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Abstract: With proliferation of multi-core computers and multiprocessor systems, an imminent challenge
is to efficiently schedule parallel applications on these resources. In contrast to conventional static scheduling,
adaptive schedulers that dynamically allocate processors to jobs possess good potential for improving processor
utilization and speeding up job’s execution. In this paper, we focus on adaptive scheduling of malleable jobs with
periodic processor reallocations based on parallelism feedback of the jobs and allocation policy of the system. We
present an efficient adaptive scheduler Acdeq that provides parallelism feedback using an adaptive controller
A-Control and allocates processors based on the well-known Deq (Dynamic Equi-partitioning) algorithm.
Compared to A-Greedy, an existing adaptive scheduler that experiences feedback instability thus incurs un-
necessary scheduling overheads, we show that A-Control achieves much more stable feedback among other
desirable control-theoretic properties. Furthermore, we analyze algorithmically the performances of Acdeq in
terms of its response time and processor waste for an individual job as well as makespan and total response time
for a set of jobs. To the best of our knowledge, Acdeq is the first multiprocessor scheduling algorithm that
offers both control-theoretic and algorithmic guarantees. We further evaluate Acdeq via simulations by using
Downey’s parallel job model augmented with internal parallelism variations. The results confirm its improved
performances over Agdeq, and they show that Acdeq excels especially when the scheduling overhead becomes
high.

Keywords: Adaptive scheduling, competitive analysis, control-theoretic analysis, malleable parallel jobs,
multiprocessors, non-clairvoyant scheduling, parallelism feedback, stability, two-level scheduling

1 Introduction

With proliferation of multi-core computers and increasing use of multiprocessor systems, more software appli-
cations are designed to execute on multiple processors. How to efficiently schedule these parallel applications
to fully exploit the multiprocessor resources has therefore become an imminent challenge. Conventional ap-
proaches to scheduling parallel jobs with a fixed number of processors (called static scheduling) can often cause
processor wastes and job execution delays if the job’s parallelism varies with time. In fact, many parallel jobs
can be executed with a variable number of processors during their execution lifetime, and they are referred to as
malleable jobs [20]. Adaptive scheduling that periodically adjusts processor allocations to malleable jobs hence
has the apparent benefits of improving processor utilization and speeding up jobs’ execution.

The two-level framework [1,20,24] has provided a convenient approach for adaptive scheduling on multipro-
cessors. Specifically, the scheduling of malleable jobs by a two-level adaptive scheduler is divided in two distinct
levels and the processors are periodically reallocated after each scheduling quantum based on the interaction of
the two levels. Within each quantum, a task scheduler at the job level schedules the tasks of each job, and based
on the job’s execution provides feedback to the system indicating its processor desire, an estimated number of
processors the job requires, for the next quantum. At the system level, an OS allocator decides the processor
allocation for each job in the next quantum according to the desires of all jobs and the system allocation policy.
Since information about jobs’ characteristics is generally unavailable, the challenge is for the task scheduler and
the OS allocator to make feedback and allocation decisions in an online non-clairvoyant fashion [16,24,38], i.e.,
without assuming jobs’ release time, work requirement and future parallelism, etc.

Under this two-level framework, Agrawal et al. [1] proposed a task scheduler A-Greedy that provides
parallelism feedback to the system for each job in a scheduling quantum using a simple multiplicative-increase
multiplicative-decrease strategy. They analyzed the performance of A-Greedy for an individual job and showed
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that it is efficient in terms of the job’s response time and processor utilization. He et al. [24] later showed that
A-Greedy can be coupled with Deq (Dynamic Equi-partitioning) OS allocator [37,48] to achieve competitive
performances in terms of makespan and total response time for a set of jobs.

Despite its good theoretical performances, simple analysis of A-Greedy also reveals certain problems
in terms of the transient response of its processor desires. In particular, due to the multiplicative-increase
multiplicative-decrease strategy, A-Greedy suffers from desire instability and hence possible instability in al-
location, even when the job’s parallelism stays constant. (See Sections 3 and 5 for elaboration.) The unstable
problem can cause potential difficulties in managing the processor resources, such as unnecessary processor
waste and job execution delays as well as excessive reallocation overheads and loss of localities, etc., which tend
to become worse with increased job parallelism.

In this paper, we present an efficient yet stable task scheduler called A-Control under the same two-level
framework. Unlike A-Greedy, which responds to the job’s parallelism variations in a discrete manner by a
multiplicative factor each time, A-Control calculates its processor desires continuously based on principles
from control theory, which has been previously applied to scheduling real-time systems [35, 40] and designing
computing applications [28]. In particular, we show using control-theoretic analysis that the processor desires
calculated by A-Control is able to achieve much improved transient and steady-state performances that
A-Greedy fails to attain.

We further prove from algorithmic perspective the performances of the two-level adaptive scheduler Acdeq,
which combines task scheduler A-Control with OS allocator Deq, in terms of response time and processor
waste for a single job as well as makespan and total response time for a set of jobs. While the results in [1,24] are
obtained by modeling a malleable job as a directed acyclic graph (dag) and restricting A-Greedy to execute
the tasks of the job in a greedy manner [6, 23], in this paper, we choose the parallelism profile model [8, 14, 31]
for malleable jobs. As shown in [13,14,26], the two models have no fundamental difference in demonstrating the
algorithmic performances of an adaptive scheduler, the profile model, however, allows us to focus on processor
desire calculation, which is the key aspect of task scheduling, without restriction on the specific execution
strategy. In the preliminary version [47] of this paper, we nevertheless showed that similar results can be
derived by modeling a job as a dag.

In our analysis, we make use of two intrinsic job characteristics, namely the work and the span, which
represent the total amount of time to execute a job with one processor and an infinite number of processors of
unit speed, respectively [1, 6, 24]. Moreover, we identify another job characteristic, which we call the transition
factor, to characterize the variation of a job’s average parallelism between two consecutive quanta. We will
formally define the transition factor in Section 6. Intuitively, it indicates the inherent difficulty to adaptively
schedule a malleable job in a non-clairvoyant fashion. We argue that this factor better reflects a scheduler’s
performance, hence it should be incorporated into the analysis. The following summarizes our main results:

• A-Control achieves good transient and steady-state performances in terms of its processor desire cal-
culation. Specifically, the processor desires satisfy bounded-input bounded-output (BIBO) stability, zero
steady-state error, zero overshoot, and user-configurable convergence rate v, where 0 ≤ v < 1.

• Acdeq completes any job Ji in a set J of jobs with work wi, span li, and transition factor Ci on P

processors of speed s in Rs(Ji) ≤ 2wi

sP
+ Ci+1−2v

s(1−v) li time, and wastes no more than Xs(Ji) ≤ Ci(1−v)
1−Civ

wi

processor cycles, where P = P/ |J | denotes the equal share of processors for each job in the job set and
v < 1/Ci denotes the convergence rate.

• Acdeq achieves for any job set J makespan of Ms(J ) ≤
(

C+1−2Cv
1−Cv + C+1−2v

1−v

)

M∗s (J ) on speed s

processors, where M∗s (J ) denotes the makespan of the optimal scheduler on processors of the same speed,
C denotes the maximum transition factor of all jobs in J , and v < 1/C denotes the convergence rate.
Moreover, using resource augmentation [30,41], we show that on processors of speed s, where s = 4+ ǫ for

any ǫ > 0, Acdeq also achieves total response time of Rs(J ) ≤
(

2 + 10+2C−12v
ǫ(1−v)

)

R∗1(J ), where R∗1(J )
denotes the total response time of the optimal scheduler on unit-speed processors.

Comparing with Agdeq [1, 24, 46], these algorithmic bounds of Acdeq suggest that it tends to perform
better when jobs have slow parallelism variations, and hence small transition factors. We confirm our analysis by
further conducting simulations using malleable jobs generated from Downey’s model [15] and augmented with a
set of internal parallelism variations. The results show that task scheduler A-Control indeed possesses much
improved transient and steady-state performances than A-Greedy on these parallelism variations. Moreover,
Acdeq also demonstrates its superior performances in terms of the algorithmic metrics over a wide range of
workloads, especially when the scheduling overhead becomes high.
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The rest of this paper is organized as follows. Section 2 formally introduces the scheduling model and
the objective functions. Section 3 briefly reviews A-Greedy task scheduler. Section 4 introduces Acdeq

two-level adaptive scheduler. Section 5 provides the control-theoretic analysis of A-Control, followed by the
algorithmic analysis of Acdeq in Section 6. Our simulation results are presented in Section 7. Section 8 reviews
some related work, and Section 9 concludes the paper.

2 Models and Objectives

We model a malleable job using parallelism profile [8,13,31], which specifies the number of processors the job can
effectively utilize at any time during its execution. Adopting the notations in [16, 17], a job can have multiple
phases of speed up functions. In this paper, we assume that each phase has a linear speedup function up to a
certain degree of parallelism, beyond which no further speedup can be gained. Specifically, we consider a set
J = {J1, J2, . . . , Jn} of n jobs to be scheduled on P processors. Each job Ji contains ki phases 〈J1

i , J
2
i , . . . , J

ki

i 〉,
and each phase Jk

i has an amount of work wk
i , which represents the amount of time to execute the phase with

a single unit-speed processor, as well as a linear speedup function Γk
i up to parallelism hk

i , where hk
i ≥ 1. The

span lki of phase Jk
i , which represents the amount of time to execute the phase with hk

i or more processors

of unit speed, is therefore lki = wk
i /h

k
i . The total work wi of job Ji is given by wi =

∑ki

k=1 w
k
i , and the total

span li of the job is li =
∑ki

k=1 l
k
i . Suppose that at time t job Ji is in its k-th phase and is allocated ai(t)

processors of speed s, then its effective speedup or execution rate is given by Γk
i (ai(t)) = ai(t)s if ai(t) ≤ hk

i

and Γk
i (ai(t)) = hk

i s if ai(t) > hk
i . While this model of execution applies to any algorithm, the only difference

between two task schedulers thus lies in their strategies to calculate processor desires, which are the key aspects
that essentially differentiate their performances.

A schedule for any set J of jobs specifies the number ai(t) of processors allocated to each job Ji at any time
t. In order for the schedule to be valid, we require that at any time t the total processor allocation is not more
than the total number of processors, i.e.,

∑n
i=1 ai(t) ≤ P . Let ri denote the release time of job Ji. Without

loss of generality, we assume that the first job in the job set is released at time 0. Let cki denote the completion
time of the k-th phase of job Ji, and let ci = cki

i denote the completion time of job Ji. We also require that
a valid schedule must complete all jobs in finite amount of time and cannot begin to execute a phase of a job

unless it has completed all its previous phases, i.e., ri = c0i < c1i < . . . < cki

i < ∞, and
∫ cki
ck−1

i

Γk
i (ai(t))dt = wk

i

for all 1 ≤ k ≤ ki.
The objectives include both individual job performances and job set performances. In particular, for each

job Ji, we bound its response time Rs(Ji) and processor waste Xs(Ji) on speed s processors, where the response
time is the duration between the job’s release and completion, i.e., Rs(Ji) = ci − ri, and the processor waste is
the total processor allocations to the job that are not utilized to do useful work, i.e., Xs(Ji) =

∫∞

0
(ai(t)s) dt−wi.

For a job set J , we analyze its makespan Ms(J ) and total response time Rs(J ) on speed s processors, where
the makespan is the completion time of the last completed job in the job set, i.e., Ms(J ) = maxJi∈J ci, and
the total response time is the sum of response time from all jobs in the job set, i.e., Rs(J ) =

∑

Ji∈J
Rs(Ji).

While response time and processor waste are bounded in terms of job characteristics such as work and
span, makespan is bounded in terms of performance of the optimal scheduler using competitive analysis [7].
An online scheduler is said to be c-competitive in terms of makespan if Ms(J ) ≤ c ·M∗s (J ) holds for any job
set J , where Ms(J ) and M∗s (J ) denote the makespan of job set J scheduled by the online scheduler and the
optimal, respectively, both on speed s processors. For total response time, we employ resource augmentation
analysis [30, 41], which equips the online scheduler with extra-speed processors than the optimal. Specifically,
let Rs(J ) denote the total response time of job set J scheduled by the online scheduler using speed s processors,
where s > 1, and let R∗1(J ) denote the total response time of job set J scheduled by the optimal using unit-
speed processors. Then, the online scheduler is said to be s-speed c-competitive in terms of total response time
if Rs(J ) ≤ c · R∗1(J ) holds for any job set J .

In addition, for a two-level adaptive scheduler, we also study the transient and steady-state performances in
terms of certain control-theoretic properties of its processor desire calculation, which include stability, steady-
state error, overshoot and convergence. We will formally introduce these properties when we present the
control-theoretic analysis in Section 5. Basically, they capture the quality of feedback generated by the adaptive
scheduler in response to the job’s parallelism variations, which will affect the practical performance of the
algorithm.
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3 Revisit Task Scheduler: A-GREEDY

We briefly review A-Greedy task scheduler proposed by Agrawal et al. [1] to schedule individual malleable jobs.
In particular, the processor desires of A-Greedy are calculated using a multiplicative-increase multiplicative-
decrease strategy based on the job’s execution characteristics in the previous quantum.

Let tq denote the time when scheduling quantum q starts. The work wi(q) completed for job Ji in quantum q

is given by wi(q) =
∫ tq+L

tq
Γkt

i (ai(q))dt, where kt is the phase job Ji is executing at time t, ai(q) is the processor

allocation of the job in quantum q and L is the quantum length. Job Ji is said to be efficient in quantum
q if work wi(q) completed is at least δ fraction of the maximum amount of work that can be done in the
quantum, i.e., wi(q) ≥ δai(q)sL, where 0 < δ < 1 is called the utilization parameter ; otherwise it is inefficient
if wi(q) < δai(q)sL. Furthermore, the job is said to be satisfied in quantum q if its processor allocation ai(q)
is at least the processor desire di(q), i.e., ai(q) ≥ di(q); otherwise, it is deprived if ai(q) < di(q). Based on the
efficient-inefficient classification and the satisfied-deprived classification, the processor desire di(q +1) of job Ji
in the next quantum q + 1 is calculated as follows:

di(q + 1) =







di(q) · ρ if efficient and satisfied,
di(q)/ρ if inefficient,
di(q) if efficient and deprived,

where ρ > 1 is the responsiveness parameter.
The rationale of A-Greedy is that it attempts to exploit the correlation between the parallelism of a job

in two adjacent quanta, though the existence of such correlation is not explicitly assumed. Specifically, if the
allocated processors in quantum q are not utilized efficiently, then the parallelism of the job may not be as high.
Therefore, the processor desire will be reduced by a factor of ρ for the next quantum q + 1. If the allocated
processors are utilized efficiently and the processor desire is satisfied, then the parallelism of the job could be
even higher. Thus, the processor desire will be increased by a factor of ρ. Lastly, if the allocated processors are
utilized efficiently but the desire is deprived, then it is not known whether the processors could still be efficiently
utilized had the desire been satisfied. Therefore, the processor desire is not changed for the next quantum.

It is not difficult to see, however, that if the parallelism of the job is indeed correlated, e.g., if the parallelism
stays constantly at a certain level for sufficiently long time, then the processor desires of A-Greedy tend to
become unstable as it oscillates around the target parallelism. The instability may cause much degradation in
the actual performance of A-Greedy due to the extra context switching overheads and loss of locality, etc. In
this paper, we aim at an improved task scheduling algorithm that will mitigate the problem.

4 Stable Two-level Scheduler: ACDEQ

We propose a two-level adaptive scheduler Acdeq, which combines a task scheduler A-Control with the OS
allocator Deq [37, 48]. In particular, A-Control calculates the processor desires for a job using an adaptive
controller that maintains the job’s desire stability among other control-theoretic properties. In this section, we
describe Acdeq in detail.

Fig. 1 shows the feedback control structure of Acdeq for an individual job Ji. In each quantum q, the
output of A-Control is the processor desire di(q). The desire is sent to OS allocator Deq, which gives job Ji
a processor allotment ai(q) based on the desires of all jobs as well as its allocation policy. During quantum q,
job Ji is executed with ai(q) processors while the work wi(q) completed and the span li(q) reduced for the job
are collected. Specifically, let tq denote the time quantum q starts, then the quantum work wi(q) is given by

wi(q) =
∫ tq+L

tq
Γkt

i (ai(q))dt, and the quantum span li(q) is given by li(q) =
∫ tq+L

tq
Γkt

i (ai(q))/h
kt

i dt, where kt is

the phase job Ji is executing at time t and L is the quantum length. The quantum average parallelism Ai(q)
is therefore Ai(q) = wi(q)/li(q). The output yi(q) is defined as yi(q) = di(q)/Ai(q), and it is compared with
the reference fi(q) to produce an error term ei(q) = fi(q) − yi(q), which is used by the adaptive controller to
calculate the processor desire di(q + 1) for quantum q + 1. The controller applies the following integral control
law [28]:

di(q + 1) = di(q) +Ki(q + 1)ei(q), (1)

where Ki(q+1) denotes the controller gain for quantum q+1 and it determines how aggressively the controller
responds to the job’s parallelism. Note that the controller adjusts the processor desire based on the desire and
the error of the previous quantum, and it is adaptive because the gain Ki(q + 1) is reset for each quantum
based on the measurement Ai(q) and some performance specifications. In the next section, we will present
these specifications and show how to set the controller gain from control-theoretic perspective. As with A-

Greedy [1], the processor desire of job Ji in its first quantum is set to 1. Moreover, to ease our analysis,
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Figure 1: Feedback control structure of Acdeq.

we assume that the jobs are much larger compared to the quantum length, and each job is only released and
completed at the beginning of a quantum.1

Following the terminologies in [1], we define some notions. Firstly, a job Ji is said to be satisfied in quantum
q if its processor allocation is at least its processor desire, i.e., ai(q) ≥ di(q); otherwise, if ai(q) < di(q), job Ji
is deprived. In addition, job Ji is said to be over-allocated in quantum q if its processor allocation is more than
its average parallelism in the quantum, i.e., ai(q) > Ai(q); otherwise, the job is under-allocated if ai(q) ≤ Ai(q).
Finally, job Ji is said to be accounted in a quantum if it is both deprived and under-allocated; otherwise, the
job is deductible if it is either satisfied or over-allocated. Furthermore, we extend the concepts of accounted,
deductible, etc. from quantum to time. For instance, job Ji is said to be accounted at time t if the job is
accounted in the quantum which contains t.

Now, we briefly describe the Deq (Dynamic Equi-Partitioning) OS allocator [37,48], which is well known for
its efficiency and fairness to allocate processors to jobs [8,14,24]. Deq is a variants of Equi (Equi-partitioning)
that divides the total number of processors equally among all active jobs at any time. In Deq, however, if a
job desires fewer processors than the equal share, it will not be allocated more processors than its desire, and
the remaining processors will instead be given to the other jobs with higher desires. Let J (t) denote the set
of active jobs at time t when quantum q begins. Based on the processor desires from all jobs in J (t), Deq

allocates the processors as follows:

1. if |J (t)| = 0, then return;

2. if ∀Ji ∈ J (t), di(q) > P/ |J (t)|, then ∀Ji ∈ J (t), ai(q) = P/ |J (t)|, and return;

3. else let J ′(t) = {Ji ∈ J (t) : di(q) ≤ P/ |J (t)|}. ∀Ji ∈ J ′(t), ai(q) = di(q). Update J (t) = J (t) − J ′(t)
and P = P −∑Ji∈J

′(t) ai(q). Goto Step 1.

In this paper, as in [8, 14, 16, 17, 24], we assume that the number of processors allocated to a job can be
non-integral. The fractional allocation is considered as time-sharing a processor with other jobs. Moreover,
from the pseudocode of Deq, we can see that if a job is deprived, then its processor allocation is at least the
initial equal share P/ |J (t)|.

5 Control-Theoretic Analysis

The adaptive controller shown in Fig. 1 dynamically adjusts its controller gain based on the time-varying
parallelism of the job and is referred to as self-tuning regulator [5] in control theory. In this section, we determine
how the controller gain can be set for each scheduling quantum via control-theoretic analysis. Basically, we
transform the system into z-domain, and employ pole placement strategy [28] by considering a set of transient
and steady-state performance specifications, which directly apply to the scheduler when the job’s average
parallelism is constant (e.g., the job does not experience phase transitions). When the job’s average parallelism
changes (e.g., by making a transition from one phase to the next), our analysis will apply anew to the scheduler
with respect to the job’s new average parallelism. In case that the job’s parallelism changes continuously,
these specifications are unfortunately no longer applicable. In Section 7, we will empirically study the transient
response of A-Control under such scenarios using a few generic forms of parallelism variations.

Now, we focus on the scenario with constant average parallelism for a job. Assume that job Ji’s average
parallelism is Ai at some time, and it will stay constantly at Ai for sufficiently long. The controller gain Ki,
which depends on the value of Ai, will also stay constant in the mean time. Ideally, the processor desire should

1If a job is released or completed in the middle of a quantum, the performance bounds will increase by at most a constant
additive factor.
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Figure 2: Transient and steady-state behaviors of (a) A-Control (b) A-Greedy.

match the job’s average parallelism for a quantum to be efficient. Hence, the reference fi(q) of our scheduler
is set to 1 in all quanta, which corresponds to a unit-step function. Thus, we can represent the Reference,
A-Control and Execution shown in Fig. 1 in z-domain as follows:

• Reference: Fi(z) = z/(z − 1).

• A-Control: Gi(z) = Di(z)/Ei(z) = Ki/(z − 1).

• Execution: Si(z) = Yi(z)/Di(z) = 1/Ai.

The closed-loop transfer function of the system can be derived accordingly as

Ti(z) =
Yi(z)

Fi(z)
=

Gi(z)Si(z)

1 +Gi(z)Si(z)
=

Ki/Ai

z − (1−Ki/Ai)
. (2)

Clearly, the closed-loop is a first-order system with single pole p = 1 −Ki/Ai. We adopt the following set
of criteria [28] commonly used in control theory to place the pole by setting the value of controller gain Ki.

• BIBO-Stability. The system is bounded-input bounded-output (BIBO) stable if given a bounded reference,
the processor desire is also bounded.

• Steady-State Error. The steady-state error is given by the difference between the processor desire and the
job’s average parallelism after sufficiently long time, i.e., at steady state.

• Maximum Overshoot. The maximum overshoot is the maximal difference between the transient processor
desire and its steady-state value.

• Convergence Rate. The convergence rate v indicates the speed at which the processor desire approaches
the job’s average parallelism, and is defined to be v = maxq (|di(q + 1)−Ai|/|di(q)−Ai|).

Note that these four criteria directly apply to the output yi(q) of the closed-loop system. However, since
yi(q) is defined to be yi(q) = di(q)/Ai(q) and the average parallelism Ai(q) of the job is assumed to be constant
for the period of consideration, the criteria also specify the transient and steady-state performances of the
processor desire. We show that A-Control has good performance in terms of these criteria in the following
theorem.

Theorem 1 Suppose that A-Control schedules a job Ji whose average parallelism stays constantly at Ai for
sufficiently long time. If the controller gain is set to Ki = (1− v)Ai, where v ∈ [0, 1), then the processor desires
satisfy (1) BIBO-stability, (2) zero steady-state error, (3) zero overshoot, and (4) convergence rate v.

Proof. Using rules established in control theory [28], we prove the theorem based on the pole position in
z-plane, which is p = 1 −Ki/Ai = 1− (1− v) = v. For a first-order system to be BIBO-stable, the pole needs
to be within the unit circle, which is satisfied since |p| = |v| < 1. Applying Final Value Theorem [28] on output
yi(p), we get limq→∞ yi(q) = limz→1(z − 1)Yi(z) = 1. Hence, it has zero steady-state error. For a first-order
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system to have zero overshoot, the pole needs to be nonnegative. Finally, the convergence rate of a first-order
system is exactly given by the value of its pole, which is independent of quantum q.

Since the average parallelism Ai(q) is measured for each quantum q ≥ qi, where qi is the first quantum for
job Ji, the controller gain based on Theorem 1 is set to Ki(q) = (1− v)Ai(q− 1) for q > qi. Substituting it into
(1), we get the following relation on the processor desire:

di(q) =

{

vdi(q − 1) + (1− v)Ai(q − 1) if q > qi,
1 if q = qi,

(3)

which is essentially the strategy for calculating the processor desire for each quantum. Note that v is a design
parameter of A-Control and can be configured differently for each job, but in this paper we assume that it
is set uniformly for all jobs. Of course, a special case is when the convergence rate is set to v = 0. This gives
the fastest rate of convergence, or one-quantum convergence. The resulting processor desire for each quantum
q is then equal to the job’s average parallelism in the previous quantum, i.e., di(q) = Ai(q − 1).

Fig. 2 compares the behaviors of A-Control and A-Greedy over several phases of a synthetic job. The
quantum length in this case is set to 1, and is scaled in the figure to restore the original parallelism of the job.
The convergence rate v of A-Control is set to 0.2. The responsiveness parameter ρ of A-Greedy is set to 2,
and its utilization parameter δ is set to 0.8. As we can see, A-Control satisfies good transient and steady-state
performances in each phase of the job while A-Greedy suffers from apparent desire oscillation, nonzero steady-
state error and overshoot. Other choices of the parameter values will result in similar behaviors of the two
algorithms. For example, varying the value of v will only change the convergence rate of A-Control without
affecting its other control-theoretic properties, such as stability. For A-Greedy, different combinations of ρ and
δ, such as reducing ρ and increasing δ will alleviate its desire oscillation but at the cost of slower convergence.
In either case, the desire instability of A-Greedy cannot be completely eliminated, and from practical point
of view, this problem may cause potential oscillation in its processor allocations, especially when the load of
the system is small and hence the desires tend to be satisfied. Such unnecessary processor reallocations will
introduce extra overheads due to the context switching of some processors from one job to another as well as
other associated issues, such as loss of localities, etc. In fact, the processor desire of A-Greedy does satisfy
BIBO-stability; its oscillation (referred to as limit cycle [28] in control theory) is a direct result of the non-linear
behavior of the A-Greedy algorithm.

6 Algorithmic Analysis

We now analyze the algorithmic performances of Acdeq by bounding its response time and processor waste
for any individual job as well as makespan and total response time for a set of jobs. We then compare Acdeq

with Agdeq in terms of these performance metrics.

6.1 Preliminaries

For a job Ji scheduled by Acdeq, given that its work completed in a quantum q is wi(q) and its span reduced

in the quantum is li(q), we define the quantum work efficiency to be αi(q) = wi(q)
ai(q)sL

, and the quantum span

efficiency to be βi(q) =
li(q)
sL , where ai(q) is the processor allocation to the job in quantum q, s is the processor

speed and L is the quantum length. Obviously, we have 0 ≤ αi(q), βi(q) ≤ 1. The quantum average parallelism
Ai(q) is therefore

Ai(q) =
wi(q)

li(q)
= ai(q)

αi(q)

βi(q)
. (4)

Let tq denote the time quantum q starts, then quantum q can be split into two portions depending on

whether the processor allocation ai(q) is more than the parallelism hkt

i of the job at any time t ∈ [tq, tq + L].

Specifically, let L1 =
∫ tq+L

tq
[ai(q) ≤ hkt

i ] and L2 =
∫ tq+L

tq
[ai(q) > hkt

i ], where [x] is 1 if proposition x is true and

0 otherwise. Hence, the quantum work wi(q) is at least ai(q)sL1 and the quantum span li(q) is at least sL2.

Thus, we have L = L1 + L2 ≤ wi(q)
ai(q)s

+ li(q)
s =

(

αi(q)
βi(q)

+ 1
)

li(q)
s . Substituting in li(q) = βi(q)sL, we get

αi(q) + βi(q) ≥ 1, (5)

which is a lower bound on the sum of quantum work efficiency and quantum span efficiency. We will use this
relationship as well as (4) later in our analysis to bound response time and processor waste of a job.
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We now define the concept of transition factor for job Ji. The transition factor, denoted by Ci, where
Ci ≥ 1, is the maximal ratio on the average parallelism of the job in any two consecutive quanta. Formally, the
average quantum parallelism of the job satisfies

1

Ci
≤ Ai(q)

Ai(q − 1)
≤ Ci, (6)

for all q ≥ qi, and Ai(qi− 1) is defined to be 1, where qi is the first quantum job Ji is scheduled. The transition
factor, like the work and span, can be considered as an intrinsic job characteristic, and is independent of the
task scheduler.2 Since two malleable jobs with the same work and span can have very different parallelism
variations, the transition factor indicates how fast the job’s parallelism changes with time and thus suggests
the level of difficulty to adaptively schedule it in a non-clairvoyant fashion. In contrast to [1], which does not
consider the parallelism transitions of a job, we argue that the incorporation of transition factor better reflects
the performance of a scheduling algorithm.

In particular, given the transition factor of a job, we can show that the processor desire generated by
A-Control in any quantum is bounded from both above and below in terms of the average parallelism of the
job in the same quantum.

Lemma 2 Suppose that A-Control schedules a job Ji with transition factor Ci. Then the processor desire
di(q) for each quantum q satisfies

1− v

Ci − v
Ai(q) ≤ di(q) ≤

Ci(1− v)

1− Civ
Ai(q), (7)

where Ai(q) is the job’s average parallelism in quantum q and v denotes the convergence rate of A-Control.
The inequality on the right only holds when v < 1/Ci.

Proof. We will prove the upper bound of di(q) by induction on the scheduling quantum. The lower bound
can be proven similarly, and is omitted.

Base case: For q = qi, we have d(qi) = 1. Because Ai(qi−1) = 1 by definition, according to (6), the quantum

average parallelism satisfies Ai(qi) ≥ 1/Ci. Thus we have di(qi)
Ai(qi)

≤ Ci ≤ Ci−Civ
1−Civ

, since Ci ≥ 1 and Civ < 1.

Therefore, we get di(qi) ≤ Ci(1−v)
1−Civ

Ai(qi).

Induction: For q ≥ qi + 1, suppose that we have di(q − 1) ≤ Ci(1−v)
1−Civ

Ai(q − 1). Because Ai(q − 1) ≤ CiAi(q)

from (6), then according to (3), we have for quantum q, di(q) = vdi(q− 1) + (1− v)Ai(q− 1) ≤ Civ(1−v)
1−Civ

Ai(q −
1) + (1− v)Ai(q − 1) = 1−v

1−Civ
Ai(q − 1) ≤ Ci(1−v)

1−Civ
Ai(q).

Remarks. The assumption v < 1/Ci is required for the upper bound of the processor desire to hold. Without
this assumption, however, the ratio of processor desire and quantum average parallelism cannot be bounded. The
worst case happens when the parallelism of the job reduces much faster than the responsiveness of A-Control

with the chosen convergence rate, resulting in the processor desire not reduced as quickly.

6.2 Response Time

We analyze the response time of an individual job scheduled by Acdeq on arbitrary speed processors. Recall
that the response time is the duration between the job’s release and completion. Agrawal et al. [1] studied
the response time of a job scheduled by task scheduler A-Greedy using trim analysis, which is a technique
to limit the power of the OS allocator assuming that it can behavior like an adversary to the task scheduler.
However, most practical OS allocators such as Deq do work cooperatively with the task schedulers. Hence,
in the following theorem, we show that the response time of any individual job scheduled by Acdeq can be
bounded in terms of the job’s deserved equal share of processors and their speed.

Theorem 3 Suppose that Acdeq schedules a set J of jobs on P processors of speed s. Then the response time
Rs(Ji) for any individual job Ji ∈ J with work wi, span li and transition factor Ci is bounded by

Rs(Ji) ≤
2wi

sP
+

Ci + 1− 2v

s(1 − v)
li, (8)

where P = P/ |J | is the equal share of processors for each job and v is the convergence rate of A-Control.

2The transition factor, however, does depend on the quantum length and the processor speed, whose variation may yield different
transition factor for the same job. For a given quantum length, processor speed, as well as the parallelism profile of a job, the
transition factor can usually be derived based on the worst-case schedule. We will not be concerned about how the transition factor
may be derived, much like the work and span of a job. We will just make use of these job characteristics to quantify the behavior
of our scheduler in terms of performance bounds.
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Proof. Let AC and DE denote the set of accounted quanta and the set of deductible quanta for job Ji,
respectively. To bound the response time Rs(Ji) of job Ji, we will bound separately its total accounted time
and total deductible time, denoted by RAC

s (Ji) and RDE
s (Ji).

The total accounted time can be bounded as follows. Since an accounted quantum q for job Ji is under-
allocated by definition, we have ai(q) ≤ Ai(q). According to (4) and (5), we have αi(q) ≥ 1/2 and therefore
wi(q) ≥ ai(q)sL/2. Since an accounted quantum is also deprived, based on Deq policy, we have ai(q) ≥
P/ |J (t)| ≥ P . The total work done on accounted time thus satisfies wi ≥

∑

q∈AC wi(q) ≥
∑

q∈AC ai(q)sL/2 ≥
PsRAC

s (Ji)/2. The total accounted time is then RAC
s (Ji) ≤ 2wi

sP
.

To bound the total deductible time, we observe from definition of deductible quantum and Lemma 2 that
ai(q) ≥ 1−v

Ci−v
Ai(q) for job Ji in deductible quantum q. Substituting (4) and (5) into it, we obtain βi(q) ≥ 1−v

Ci+1−2v

and therefore li(q) ≥ 1−v
Ci+1−2v sL. The sum of the quantum span in deductible quanta thus satisfies li ≥

∑

q∈DE li(q) ≥
∑

q∈DE
1−v

Ci+1−2v sL = 1−v
Ci+1−2v sR

DE
s (Ji). The total deductible time is RDE

s (Ji) ≤ Ci+1−2v
s(1−v) li.

Remarks. The trim analysis used by Agrawal et al. [1] assumes an adversarial OS allocator, which can
provide a large number of processors to a job when the job has low parallelism, and vice verse, thus preventing
any task scheduler from achieving good speedup. By trimming off the available processors on deductible quanta
effectively allows a task scheduler to achieves nearly linear speedup on accounted quanta. Adopting trim
analysis, we can show similar response time for A-Control that works with any OS allocator. Readers can
refer to [1] for more details on this analysis technique.

6.3 Processor Waste

As pointed out in remarks of Lemma 2, bounding processor waste relies on the convergence rate of A-Control

to satisfy v < 1/Ci for a job Ji with transition factor Ci. Since the job characteristics are usually unknown
prior to its execution, we assume that the convergence rate is chosen based on some historical workload charac-
terization, which ensures that it satisfies the requirement. The processor waste can then be bounded as stated
in the following theorem.

Theorem 4 Suppose that Acdeq schedules a set J of jobs on processors of speed s. Then the processor waste
Xs(Ji) for any individual job Ji ∈ J with work wi and transition factor Ci is bounded by

Xs(Ji) ≤
Ci(1− v)

1− Civ
wi, (9)

where v < 1/Ci is the convergence rate of A-Control.

Proof. SinceAcdeq never allocates more processors than job Ji desires, that is, ai(q) ≤ di(q) for any quantum

q, from Lemma 2, we have ai(q) ≤ Ci(1−v)
1−Civ

Ai(q). Substituting (4) and (5) into it, we obtain αi(q) ≥ 1−Civ
1+Ci−2Civ

,

and therefore wi(q) ≥ 1−Civ
1+Ci−2Civ

ai(q)sL. Let Xi(q) denote the processor waste of job Ji in quantum q, then

we have Xi(q) = ai(q)sL−wi(q) ≤ ai(q)sL− 1−Civ
1+Ci−2Civ

ai(q)sL = Ci(1−v)
1+Ci−2Civ

ai(q)sL ≤ Ci(1−v)
1−Civ

wi(q). The total

processor waste Xs(Ji) is then bounded by Xs(Ji) =
∑

q Xi(q) ≤
∑

q
Ci(1−v)
1−Civ

wi(q) ≤ Ci(1−v)
1−Civ

wi.

Remarks. Let XAC
s (Ji) denote the processor waste of job Ji on the set of accounted quanta, and we can

obtain a separate bound for XAC
s (Ji). Since an accounted quantum q for job Ji is under-allocated by definition,

we have ai(q) ≤ Ai(q). Following the proof of Theorem 4, we can get XAC
s (Ji) ≤ wi, which gives a tighter

waste bound for the job on accounted time. We will make use of this bound later in the proof of Theorem 6.

6.4 Makespan

We analyze the makespan for a set of jobs scheduled by Acdeq. Recall that makespan is the completion time
of the last completed job in the job set, and together with the total response time, they provide a common
set of performance indications for an adaptive scheduler in multiprogrammed environment. For Acdeq, we
show the makespan using competitive analysis [7], which compares its performance with that of the optimal
on processors of the same speed. Specifically, we show that the makespan depends on both the response time
and the processor waste for an individual job, and can be obtained by combining both bounds. The following
theorem gives the makespan performance.

Theorem 5 Suppose that Acdeq schedules a set J of jobs on processors of speed s. Then the makespan Ms(J )
of the job set is bounded by

Ms(J ) ≤
(

C + 1− 2Cv

1− Cv
+

C + 1− 2v

1− v

)

M∗s (J ), (10)
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where M∗s (J ) is the makespan of the optimal scheduler on processors of speed s, C is the maximum transition
factor of all jobs in the job set and v < 1/C is the convergence rate of A-Control.

Proof. Suppose that Jk is the last completed job in J . Then the makespan Ms(J ) of job set J is given by
the completion time ck of job Jk. Let RSA

s (Jk) denote the total satisfied time for Jk, and let RDP
s (Jk) denote

the total deprived time for Jk. Then the completion time of the job is given by ck = rk +RSA
s (Jk) +RDP

s (Jk).
We bound the total satisfied time and the total deprived time for job Jk, separately. Since a satisfied job is

also deductible by definition, from Theorem 3, the total satisfied time of Jk is bounded by RSA
s (Jk) ≤ C+1−2v

s(1−v) lk,

where C is the maximum transition factor from all jobs in J . Since OS allocator Deq allocates all P pro-
cessors when job Jk is deprived, the amount of processing power RDP

s (Jk) · sP is either spent on work or

wasted. According to Theorem 4, we have RDP
s (Jk) · sP ≤

∑

Ji∈J
(wi +Xs(Ji)) ≤

∑

Ji∈J

(

wi +
Ci(1−v)
1−Civ

wi

)

=
∑

Ji∈J

Ci+1−2Civ
1−Civ

wi ≤ C+1−2Cv
1−Cv

∑

Ji∈J
wi. The total deprived time of Jk is bounded byRDP

s (Jk) ≤
(

C+1−2Cv
1−Cv

)
∑

Ji∈J
wi

sP .

The makespan Ms(J ) of job set J , which is equal to the completion time ck of Jk, is then

Ms(J ) ≤
(

C + 1− 2Cv

1− Cv

)

∑

Ji∈J
wi

sP

+

(

C + 1− 2v

1− v

)

max
Ji∈J

(

li
s
+ ri

)

.

This directly implies Theorem 5 as both
∑

Ji∈J
wi

sP and maxJi∈J

(

li
s + ri

)

are lower bounds on the makespan of
the job set [8, 24] with speed s processors.

6.5 Total Response Time

It is known that any deterministic non-clairvoyant scheduler is Ω(n1/3)-competitive in terms of the total response
time even for sequential jobs on a single processor [38], where n is the total number of jobs in the job set. Hence,
it is unlikely that Acdeq will achieve good competitive result if it shares the same amount of resources with
the optimal scheduler. In this case, we apply resource augmentation analysis [30, 41], which equips the online
algorithm with extra-speed processors compared to the optimal. We show that Acdeq is O(C/ǫ)-competitive
in term of the total response time when equipped with O(1) times, or specifically (4+ ǫ) times faster processors
for any ǫ > 0. The proof is included in the appendix.

Theorem 6 Suppose that Acdeq schedules a set J of jobs on processors of speed s, where s = 4 + ǫ for any
ǫ > 0. Then the total response time Rs(J ) of the job set is bounded by

Rs(J ) ≤
(

2 +
10 + 2C − 12v

ǫ(1− v)

)

R∗1(J ), (11)

where R∗1(J ) is the total response time of the optimal scheduler on unit-speed processors, C is the maximum
transition factor of all jobs in the job set and v is the convergence rate of A-Control.

Remarks. Without resource augmentation, He et al. [24] proved the total response time of two-level scheduler
Agdeq under a special case, where all jobs are batch released at time 0. In [47], we have shown a similar result
for Acdeq, which is O(C)-competitive in terms of the total response time for any batched job set.

6.6 Comparison with AGDEQ

Now, we compare Acdeq with Agdeq in terms of their performance bounds for both an individual job as well
as for a job set. In addition, we briefly comment on the performances of both algorithms in practice.

For Agdeq, the performance bounds are derived similarly as those of Acdeq. Specifically, given a respon-
siveness parameter ρ and a utilization parameter δ of A-Greedy, the performances of Agdeq on P processors
of speed s are bounded by the following [1, 24, 46]:

Rs(Ji) ≤ wi

δsP
+

2

s(1 − δ)
li + o(1),

Xs(Ji) ≤ 1 + ρ− δ

δ
wi,

Ms(J ) ≤
(

ρ+ 1

δ
+

2

1− δ

)

M∗s (J ) + o(1),

Rs(J ) ≤
(

2 +
4

δ(1 − δ)ǫ

)

R∗1(J ) + o(1),
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where P = P/ |J |, and the total response time bound holds when s = 2/δ + ǫ for any ǫ > 0. In a direct
comparison, Acdeq tends to have better bounds when the jobs have small transition factors; otherwise, the
bounds of Agdeq become better with appropriately chosen parameters. Note that Agdeq is oblivious of the
transition factor in the analysis because the symmetric structure of its multiplicative-increase multiplicative-
decrease strategy allows it to bypass this difficulty.

It should be noted that although both algorithms attempt to exploit the parallelism correlation of the jobs,
their theoretical performance bounds are established pessimistically based on the scenario where the future
parallelism of a job is not correlated to its past. (In case of Acdeq, a job’s parallelism is only correlated by
its maximum transition.) Their performances in practice should therefore be much better than predicted by
these theoretical bounds, especially when the parallelism of the jobs does exhibit strong correlation. In the next
section, we will further evaluate and compare the performances of Acdeq and Agdeq through simulations.

7 Simulations

We conduct simulations to study the practical performance of Acdeq and compare it with Agdeq using
malleable parallel jobs. To better understand these two-level adaptive schedulers, we first study the transient
responses of task schedulers A-Control and A-Greedy on a set of parallelism variations in terms of the
processor desire calculations, which shed light on their performances in practice. We then augment Downey’s
job model [15] with these different parallelism variations to comprehensively evaluate the two adaptive schedulers
in terms of both individual job performances and job set performances.

7.1 Malleable Parallel Jobs

To verify the effectiveness of two-level adaptive schedulers, it will be helpful to test them on malleable parallel
jobs with changing parallelism characteristics. Unfortunately, there is little existing work in the literature that
models such workloads. Hence, in this paper, we construct malleable jobs based on a traditional workload
model, namely Downey’s model [15] and augment it with a set of internal parallelism variations.

In particular, Downey’s workload model generates non-malleable parallel jobs, which provides external infor-
mation about the jobs such as their work requirements, arrival patterns, average parallelism, etc. Internally, we
divide a parallel job into a series of segments and each segment is identified by a specific parallelism structure.
Instead of using completely random parallelism structures, which does not allow clear account of the feedback-
allocation process of a two-level adaptive scheduler, we identify five generic forms of parallelism variations,
which are specified by Step, Impulse, Ramp, Poly(I), and Poly(II) profiles respectively as shown in Fig. 3 and
they describe precisely how the parallelism of a segment evolves with time. These profiles provide a comprehen-
sive coverage of the changing parallelism dynamics and reflect a wide range of parallel programming patterns.
For instance, the Step profile can describe constant and stable parallelism over a period of time from typical
data-parallel sections of a job. The Impulse profile on the other hand can emulate a drastic one-off increase
in parallelism typically encountered in, e.g., a short Do-Parallel loop. The Ramp and the two Poly profiles,
which are constructed by polynomials of degree 1, 3, and 1/3 in our simulation, can model changes in the job’s
parallelism with different rates for spawning and joining parallel threads.

To maintain consistency with the original non-malleable jobs, we ensure that the work and the average
parallelism of a job adhere to those initially generated by Downey’s model. In particular, the average parallelism
of each segment is chosen uniformly according to that of the original model, and no more segment is added
after the aggregate work reaches that initially generated. Also for each segment, we construct the Step profile
first, which is used as a blueprint to derive other profiles in case they have been selected. This ensures that all
profiles are coherent with each other, as shown in Fig. 3, where the five different parallelism profiles have the
same work and span, hence the same average parallelism. In our simulations in Sections 7.2 and 7.3, we only
generate homogeneous jobs with a single type of profile interconnected by sequential phases, which is aimed at
studying the impact of different parallelism variations on the task schedulers. In Section 7.4, we mix different
profiles to create heterogeneous jobs and evaluate the performances of the two-level schedulers under this more
diverse set of workloads.

7.2 Transient Response

To better understand the behaviors of two-level schedulers, we first focus on task schedulers A-Control and
A-Greedy by studying their transient responses to different parallelism variations, which can provide valuable
insights on their performances in practice.

Fig. 4 shows the transient responses of A-Control and A-Greedy on four parallelism profiles. (The
transient response of Impulse profile is similar to that of Step and hence is not shown.) In the figure, each profile

11



2 4 6 8 10

100

200

300

400

500

Time

P
ar

al
le

lis
m

Poly(I)

Step
Poly(II)

Ramp

Impulse

Figure 3: Five different parallelism variation curves specified by Step, Impulse, Ramp, Poly(I) and Poly(II)
profiles.

has the same work, span, and average parallelism. The quantum length is set to 1/5 of the segment length,
which is scaled to restore the original parallelism variation. In addition, sequential phases are added before and
after each profile such that the processor desires of both schedulers start and end at a steady state with value of
1, and are always satisfied by the OS allocator. The convergence rate of A-Control is set to v = 0 in this case
for faster response while the responsiveness parameter and the utilization parameter of A-Greedy are set to
ρ = 2 and δ = 0.8, respectively. As can be seen, for Step profile, A-Greedy is able to gradually catch up with
the parallelism change but suffers from desire instability when the parallelism remains constant. In contrast,
A-Control rapidly approaches the parallelism within a quantum, and thereafter provides stable desires by
directly utilizing the average parallelism of the job. For the other profiles, both A-Greedy and A-Control

are able to respond gradually to the parallelism variations with A-Control in general following more closely
the changes of the parallelism and thus taking less processor reallocations. This is due to A-Control’s
more effective processor desire calculation, which suggests that it probably performs better than A-Greedy in
practice. We will verify the claim in the following subsections through more comprehensive simulations.

7.3 Individual Job Performances

To verify the quality of feedbacks observed in the transient responses, we design one set of simulations to
measure the individual job performances, that is, the response time and the processor waste of A-Control

and A-Greedy. In the simulation, only one job is run each time and the processor desires of both schedulers
are always granted. This allows us to evaluate the performances of the task schedulers under a favorable
circumstance, for otherwise the advantage of a more efficient processor desire calculation scheme can not be
reflected. Fig. 5 shows the effects of the five parallelism variations on the response time and the processor waste
of both task schedulers. The response time is normalized in terms of the span of the job and the processor
waste is normalized in terms of the job’s total work.

From the figure, we can see clearly that A-Control indeed outperforms A-Greedy with respect to the
response time and the processor waste for all parallelism variations. Moreover, smoother parallelism variations
with smaller transitions also lead to better performances ofA-Control, matching the analysis in Section 6. For
instance, A-Control has better performance for the Step profile, which exhibits smaller parallelism transition
(see Fig. 3). In contrast, the Ramp and Poly(I) profiles with steeper parallelism variations result in larger
response time and processor waste for A-Control. We should point out that although the Impulse profile has
drastic parallelism variation, it occurs less frequently than the other profiles. Hence, A-Control can easily
capture its parallelism variation within one quantum under the unconstrained environment, thus has better
response time. The performances of A-Greedy, on the other hand, are relatively less sensitive to the different
parallelism profiles, but are generally inferior to those of A-Control even on jobs with larger parallelism
transitions. In summary, the simulation results confirm our previous insight that a task scheduler with better
transient responses should be able to achieve superior performances in terms of the response time and processor
waste of an individual job.
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Figure 4: Transient responses of A-Control and A-Greedy on (a) Step (b) Poly(II) (c) Ramp and (d) Poly(I)
profiles.

7.4 Job Set Performances

We now evaluate the performances of Acdeq and compare it with Agdeq in terms of the makespan and total
response time for a set of jobs. We set the system load proportionally to the number of jobs as well as their
arrival rate based on Downey’s model [15] for evaluating total response time. For makespan, we use batched
job set and define the load to be proportional to the number of jobs (more precisely, the load is defined to
be the number of jobs divided by 100 in this case), since otherwise the makespan could be dominated by the
release time of the last job from a large job stream. To simulate the performances of an adaptive scheduler in
practice, we also capture the number of processor reallocations it incurs during running time, which are used
to measure the overheads. The response time of a job is then assumed to increase by an additive factor γ · χ,
where χ denotes its total number of processor reallocations under a particular scheduler and γ depends on the
system’s physical overhead for context switching.

Fig. 6 shows the number of processor reallocations, the makespan ratio and the total response time ratio of
Acdeq and Agdeq with different system loads. We can see from Fig. 6a that under light loads both schedulers
produce a large number of processor reallocations on the last completed job, which contributes to the makespan
of the job set. With increased loads, however, the processor desires of both schedulers cannot be easily granted,
and this eventually leads to less number of reallocations. On the other hand, the total number of reallocations
of all jobs is shown in Fig. 6c, and it is related to the total response time of the job set. As can be seen,
the total number of reallocations first increases because of more jobs joining the system before it starts to
decrease, which is also due to the depression of the processor desires under higher system loads. Moreover,
the number of processor reallocations of Acdeq is always less than that of Agdeq under all system loads
because of A-Control’s more effective processor desire calculation. Furthermore, we can see from Fig. 6b and
Fig. 6d that Acdeq performs better than Agdeq under light to medium loads in terms of both makespan and
total response time, especially when the cost of processor reallocations becomes high. This again demonstrates
that A-Control is able to provide more effective processor desires. Under heavy system loads, however, the
processor desires tend to be deprived and the advantage of A-Control diminishes since neither schedulers have
direct control over the processor allocations. Therefore, the performances of both schedulers are comparably
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Figure 5: Individual job performances of A-Control and A-Greedy on the five parallelism profiles in terms
of (a) response time and (b) processor waste.

similar in such case.

8 Related Work

We review related work on adaptive scheduling, makespan and total response time minimization, and paral-
lel workload modeling. For adaptive scheduling, many different strategies have been proposed under various
perspectives ranging from algorithmic to control-theoretic to empirical.

From algorithmic perspective, Agrawal et al. [1, 3] studied adaptive task scheduling and proposed two al-
gorithms, namely A-Greedy and A-Steal, based on centralized scheduling and distributed work stealing,
respectively. Both schedulers employ a multiplicative-increase multiplicative-decrease strategy, and are shown
to be efficient in terms of response time and processor waste for an individual job. He et al. [24] combined
A-Greedy and A-Steal with Deq [37, 48] and proved that the resulting two-level schedulers Agdeq and
Asdeq are O(1)-competitive in terms of makespan, and when all jobs are released in a batch, O(1)-competitive
in terms of total response time. He et al. [25] also showed that in heavily-loaded system, the two-level schedulers
can be coupled with Rr (Round Robin) strategy to achieve similar results. Sun et al. [46] later proved that
when jobs have arbitrary release time, Agdeq also achieves O(1)-competitiveness in terms of total response
time with O(1) times faster processors than the optimal.

Adaptive scheduling has also been studied from control-theoretic perspective. Related work in this area
tends to focus on transient and steady-state performances in terms of control-theoretic properties. Lu et
al. [34, 35] presented a feedback control scheduling framework for adaptive real-time systems, and developed
Fc-Edf (Feedback-Control Earliest-Deadline-First) scheduler to control real-time CPU utilizations as well as
an integral controller to control delays in web servers. Goel et al. [22] designed an adaptive controller that
schedules real-rate applications by estimating the application’s progress with time-stamps in a feedback loop.
Using adaptive control, Padala et al. [40] developed a resource management system to optimize the resource
utilization and at the same time to meet specific QoS goals for multi-tier applications. Similar approaches are
also used in [33, 49] for dynamically adjusting the resource partitioning for enterprize servers.

Many empirical studies on adaptive scheduling are also known in the literature. Sen [45] presented exper-
imental results on a dynamic desire estimation algorithm for the Cilk work-stealing scheduler [6]. Agrawal
et al. [2] compared Asdeq with a task scheduler Abp [4], which is also based on work-stealing but without
parallelism feedback and hence coupled with Equi. They showed empirically that the feedback-based scheduler
Asdeq indeed has superior performance than Abp. He et al. [25] evaluated the performance of Agdeq under
fork/join jobs, and revealed that it actually performs much better in practice than predicted by the theoretical
bounds. In addition, Nguyen et al. [39], Weissman et al. [50], Corbalán et al. [12], Sundarson et al. [43] have also
implemented various adaptive scheduling strategies on different platforms based on measurements of certain job
characteristics such as speedup, efficiency, execution time, etc. All of them reported success in improving the
system performances with adaptive scheduling.

We now review other related work for scheduling a set of n parallel jobs on P processors with makespan and
total response time as the performance metrics. Motwani et al. [38] showed that Rr is (2 − 2

n+1 )-competitive
with respect to total response time for fully parallelizable jobs that are batch released. When jobs can have
arbitrary release time, however, they showed that every deterministic non-clairvoyant algorithm is Ω(n1/3)-
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Figure 6: Number of processor reallocations of Agdeq and Acdeq on (a) the last completed job and (c) all
jobs in the job set. The performance ratio of Agdeq over Acdeq with different cost for reallocation overhead
in terms of (b) makespan and (d) total response time.

competitive. Kalyanasundaram and Pruhs [30] introduced resource augmentation analysis, and showed that the
non-clairvoyant algorithm Setf (Shortest Elapsed Time First) is (1+ ǫ)-speed (1+1/ǫ)-competitive in terms of
total response time. In addition, it is well-known that, for fully parallelizable jobs, any scheduler that does not
waste processors is optimal for makespan and the clairvoyant scheduler Srpt (Shortest Remaining Processing
Time) is optimal for total response time [9].

For parallel jobs with changing degrees of parallelism, Edmonds [16] showed that Equi is (2 + ǫ)-speed
O(1)-competitive with respect to total response time. Edmonds and Pruhs [18] showed that Laps (Latest
Arrival Processor Sharing), which in a sense combines Equi and Setf, is (1 + ǫ)-speed O(1)-competitive for
sufficiently large ǫ. When jobs are released in a batched fashion, Edmonds et al. [17] showed that Equi is
(2 +

√
3)-competitive for total response time. Robert and Schabanel [44] showed that Equi is Θ(lnn/ ln lnn)-

competitive for makespan. Deng et al. [14] proved that Deq with jobs’ instantaneous parallelism as feedback
is 2-competitive in terms of total response time for parallel jobs with a single phase and 4-competitive for
multi-phased jobs. The latter ratio was improved to 3 by He et al. [27]. In addition, Brecht et al. [8] showed
that Deq is (2 − 1/P )-competitive with respect to makespan.

Finally, we review some related work on parallel workload modeling. Some existing models such as the
ones proposed by Feitelson [19], Jann et al. [29] and Lublin and Feitelson [36] are used to generate rigid jobs,
which require a specific number of processors to execute. Others like those proposed by Downey [15] and Cirne
and Berman [11] are used to model moldable jobs, which can execute with an arbitrary number of processors
at launch time but cannot change allocations afterwards. To model malleable jobs with internal structures,
a flexible hierarchical model was proposed by Calzarossa et al. [10] and further extended by Feitelson and
Rudolph [21]. Unfortunately, they only provided two basic types of internal parallelism structures based on
fork-join and workpile models, but without detailed implementation. In the simulations conducted by Agrawal
et al. [2] and He et al. [25], the workloads were generated by varying the parameters of fork-join jobs such as
work and span according to various distributions. The authors concluded, however, that the simulation results
are fairly insensitive to the chosen distributions.
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9 Conclusion

Many researchers have applied control theory to design computing and resource management systems, and
these control-inspired algorithms often demonstrate robust behaviors. However, as far as we know, there is
little work in the literature that incorporates performance metrics from both control-theoretic and algorithmic
perspectives. In this paper, we have presented Acdeq, a control-based algorithm for scheduling malleable jobs
on multiprocessors, and have analyzed its performance from both control-theoretic and algorithmic perspectives.
We have also compared Acdeq with an existing scheduler Agdeq using synthetic malleable jobs with a set
of different parallelism variations. The simulation results have confirmed Acdeq’s superior performances from
both control-theoretic and algorithmic view points.

While both task schedulers A-Control and A-Greedy generate parallelism feedbacks based on the job’s
execution in a single quantum, it may be more effective to calculate processor desires using more than one
historical quanta. This will require the task scheduler to treat the parallel job as a dynamic higher-order
system, and will be especially applicable to jobs with regular parallelism structure. Other future research in
this area may include dynamically adjusting quantum length or other parameters to achieve better system-wide
adaptivity, and identifying alternative job characteristics such as the frequency on its change of parallelism for
tighter analysis of existing schedulers as well as for better understanding of adaptive scheduling in general.
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Appendix. Proof of Theorem 6

We first define some useful notions. Let J (t) denote the set of active jobs at time t, and let JA(t) and JB(t)
denote the set of accounted jobs and the set of deductible jobs at time t, respectively. For convenience, let
nt = |J (t)|, let nA

t = |JA(t)| and nB
t = |JB(t)|. Hence, we have nt = nA

t + nB
t . Throughout the execution of

job Ji, let aA(Ji) denote its total accounted processing power, i.e., aA(Ji) =
∫∞

0
ai(t)s · [Ji(t) ∈ JA(t)]dt, and let

tB(Ji) denote its total deductible time, i.e., tB(Ji) =
∫∞

0
[Ji(t) ∈ JB(t)]dt, where s denotes the processor speed

of Acdeq and [x] is 1 if proposition x is true and 0 otherwise. From Theorems 3 and 4, the total accounted
processing power aA(Ji) and the total deductible time tB(Ji) satisfy

aA(Ji) ≤ 2wi, (12)

tB(Ji) ≤ Ci + 1− 2v

s(1− v)
li. (13)

Let tB(J ) =
∑n

i=1 tB(Ji), and summing (13) over all jobs, we have tB(J ) ≤ C+1−2v
s(1−v)

∑n
i=1 li, where n is

the total number of jobs in J . We also need to define the notion of t-prefix and t-suffix to ease analysis. For
Acdeq, define t-prefix Ji(

←−
t ) of job Ji to be the portion of the job executed on and before time t, and t-suffix

Ji(
−→
t ) to be the portion executed after time t. In addition, we extend the definitions of t-prefix and t-suffix from

a job to a job set such that J (←−t ) = {Ji(
←−
t ) : Ji ∈ J and ri ≥ t} and J (−→t ) = {Ji(

−→
t ) : Ji ∈ J and ri ≥ t}.

Similarly, we let J ∗(←−t ) and J ∗(−→t ) denote the t-prefix and the t-suffix of job set J executed by the optimal
scheduler, respectively.

To prove total response time of Acdeq, we use amortized local competitiveness argument [18, 42], which
bounds the amortized performance of an online algorithm at any time through a potential function. Specifically,
we need to find a potential function Φ(t) such that on processors of speed s = 4+ ǫ for any ǫ > 0, the execution
of the job set satisfies the following

- Boundary Condition: Φ(0) = 0 and Φ(∞) ≥ 0;
- Arrival Condition: Φ(t) does not increase when new jobs arrive;
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- Completion Condition: Φ(t) does not increase when jobs complete under either Acdeq or the optimal;
- Running Condition:

dRs(J (t))
dt

+
dΦ(t)

dt
≤ 2s

ǫ

(

dR∗1(J ∗(t))
dt

+
dtB(J (t))

dt

)

, (14)

where dRs(J (t))
dt = lim∆t→0

Rs(J (
←−−−
t+∆t))−Rs(J (

←−
t ))

∆t denotes the rate of change for the job set in terms of total

response time under Acdeq at time t, and we have dRs(J (t))
dt = nt. Similarly, the rate of change in total

response time under the optimal satisfies
dR∗

1(J
∗(t))

dt = n∗t , and the rate of change in total deductible time satisfies
dtB(J (t))

dt = nB
t . In addition, dΦ(t)

dt = lim∆t→0
Φ(t+∆t)−Φ(t)

∆t denotes the rate of change in potential function at t.
Note that we assume ∆t is infinitesimally small such that no new job arrives, and no job completes, or makes
a transition between two phases, or experiences processors reallocation under both Acdeq and the optimal.
Since

∑n
i=1 li is a lower bound on the total response time of job set J on unit-speed processors [14, 16, 24],

integrating (14) over time, we have

Rs(J ) ≤ 2s

ǫ
(R∗1(J ) + tB(J ))

≤ 2s

ǫ

(

R∗1(J ) +
C + 1− 2v

s(1− v)

n
∑

i=1

li

)

≤ 2s

ǫ

(

1 +
C + 1− 2v

s(1− v)

)

R∗1(J )

=

(

2 +
10 + 2C − 12v

ǫ(1− v)

)

R∗1(J ),

which directly implies Theorem 6.
We adopt the potential function used by Lam et al. [32] for online speed scaling and tailor it to suit the

total response time analysis of Acdeq. Specifically, at any time t, let nt(z) denote the number of jobs whose

remaining accounted processing power is at least 2z under Acdeq, i.e., nt(z) =
∑n

i=1[aA(Ji(
−→
t )) ≥ 2z], and

let n∗t (z) denote the number of jobs whose remaining work is at least z under the optimal, i.e., n∗t (z) =
∑n

i=1[w(J
∗
i (
−→
t )) ≥ z]. The potential function is defined to be

Φ(t) = η

∫ ∞

0









nt(z)
∑

i=1

i



− nt(z)n
∗
t (z)



 dz, (15)

where η = 4
ǫP . Define φt(z) =

(

∑nt(z)
i=1 i

)

− nt(z)n
∗
t (z) for convenience. We now need to check the conditions,

- Boundary Condition: at time 0, no job exists. The terms nt(z) and n∗t (z) are both 0 for all z. Therefore,
we have Φ(0) = 0. At time ∞, no job remains, so again we have Φ(∞) = 0. Hence, the boundary condition
holds.

-Arrival Condition: suppose that a new job with workw′ arrives at time t. Let t− and t+ denote the instances
right before and after the job arrives. Hence, we have n∗t+(z) = n∗t−(z) + 1 for z ≤ w′ and n∗t+(z) = n∗t−(z) for
z > w′. Similarly, nt+(z) = nt−(z) + 1 for z ≤ a′/2 and nt+(z) = nt−(z) for z > a′/2, where a′ is the total
accounted processing power to the job. Note that a′/2 ≤ w′ from (12). Thus, it is obvious that for z > w′, we
have φt+(z) = φt−(z). For z ≤ w′, we consider two cases.

Case 1: for z ≤ a′/2, we have φt+(z)− φt−(z) =
(

∑n
t−

(z)+1
i=1 i

)

− (nt−(z) + 1)
(

n∗t−(z) + 1
)

−
(

∑n
t−

(z)
i=1 i

)

+

nt−(z)n
∗
t−(z) = −n∗t−(z) ≤ 0.

Case 2: for a′/2 ≤ z ≤ w′, we have φt+(z) − φt−(z) =
(

∑n
t−

(z)
i=1 i

)

− nt−(z)
(

n∗t−(z) + 1
)

−
(

∑n
t−

(z)
i=1 i

)

+

nt−(z)n
∗
t−(z) = −nt−(z) ≤ 0.

Hence, Φ(t+) = η
∫∞

0
φt+(z)dz ≤ η

∫∞

0
φt−(z)dz = Φ(t−), and the arrival condition holds.

- Completion Condition: when a job completes under Acdeq or the optimal, Φ(t) remains unchanged,
because in such cases, nt(z) or n

∗
t (z) do not change for all z. Hence, the completion condition holds.

- Running Condition: As mentioned in Section 4, Deq ensures that accounted jobs, which are deprived by
definition, get at least P/nt processors at any time t. In the worst case, the nA

t accounted jobs at time t have
the most remaining accounted processing power, while the optimal executes the job with the least remaining
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work using all P processors. As a result, the change of potential function dΦ(t)
dt can be shown to satisfy [46]

dΦ(t)

dt
≤ 4

ǫP

(

−nA
t (n

A
t + 1)

2
· sP
2nt

+ ntP + n∗t
sPnA

t

2nt

)

≤ 4

ǫ

(

1− x2
t s

4

)

nt +
2s

ǫ
n∗t , (16)

where xt = nA
t /nt, and 0 ≤ xt ≤ 1. Since a job is either accounted or deductible, we have nB

t = (1− xt)nt. It
can be easily verified that the running condition holds for all values of xt by substituting (16) into (14).
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