usually
much smaller (see Figure 1). Here, we consider two servers for the ease of illustration and the
values of the matrix are amplified to demonstrate the cumulative effect of cross interference from
multiple servers. A set of four jobs J = {J1, J2, J3, J4} are released one after another, with work
w1 = 10, w2 = 9, w3 = 9, w4 = 10, and dynamic power p1 = 50, p2 = 150, p3 = 150, p4 = 50.

To better understand the scheduling framework, we apply both thermal-aware load and work-
based load in the job assignment (JA) and thermal management (TM) policies. This leads
to four heuristics, namely, JA(W)+TM(W), JA(W)+TM(T), JA(T)+TM(W), JA(T)+TM(T),
where “W” means work-based load is used in the corresponding policy and “T” means thermal-
aware load is used. Figure 3 depicts the scheduling decisions made by each heuristic, together
with the execution speed, dynamic power consumption and temperature of each server at any
time during execution. In this example, we assume that all jobs must start at an integer time
instance. We note that, due to the relatively low power consumption of jobs J1 and J4, their
initial thermal-aware load at time 0 is the same as the work-based load of 10. For jobs J2 and J3,
although they have a smaller work-based load of 9, because of the high power consumption, the
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(a) JA(W)+TM(W)
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(b) JA(W)+TM(T)
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(c) JA(T)+TM(W)
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(d) JA(T)+TM(T)

Figure 3: A simple example with two servers and four jobs to illustrate the performance of four different scheduling
heuristics. The red line in each figure represents the evolution of temperature with time, and the bars represent
the power consumption. The color of each bar corresponds to the speed used at that time step.

thermal-aware load is larger, which is more than 12.1 All heuristics assign J1 to M1 and then J2

to M2. Their differences are in the assignments of J3 and J4, as well as the priorities of M1 and
M2 at runtime. The following explains the decisions made by each of the four heuristics as well
as the calculations of the runtime parameters (i.e., temperature slack, power slack).

JA(W)+TM(W). Figure 3(a) shows that this heuristic assigns J3 to M2, which has a smaller work-
based load at the time of assignment, and finally assigns J4 toM1. During the initial execution (i.e.,
the first step), higher priority is given to M1 due to its higher work-based load (10+10 = 20 v.s.
9+9=18), despite the fact that M2 has a higher thermal-aware load (10+10=20 v.s. 12.28+12.28 =
24.56). According to Algorithm 2, the temperature slacks of the two servers are first calculated as

T̂1(1) = T̂2(1) = Tthresh
1−f = 60

0.5 = 120. The power slack ofM1 is then calculated as P̂1(1) = T̂1(1)
R+d1,1

=

120
0.7+0.1 = 150 and its execution speed is chosen to be s1(1) = 1 < 3

√
P̂1(1)
p1

= 3

√
150
50 = 3

√
3. After

that, the temperature slacks of the two servers are updated as T̂1(1) = T̂1(1)−s1(1)3p1(R+d1,1) =

1The thermal-aware loads wT11(0) and wT12(0) of jobs J1 and J2 on server M1 at time t = 0 are computed as

follows. From Definition 2, the critical power of M1 is given by P crit1 = 60
0.7+0.1

= 75. Given the two jobs’ power

consumptions p1 = 50 and p2 = 150 as well as the set of available speeds {0, 0.6, 0.733, 0.866, 1}, the critical speeds of
J1 and J2 on M1 can be shown to be scrit11 = 1 and scrit12 = 0.733, respectively, according to Definition 3. The initial

thermal-aware loads of the two jobs on M1 are therefore computed as wT11(0) = 10
1

= 10 and wT12(0) = 9
0.733

≈ 12.28
based on Definition 4. The corresponding values for the other job-server pairs can be similarly computed.
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120 − 50 · (0.7 + 0.1) = 80 and T̂2(1) = T̂2(1) − s1(1)3p1d2,1 = 120 − 50 · 0.1 = 115. The power

slack of M2 is then calculated as P̂2(1) = min
(
T̂1(1)
d1,2

, T̂2(1)
R+d2,2

)
= min

(
80
0.1 ,

115
0.7+0.1

)
= 143.75,

and its execution speed is chose to be s2(1) = 0.866 < 3

√
P̂2(1)
p2

= 3

√
143.75

150 ≈ 0.986. Hence,

M2 executes with a lower speed rather than at the full speed during the first time step. Since
all decisions are made without considering thermal-aware load, this heuristic leads to a fairly
unbalanced completion time between the two servers, and results in a makespan of 26.

JA(W)+TM(T). This heuristic, as shown in Figure 3(b), makes the same job assignment decision
as JA(W)+TM(W), but runs server M2 with higher priority, due to its consideration of thermal-
aware load for thermal management. This is reflected by the full execution speed and high power
consumption of M2 at the first step of the execution, which raises the temperature of the server
to the threshold. The following shows the detailed calculation of the runtime parameters during
the first step. As in the previous heuristic, the initial temperature slacks of the two servers are

T̂1(1) = T̂2(1) = 120. The power slack of M2 is first calculated as P̂2(1) = T̂2(1)
R+d2,2

= 120
0.7+0.1 = 150

and its execution speed is s2(1) = 1 ≤ 3

√
P̂2(1)
p2

= 3

√
150
150 = 1. The temperature slacks of the

two servers are then updated as T̂1(1) = T̂1(1) − s2(1)3p2d1,2 = 120 − 150 · 0.1 = 105 and

T̂2(1) = T̂2(1)− s2(1)3p2(R+ d2,2) = 120− 150 · (0.7 + 0.1) = 0. The power slack of M1 becomes

P̂1(1) = min
(

T̂1(1)
R+d1,1

, T̂2(1)
d2,1

)
= min

(
105

0.7+0.1 ,
0

0.1

)
= 0, so its execution speed is s1(1) = 0. As a

result, M1 is not able to run any job during this step and has to be left idle; otherwise the thermal
threshold of M2 will be violated due to cross interference. Compared to the previous heuristic,
the makespan of this heuristic is improved to 25.

JA(T)+TM(W). Figure 3(c) shows that this heuristic further improves the makespan to 24, be-
cause it achieves a better balancing of the loads of the two servers by considering thermal-aware
load in the first place. In particular, J3 is assigned to M1 instead of M2, thus avoiding executing
two jobs with high thermal-aware load on the same server. The execution of the first step turns
out to be the same as the JA(W)+TM(W) heuristic, and the temperatures of the two servers at
the end of the first step are given by T1(1) = 24.87 and T2(1) = 41.47 (again, after discounting
the static temperature of 40◦C). However, this heuristic uses work-based load for thermal man-
agement, so it gives higher priority to M2 after the first step as M2 has a higher work-based load
remaining (18 v.s. 18.134). The temperature slacks, power slacks and execution speeds of the
two servers at the second step can be calculated similarly as before and are omitted here. Note
that, due to cross interference, an idle slot has to be inserted at the second execution step of M1,
because the temperature slack T2(2) and power slack P2(2) of M2 at that step are again both 0.
This results in delayed overall execution, as M1 in fact has a larger thermal-aware load at this
point.

JA(T)+TM(T). The above problem of the JA(T)+TM(W) heuristic can be avoided by utilizing
thermal-aware load to make both scheduling decisions, as shown in Figure 3(d). In particular, after
the first time step, although M1 has completed more work, it has a larger remaining thermal-aware
load. Hence, JA(T)+TM(T) gives higher priority to M1, which avoids delaying its execution and
eventually leads to the best makespan of 23 among the four heuristics.

This example, albeit simple, confirms the superiority of thermal-aware load in contrast to the
work-based load for making job assignment and thermal management decisions. It also demon-
strates the importance of spatio-temporal awareness as considered in Algorithm 2 for meeting
temperature constraint in the thermal-aware scheduling context. The next section will rely on
simulations to further evaluate the performance of these heuristics at a larger scale.

6. Performance Evaluation

In this section, we conduct simulations to evaluate the performance of the proposed thermal-
aware scheduling algorithm and to compare it with the traditional work-based scheduling under
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various parameter settings.

6.1. Simulation Settings

We simulate a datacenter with m = 50 servers using a heat-distribution matrix shown in
Figure 1, which has been experimentally validated [43] and used in several previous studies [42,
28, 41]. Following the settings in [24], the processors inside the servers have five discrete (including
idle) speeds, which are normalized to be S = {0, 0.6, 0.733, 0.866, 1}. The power parameter is set
to be α = 3 according to the well-adopted cube-root model [7]. The thermal resistance (with
unit ◦C/Watt) depends on the cooling and packaging of the processors, and is typically in the
range of 0.3-1.5 [48]. We set it to be R = 0.7. The thermal capacitance (with unit Joule/◦C) is
proportional to the thickness and area of the processor die [40]. The literature usually considers
the RC constant, which is in the order of milliseconds or seconds [40, 46]. Since the length of a

time step is in the same order, we set the factor f defined in Equation (4) to be f = e−
∆t
RC = 0.5.

This is consistent with the values observed in the literature [40, 46].
Following the guidelines of American Society of Heating, Refrigerating, and Air-Conditioning

Engineers (ASHRAE) [5], the supplied air temperature is set to be Tsup = 25◦C. The maximum
temperature of the chips (also known as junction temperature) is between 85◦C and 100◦C as
shown in [14], and we set it to be 100◦C. The static power of the processors varies from chip
to chip, but it is typically in the range of 10-30Watt. With the chosen thermal resistance, it
contributes 15◦C to the temperature of each processor. Therefore, the temperature of an idle server
is 25◦C+15◦C = 40◦C. According to the simplification of the model (Section 4.3), the temperature
threshold after discounting the static temperature is given by Tthresh = 100◦C− 40◦C = 60◦C.

The processing time of the jobs follows exponential distribution, which is commonly used to
model service demands in computer systems [22, 15]. In our experiment, the mean processing
time is set to be 300 time steps. Suppose that each time step takes milliseconds or seconds to
run (incorporating the overhead to compute the scheduling decisions and to adjust the processor
speeds). The average processing time ranges from a few seconds to tens of minutes, corresponding
to the length of typical HPC applications. The dynamic power consumption of the jobs is uniformly
distributed in (0, Ppeak), where Ppeak = mini P

peak
i is derived from Equation (11) with the thermal

parameters defined above.
In the simulations, we will also vary these parameters to study their impacts. Specifically, from

Section 6.3.2 to Section 6.3.5, we change the processing time distributions and power consumption
ranges, adjust the DVFS settings and heat-distribution matrices, and vary the thermal parameters
(R and f) in order to evaluate their impacts on the performance of the scheduling heuristics.

6.2. Evaluated Heuristics

In the simulations, we evaluate and compare the performance of four heuristics mentioned
in Section 5.5, as well as two other heuristics that are commonly applied in the literature. The
following describes the evaluated heuristics in detail.

• JA(W)+TM(W): Makes both job assignment and thermal management decisions using work-
based load.

• JA(W)+TM(T): Makes job assignment decision using work-based load and makes thermal
management decision using thermal-aware load.

• JA(T)+TM(W): Makes job assignment decision using thermal-aware load and makes thermal
management decision using work-based load.

• JA(T)+TM(T): Makes both job assignment and thermal management decisions using thermal-
aware load.

• RR+Random: Uses the Round Robin (RR) policy for job assignment, and uses the Random
policy for thermal management, i.e., by prioritizing the servers in an arbitrary/random order.

• Coolest : Makes both job assignment and thermal management decisions by favoring the
server whose current temperature is the lowest [27, 42, 41].
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Figure 4: Performance comparison of various scheduling heuristics under different number of jobs.

6.3. Simulation Results

We now present the simulation results, all of which are obtained by averaging 50 runs with
different work and power values randomly generated from the respective distributions.

6.3.1. Performance comparison of different heuristics

Figure 4 presents the simulation results as the number of jobs is varied from 1000 to 9000.
The makespan is normalized by Clbmax = 1

m

∑n
j=1 wj , which is a theoretical lower bound even

when all jobs are executed at full speed. First, we can see that the two heuristics RR+Random
and Coolest perform much worse than the other heuristics in terms of makespan. This is because
RR+Random does not consider the actual (thermal-aware) loads of the servers when making
both scheduling decisions, and Coolest considers only the current temperatures of the servers but
ignores the balancing of the system load in the long run. As a result, both heuristics lead to
very unbalanced loads among the servers, and thus fare poorly for makespan. In contrast, the
other four heuristics have much better performance. Specifically, the normalized makespan of the
thermal-aware heuristic JA(T)+TM(T) improves with the load of the system, while the work-
based heuristic JA(W)+TM(W) is less sensitive to the load. In particular, the thermal-aware
heuristic improves makespan by up to 10% at medium to heavy load, most of which is due to
thermal management. The results confirm the advantage of using thermal-aware load as the load
indicator, especially when making dynamic thermal management decisions.

In the subsequent experiments, we will not consider the RR+Random and Coolest heuristics,
due to their poor performance. Furthermore, we will only focus on the medium workload scenario
with 5000 jobs.

6.3.2. Sensitivity to processing time distribution and power consumption range

Some studies that analyze real workload logs in supercomputing centers have shown that
the processing time distributions of some parallel jobs are in fact heavy-tailed [15]. Therefore,
besides the exponential distribution, we test the sensitivity of the results by using a heavy-tail
distribution as well as two other distributions that appeared in the scheduling literature for the
job processing times. Specifically, the following distributions are used in the experiments: uniform
[4, 3], uniform-log [13, 15] and bounded-pareto (heavy-tail) [20, 3, 15]. We experiment with these
distributions with the same mean processing time of 300, while setting the lower bound to 60, the
upper bound to 1200, and the pareto index to 3 for bounded-pareto distribution. Furthermore, we
also experiment with jobs that have different power consumption ranges. Specifically, besides the
full range (0, Ppeak), we also consider the low range (0, Pcrit), the high range (Pcrit, Ppeak), and

the medium range
(
Pcrit

2 ,
Pcrit+Ppeak

2

)
, where Pcrit = 1

m

∑m
i=1 P

crit
i denotes the average critical

power of all nodes.
Figure 5 shows the normalized makespan of four heuristics. We can see that their relative

performance is barely affected by the processing time distribution, and the thermal-aware heuristic
maintains its advantage for all distributions. The power consumption range has a more interesting
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(a) Job work distribution (b) Power consumption range

Figure 5: Impact of job work distributions and power consumption ranges on the makespan of different heuristics.

impact on the makespan. For the low range, the power of the jobs is small enough such that they
can be safely executed even without thermal management. In fact, the critical speeds of all the
jobs in this case become the full speed of the servers, and the thermal-aware load is equivalent
to the work-based load. Thus, all heuristics have the same performance, which is very close to
the theoretical lower bound. When the jobs’ power is in the medium or high range, the critical
speeds of the jobs are reduced, since thermal management becomes essential to maintaining the
temperature threshold. Naturally, the makespan of all heuristics degrades. Compared to the full
range, however, the performance gap among different heuristics is also smaller. The reason is
because the critical speeds of the jobs, although reduced, fall again in a similar range, which in
turn makes the ratios of thermal-aware loads similar to those of work-based loads. The results
show that the thermal-aware heuristic offers the best performance when the jobs exhibit a large
variation on the power consumption.

In the rest of the experiments, we will not consider the two mixed heuristics JA(W)+TM(T)
and JA(T)+TM(W). Instead, we will just focus on the purely work-based heuristic JA(W)+TM(W)
and purely thermal-aware heuristic JA(T)+TM(T) in order to demonstrate the advantage of using
thermal-aware load under other parameter settings.

6.3.3. Impact of DVFS

We study how DVFS affects the makespan as well as the energy consumption, which is nor-
malized by the total dynamic energy Efulldyn =

∑n
j=1 wjpj of all jobs when executed at full speed.

Figure 6(a) shows the result for JA(W)+TM(W) and JA(T)+TM(T) with and without using
DVFS. For both heuristics, using DVFS improves the makespan by more than 65% and at the
same time improves the dynamic energy by about 20%. In contrast to many scheduling problems,
where the use of DVFS results in a tradeoff between performance and dynamic energy, the thermal-
aware scheduling problem benefits from DVFS for the two otherwise conflicting objectives. The
reason is because, by reducing the execution speeds, DVFS enables the computing nodes to respect
the thermal threshold, to decrease the energy consumption, and at the same time to provide bet-
ter dynamic load balancing, which directly translates to improvement in makespan. The results
reinforce the usefulness of DVFS in the context of thermal-aware scheduling with simultaneous
performance and energy gains.

In another experiment, we change the number of intermediate DVFS levels between the null
speed 0 and full speed 1, and observe its impact on the performance. To be coherent with the
existing setting, the lowest non-zero speed is always set to be 0.6, and the different intermediate
speeds are equally spaced in [0.6, 1]. Note that the existing setting, i.e., {0, 0.6, 0.733, 0.866, 1},
corresponds to having 3 intermediate DVFS levels, and having 0 intermediate level means that
DVFS is not used. We can see from Figure 6(b) that the makespan improves dramatically by
having at least two DVFS levels due to the flexibility to execute the jobs with higher intermediate
speeds but not at the full speed. Having additional DVFS levels, however, does not seem to improve
the makespan further. This is because, as more speed levels are available, higher execution speeds
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Figure 6: Impact of DVFS on the makespan and energy of thermal-aware heuristic JA(T)+TM(T) and work-based
heuristic JA(W)+TM(W).
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Figure 7: Impact of heat-distribution matrix on the makespan and energy of thermal-aware heuristic JA(T)+TM(T)
and work-based heuristic JA(W)+TM(W).

tend to be used. And when the speeds become sufficiently high, the cross interference among the
servers as well as the temporal correlation of the servers’ temperature will prevent the jobs from
being executed continuously under such high speeds. Hence, idle times or lower execution speeds
must be inserted in order to respect the thermal threshold, which adversely affects the makespan.
On the other hand, the energy consumption also improves significantly by starting to use DVFS,
but after that, it increases with the number of DVFS levels. Again, this is because more jobs can
be feasibly executed with higher intermediate speeds, and using higher speeds means consuming
more energy due to the convexity of the power function.

6.3.4. Impact of heat-distribution matrix

We now study the impact of heat-distribution matrix on the performance of the scheduling
heuristics. First, we compare the experimentally validated matrix from [43] with a random matrix,
which has the same average cross-interference factor dmean = 1

m2

∑m
i=1

∑m
k=1 di,k, but whose

elements are uniformly generated in the range [0, 2dmean]. Figure 7(a) shows the result. We can
see that the random matrix renders a slightly worse performance for both heuristics, but the
relative performance of the two heuristics are unaffected by the matrix of choice.

Next, we vary the original matrix by scaling its elements by a factor of c, which varies from 1/8
to 32, thus representing different levels of cross interference in the datacenter. The result is shown
in Figure 7(b). When the cross interference is weak (small c), thermal management becomes less
important in the scheduling decision, which according to the discussion in Section 6.3.1 is a key
policy to influence the makespan. Hence, both heuristics have similar performance. When the
cross interference is too strong (large c), thermal-aware load is no longer sufficient to characterize
the priorities of the servers. Hence, the makespan of both heuristics is again similar and the energy
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Figure 8: Impact of factor f and thermal resistance R on the makespan and energy of thermal-aware heuristic
JA(T)+TM(T) and work-based heuristic JA(W)+TM(W).

increases due to increased makespan. The result demonstrates that the thermal-aware heuristic
has the best relative performance compared to the work-based one with moderate levels of cross-
interference among servers, which is practically the case in most realistic datacenters.

6.3.5. Impact of thermal parameters

Finally, We study the impact the thermal parameters on the performance of the scheduling
heuristics. Specifically, we vary factor f from 0.1 to 0.9 and vary thermal resistance R from 0.3
to 1.5. Note that, in our simulation, the power consumption of the jobs changes in accordance
with the thermal parameters (see Equation (11)), which is true in practice since even the same
job would consume different amount of power on different processors or architectures (thus having
different thermal behaviors).

Figure 8 shows the results for the two heuristics JA(W)+TM(W) and JA(T)+TM(T). First, the
increase of factor f increases the jobs’ power consumption, which strengthens the cross-interference
effect of the servers, and hence increases the makespan. However, increasing the thermal resistance
R reduces the power, weakens the cross interference, and thus decreases the makespan. The
makespan gap of the two heuristics is relatively stable, except for very large values of f , in which
case the cross interference becomes so strong that the thermal-aware load alone is not sufficient
to define the priorities of the servers. However, since a large f would imply a very high value
of thermal resistance or thermal capacitance, this situation is unlikely to happen according to
the practical values of thermal parameters [40]. Lastly, the energy consumed by both heuristics
is always very similar, suggesting that the speed scaling patterns are largely determined by the
power profiles of the jobs, which are decided by the thermal parameters but are independent of
the scheduling heuristics. The result shows that the performance of the thermal-aware heuristic is
consistent on practical datacenter systems with different thermal parameters.

7. Conclusion and Future Work

In this paper, we studied a thermal-aware scheduling problem for homogeneous high-performance
computing datacenters. We presented a spatio-temporal thermal model that captures both dimen-
sions of the temperature evolution in datacenters. We proposed a scheduling algorithm with both
job assignment and thermal management policies based on the notion of thermal-aware load and
dynamic voltage and frequency scaling. By means of simulations, we have shown that the proposed
algorithm outperforms the existing heuristics in the literature on an experimentally validated dat-
acenter configuration over a wide range of parameter settings. The results also confirm the benefits
of using DVFS in the context of thermal-aware scheduling.

The thermal model and scheduling algorithm presented in this paper can be readily extended
to heterogeneous datacenter environments, where the execution time and power consumption of
the jobs are server dependent. Such heterogeneity may arise from the use of heterogeneous servers
or from processor variations. For future work, we plan to extend the scheduling problem to
include cooling cost and static power in the optimization, which have been shown to contribute
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significantly to the total energy consumption of today’s datacenters. While computation-intensive
applications are the focus of this paper, many HPC applications running in modern datacenters
are accessing a massive amount of data. Hence, another important direction is to consider I/O-
intensive or communication-intensive applications by incorporating the cost associated with data
movement in the scheduling framework.
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