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Abstract: We present two improved results for scheduling batched parallel jobs on multiprocessors with
mean response time as the performance metric. These results are obtained by using a generalized analysis
framework where the response time of the jobs is expressed in two contributing factors that directly impact
a scheduler’s competitive ratio. Specifically, we show that the scheduler IGDEQ is 3-competitive against the
optimal while AGDEQ is 5.24-competitive. These results improve the known competitive ratios of 4 and 10,
obtained by Deng et al. and by He et al., respectively. For the common case where no fractional allotments are
allowed, we show that slightly larger competitive ratios can be obtained by augmenting the schedulers with the
round-robin strategy.
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1 Introduction

One major issue in scheduling parallel job on multiprocessor systems is how to efficiently share the multiprocessor
resource among a number of competing jobs while ensuring each job a required level of quality of services (see
e.g. [19, 8, 7, 18, 23, 33, 15, 10, 21, 16, 28, 12, 32, 24, 25, 38, 35, 30, 40, 37, 27, 31, 17, 5]). Mean response
time is an important measure in multiuser environments where we desire as many users as possible to get fast
responses. In this paper, we focus on the mean response time for a set of batched parallel jobs to be scheduled on
multiprocessors using competitive analysis [9]. Specifically, we consider scheduling a set J =

{

J1, J2, . . . , J|J |

}

of parallel jobs on P identical processors, where all jobs in J are released at time 0. Moreover, we allow each
parallel job to have time-varying execution characteristics with changing degrees of parallelism. The objective is
to bound the mean response time of a scheduling algorithm in terms of its competitive ratio against the optimal
scheduler.

Many existing results in the literature [31, 17, 15, 14, 21] address the problem of scheduling batched parallel
jobs on multiprocessors under various job models. For fully parallelizable jobs, whose executions can be sped
up linearly with increased processor allocations, Motwani et al. [31] showed that RR (Round-Robin) algorithm
is 2-competitive in terms of the mean response time. Deng et al. [15, 14] showed that DEQ (Dynamic Equi-
partitioning) algorithm is 4-competitive for the mean response time when jobs are modeled by either DAGs
or time-varying parallelism profiles, where a parallelism profile of a job characterizes how many processors the
job can effectively use at any time of its execution. Edmonds et al. [17] showed that the mean response time
obtained by EQUI (Equi-Partitioning) algorithm is (2 +

√
3)-competitive for jobs modeled by multiple phases

of arbitrarily non-decreasing and sub-linear speedup functions, where a job with sub-linear speedup functions is
one whose execution efficiency does not increase with more processors and a job with non-decreasing speedup
functions executes no slower if it is allocated more processors. Finally, He et al. [21] showed that a two-level
AGDEQ (Adaptive Greedy Dynamic Equi-partitioning) algorithm is O(1)-competitive for the mean response
time of jobs modeled by dynamically unfolding directed acyclic graph (or DAG for short), which specifies the
precedence constraints for the tasks of a job to be executed.

Although different job models are used in the literature, it will be very useful to apply a common framework
to analyze the mean response time of different algorithms. In this paper, we present such a framework and
illustrate its application on the three online algorithms mentioned above, namely, EQUI, DEQ, and AGDEQ.
The main idea of the framework is to express the response time of the jobs in terms of two contributing
factors that directly affect a scheduler’s competitive ratio, and to relate them to the lower bounds of the jobs’
mean response time. The competitive ratio of the scheduler is then obtained through minimizing the constant
coefficients of the lower bounds. In this paper, we focus on batched parallel jobs modeled by DAGs. However,
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the same analysis can be applied to other job models as well, such as parallelism profiles and multiple phases
of speedup functions, etc.

We choose to present the algorithms using a common two-level adaptive scheduling architecture [19, 1, 21],
where the scheduling of jobs is explicitly divided into two separate levels. At the system level, an OS allocator
decides the processor allocations for the jobs, and at the user level a task scheduler schedules each job with the
allotted processors. Moreover, in order to utilize processors more efficiently, the task schedulers also provide
feedbacks to the OS allocator in terms of each job’s processor desire, based on which the OS allocator reallocates
the processors periodically. We will show that many scheduling algorithms can be expressed in this architecture,
and that it also provides a unified platform, on which our analysis framework can be conveniently presented. In
the two-level context, we rename EQUI and DEQ algorithms to XEQUI and IGDEQ, respectively, for reasons
to be explained in detail in Section 6.

Using our analysis framework, we improve the competitive ratios of IGDEQ and AGDEQ to 3 and 5.24
from their previously known results of 4 and 10 proved by Deng et al. [14, 15] and He et al. [21], respectively.
We also show that the same best known ratio of 3.73 can be obtained for EQUI using the analysis framework
as previously proved by Edmonds et al. [17]. Moreover, we present a round-robin strategy that augments the
two-level adaptive algorithms in heavily-loaded systems, where the number of jobs is more than the number
of processors and no fractional processor allotments are allowed. We prove that slightly larger ratios can be
obtained by the three algorithms considered in this stricter model and that the same results can be carried
over to the corresponding round-robin augmented scheduler, provided that certain conditions are satisfied. The
framework presented in this paper naturally extends the analysis used previously in [14, 15, 17, 21], and we
believe that it can potentially be applied to analyze other scheduling algorithms as well.

The remainder of this paper is organized as follows. Section 2 gives a formal description of the job model,
the scheduling model, and the objective function. Section 3 describes the lower bounds for the mean response
time of a batched set of parallel jobs. Section 4 presents the two-level scheduling architecture, followed by the
description of the analysis framework in Section 5. Section 6 applies the analysis framework to XEQUI, IGDEQ
and AGDEQ algorithms and shows their respective competitive ratios. Section 7 presents the round-robin
augmented scheduling paradigm and gives the revised ratios. Finally, Section 8 concludes the paper.

2 Models and Objective Function

We model the execution of a parallel job Ji as a dynamically unfolding directed acyclic graph (DAG) such that
Ji = (Vi, Ei), where Vi and Ei represent the set of vertices and the set of edges for Ji, respectively. Each vertex
v ∈ Vi represents a unit-time task, and each edge e ∈ Ei represents a dependency between two tasks. The work

T1 (Ji) of job Ji corresponds to the total number of vertices in the DAG, i.e., T1 (Ji) = |Vi|. The span T∞ (Ji)
of job Ji corresponds to the number of vertices on the longest dependency chain in the DAG. A task is said to
be ready for execution if all of its parents have been executed. The release time ri of job Ji is the time when
the job becomes first available for processing. For a batched job set J , we assume that all jobs are released at
time 0, i.e., ri = 0 for all Ji ∈ J .

A schedule χ = (τ, π) for a job set J is defined as two mappings τ : ∪Ji∈J Vi → {1, 2, . . . ,∞}, and π :
∪Ji∈J Vi → {1, 2, . . . , P}, which map the vertices of the jobs in the job set J to the set of time steps, and
the set of processors, respectively. A valid mapping must preserve the precedence constraints of each job.
Specifically, for any two vertices u, v ∈ Vi of job Ji, if u ≺ v, then τ(u) < τ(v), i.e., vertex u must be executed
before vertex v. A valid mapping must also ensure that one processor can only be assigned to one job at any
given time. That is, for any two vertices u and v, both τ(u) = τ(v) and π(u) = π(v) are true iff u = v.

Our objective is to minimize the mean response time for the job set, which is defined as follows.

Definition 1 The response time of a job Ji under a schedule χ is its completion time Tχ(Ji). The total

response time of a job set J under a schedule χ is given by Rχ(J ) =
∑

Ji∈J Tχ(Ji) and the mean response

time is Rχ(J ) = Rχ(J )/ |J |.

We evaluate the mean response time of an online scheduling algorithm using competitive analysis, in which
the online algorithm is compared to the optimal scheduler in terms of its competitive ratio. Specifically, let
χ(A) denote the schedule produced by an online algorithm A for a job set J . Then algorithm A is said to be

c-competitive if there exists a constant b such that Rχ(A)(J ) ≤ c · R∗
(J ) + b holds for any job set J , where

R
∗
(J ) denotes the mean response time of job set J scheduled by an optimal scheduler.
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3 Mean Response Time Lower Bounds

This section describes two lower bounds for the mean response time of batched parallel jobs. We first present
the following definitions, which have been shown to be the fundamental properties related to the mean response
time of parallel jobs in batched scenario [38, 39, 15, 17, 21].

Definition 2 Given a finite list A = 〈αi〉 of n nonnegative numbers, let f : {1, 2, . . . , n} → {1, 2, . . . , n} denote
a permutation on {1, 2, . . . , n} that satisfies αf(1) ≤ αf(2) ≤ · · · ≤ αf(n). The squashed sum of A is defined as

sq-sum(A) =
n
∑

i=1

(n− i+ 1)αf(i).

It is not hard to see that the above permutation f on list A gives the minimum value for the squashed sum
formulation described by Equation (2). Thus, an alternative definition for the squashed sum of A is given by

sq-sum(A) = min
g∈Υ

n
∑

i=1

(n− i+ 1)αg(i),

where Υ = {g|g : {1, 2, . . . , n} → {1, 2, . . . , n}} denotes the set of all permutations on {1, 2, . . . , n}.

Definition 3 The squashed work area of a job set J on a set of P processors is defined as

swa (J ) = 1

P
sq-sum(〈T1 (Ji)〉) ,

where T1 (Ji) is the work of job Ji ∈ J .

Definition 4 The aggregate span of a job set J is defined as

T∞ (J ) =
∑

Ji∈J

T∞ (Ji) ,

where T∞ (Ji) is the span of job Ji ∈ J .

The research in [38, 39, 15, 21] has established the following two lower bounds for the mean response time
of any batched parallel job set J :

R
∗
(J ) ≥ swa (J ) / |J | , (1)

R
∗
(J ) ≥ T∞ (J ) / |J | . (2)

Hence, both the aggregate span T∞ (J ) and the squashed work area swa (J ) are lower bounds for the total
response time R∗(J ) of job set J .

4 Two-level Adaptive Scheduling Architecture: XY Algorithm

In this section, we describe an adaptive scheduling architecture [1, 21], where the scheduling of parallel jobs
is divided into two distinct levels. At the system level, an OS allocator decides the processor allocations for
all jobs in the system, and a task scheduler for each job at the user level schedules the tasks of the job with
the allotted processors. When a specific task scheduler X and a specific OS allocator Y are used, we call the
resulting two-level adaptive scheduling algorithm XY.

Typically for two-level adaptive scheduling, the execution of the jobs are carried out in scheduling quanta,
and the processors are only reallocated by the OS allocator after a quantum expires. Throughout this paper, in
order to focus on the general framework and to simplify its analysis, we assume that the length of the scheduling
quantum is chosen to be the execution time of a unit-size task, that is, the processors are reallocated after each
time step. As has been shown in [1, 21], we can also apply the same analysis to the more general case, where the
length of the scheduling quantum can take an arbitrary number of time steps. Moreover, in order for the OS
allocator to allocate processors more efficiently, the task scheduler at the user level can provide feedback to the
OS allocator at the end of each time step indicating the job’s processor desire for the next step. Depending on
the task scheduler X, the processor desire can be based on the exact number of ready tasks (called instantaneous
parallelism) of the job in the next step, or an estimate of the job’s instantaneous parallelism in case that the
exact parallelism is not obtainable, or any other reasonable figure that reflects the number of processors the
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job can effectively utilize. In addition, depending on the OS allocator Y, the processor desires provided by the
task scheduler may be used differently (or may not be used at all) when deciding the processor allotments to
the jobs.

We define the following notations. At time step t, let d(Ji, t) and a(Ji, t) denote the processor desire and
the processor allotment for job Ji, respectively. We assume that no matter what task scheduler X is used, it
schedules the ready tasks of the job in a greedy manner. That is, at any time t with a(Ji, t) processors, if job
Ji has more than a(Ji, t) ready tasks available, then X schedules any a(Ji, t) of the ready tasks. Otherwise, X
schedules all ready tasks. Hence, the only difference between different task schedulers is in their strategies for
calculating the processor desires, and the only difference between different OS allocators is in their strategies
for calculating processor allocations. In [22], the interaction between the task scheduler and the OS allocator is
referred to as the processor request-allocation protocol. At each time step t in this protocol, we say that a job
Ji is satisfied if its processor allotment is at least its processor desire, i.e., a(Ji, t) ≥ d(Ji, t). Otherwise, the job
is deprived if a(Ji, t) < d(Ji, t).

5 Generalized Analysis Framework

In this section, we present the generalized analysis framework for the mean response time of any two-level
adaptive scheduling algorithm on batched parallel jobs. We first introduce a few preliminary concepts and
notations.

Preliminaries

We need the notion of t-suffix to simplify our presentation. At a time step t, where 0 ≤ t ≤ T (J ), t-

suffix denoted as
−→
t = {t, t+ 1, . . . , T (J )} represents the set of time steps from time t to the completion time

T (J ) of job set J scheduled by a two-level algorithm XY. We will be interested in the t-suffix of the jobs,
namely, the portions of jobs that remain after an arbitrary time step t. Formally, define the t-suffix of a
job Ji ∈ J to be the portion of the job induced by those vertices in V (Ji) that execute on or after time t,

i.e., Ji

(−→
t
)

=
(

V
(

Ji

(−→
t
))

, E
(

Ji

(−→
t
)))

, where V
(

Ji

(−→
t
))

= {v ∈ V (Ji) : τ(v) ≥ t} and E
(

Ji

(−→
t
))

=
{

(u, v) ∈ E(Ji) : u, v ∈ V
(

Ji

(−→
t
))}

. The t-suffix of job set J is J
(−→
t
)

=
{

Ji

(−→
t
)

: Ji ∈ J and V
(

Ji

(−→
t
))

6= Ø
}

.

We also need to define the following concepts for the jobs. At any time t, a job Ji scheduled by the XY
algorithm can be characterized by a certain property, which usually indicates the relationship between the
processor allotment and the parallelism of the job at time t, or the execution status of the job, etc. Our analysis
relies on identifying two properties A and B for the active jobs at any time,1 where a job is said to be active
at time t if it is not yet completed by t. Let J (t) denote the set of all active jobs at time t. Then the set
of active jobs that satisfy property A is denoted as JA(t) and the set of active jobs that satisfy property B is
denoted as JB(t). The two sets JA(t) and JB(t) need not be disjoint, but they usually cover the whole set of
jobs J (t), i.e., JA(t)

⋃

JB(t) = J (t). Otherwise, it can be difficult to conduct the analysis as will be seen from
our examples in the later part of this section.

Let aA(Ji) =
∑T (J )

t=1 a(Ji, t) · [Ji(t) ∈ JA(t)] denote the total processor allotment of job Ji when the job

satisfies property A, where [x] is 1 if proposition x is true and 0 otherwise. Let sB(Ji) =
∑T (J )

t=1 [Ji(t) ∈ JB(t)]
denote the total number of time steps of job Ji when the job satisfies property B.

Definition 5 The squashed allotment area with property A for a job set J scheduled by XY algorithm is
defined as

saaA (J ) = 1

P
sq-sum(〈aA(Ji)〉).

Definition 6 The total steps with property B for a job set J scheduled by XY algorithm is defined as

tsB (J ) =
∑

Ji∈J

sB(Ji).

1Two such properties may be whether a job is “satisfied” or “deprived” in its processor desire, as described in the preceding

section. As will be seen shortly, the purpose of choosing the two properties is that we want to bound the jobs’ response time through

their use of the processors under these two scenarios separately. Identifying suitable properties, holds the key to fruitful analysis,

and, as such, they do require some insights about the schedulers concerned. With the few examples demonstrated in Section 6,

however, the ideas should become clearer.
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Analysis Framework

The idea behind our analysis framework is to bound the total response time of the job set J scheduled by XY
algorithm using the two lower bounds given in Section 3, namely the squashed work area and the aggregated
span. In many cases, however, it can be difficult to directly associate the total response time with the two lower
bounds, while it is more convenient to associate the total response time with the squashed allotment area and
the total steps. Therefore, we choose to quantify the relationship among the total response time, the squashed
allotment area with property A and the total steps with property B in the first step of our analysis. In the
second step, we bound the squashed allotment area with property A in terms of the squashed work area, and
bound the total steps with property B in terms of the aggregated span. Finally, by combining the results from
these two steps, we are able to obtain the total response time of the two-level algorithm XY in terms of the two
lower bounds of the job set — the squashed work area and the aggregate span. Since the optimal scheduler can
do no better than these lower bounds, we hence obtain the competitive ratio of algorithm XY with respect to
the total response time or equivalently the mean response time of the job set. Specifically, upon choosing the
two properties A and B, our detailed analysis develops as follows:

Step (1): Bound the total response time of the XY algorithm on any set of batched parallel jobs J in terms
of the squashed allotment area with property A and the total steps with property B. That is, find constant
coefficients c1 and c2 such that the following inequality is satisfied:

RXY (J ) ≤ c1 · saaA (J ) + c2 · tsB (J ) . (3)

Step (2): Bound the squashed allotment area with property A in terms of the squashed work area and
bound the total steps with property B in terms of the aggregate span for the job set J scheduled by the XY
algorithm. That is, find constant coefficients c3,c4 and c5 such that the following inequalities are satisfied:

saaA (J ) ≤ c3 · swa (J ) , (4)

tsB (J ) ≤ c4 · T∞ (J ) + c5 · n. (5)

Now, combining the results from step (1) and step (2) above, we can show that the total response time of
the job set scheduled by the XY algorithm satisfies

RXY (J ) ≤ C1 · swa (J ) + C2 · T∞ (J ) + C3 · n,
where C1 = c1 · c3, C2 = c2 · c4 and C3 = c2 · c5. Thus, given the mean response time lower bounds of the job set
in Inequalities (1) and (2), we have RXY (J ) ≤ (C1 +C2) ·R

∗
(J ) +C3, which indicates that the XY algorithm

is (C1 + C2)-competitive.
In the remaining of this section, we will elaborate Step (1) and Step (2) of the above framework. In Section 6,

we will apply this analysis framework to prove the competitive ratios for three scheduling algorithms.

Elaboration of step (1)

Step (1) is to relate the total response time to the squashed allotment area with property A and the total steps
with property B for job set J so that Inequality (3) holds. To prove Inequality (3), we can use induction on

the t-suffix of the job set J
(−→
t
)

scheduled by the XY algorithm with values of c1 and c2 to be determined.

Base case: Let T (J ) denote the completion time of the job set J , and let t = T (J ) + 1. In this case, we

have J
(−→
t
)

= Ø. It follows that RXY

(

J
(−→
t
))

= 0, saaA

(

J
(−→
t
))

= 0, and tsB

(

J
(−→
t
))

= 0. Thus,

Inequality (3) holds trivially regardless of the values of c1 and c2.
Inductive step: Suppose that Inequality (3) holds at time step t+ 1, that is, the inductive hypothesis is

RXY

(

J
(−−→
t+ 1

))

≤ c1 · saaA
(

J
(−−→
t+ 1

))

+ c2 · tsB
(

J
(−−→
t+ 1

))

. (6)

We will show that Inequality (3) also holds at time step t, that is,

RXY

(

J
(−→
t
))

≤ c1 · saaA
(

J
(−→
t
))

+ c2 · tsB
(

J
(−→
t
))

. (7)

Let ∆ rXY denote the change of the total response time, ∆ saaA the squashed allotment area, and ∆ tsB the
total steps from time t to t+ 1, i.e.,

∆ rXY = RXY

(

J
(−→
t
))

−RXY

(

J
(−−→
t+ 1

))

,

∆saaA = saaA

(

J
(−→
t
))

− saaA

(

J
(−−→
t+ 1

))

,

∆tsB = tsB

(

J
(−→
t
))

− tsB

(

J
(−−→
t+ 1

))

.
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Thus, we need only prove the following inequality in order to show that Inequality (7) holds,

∆ rXY ≤ c1 ·∆saaA +c2 ·∆tsB . (8)

Since each job in J (t) contributes 1 unit of time to the total response time from time t to t+ 1, we have

∆ rXY = |J (t)| , (9)

and since each job in JB(t) reduces its total steps with property B by 1 from time t to t+ 1, we have

∆ tsB = |JB(t)| . (10)

The change of squashed allotment area ∆ saaA with property A is not so straightforward and may depend
on the specific OS allocator Y and the choice of property A. Now, substituting Equations (9) and (10) into
Inequality (8), we need only prove the following inequality

|J (t)| ≤ c1 ·∆saaA +c2 · |JB(t)| , (11)

which can be satisfied by choosing appropriate values for c1 and c2 upon obtaining the lower bound on ∆ saaA.
Inequality (11) may be difficult to satisfy if job sets JA(t) and JB(t) do not cover the whole job set J (t) at
time t. Thus, the properties A and B are usually chosen such that JA(t)

⋃

JB(t) = J (t), which indicates
|JA(t)|+ |JB(t)| ≥ |J (t)|.

Elaboration of step (2)

Step (2) is to relate the squashed allotment area with property A to the squashed work area so that Inequality (4)
holds, and to relate the total steps with property B to the aggregated span so that Inequality (5) holds. To
establish Inequalities (4) and (5), we can analyze, for each job Ji scheduled by the task scheduler X, relationship
between the total allotment of the job with property A and the work of the job, as well as relationship between
the total number of steps of the job with property B and the span of the job. That is, we can establish the
following relations:

aA(Ji) ≤ c3 · T1(Ji), (12)

sB(Ji) ≤ c4 · T∞(Ji) + c5, (13)

where the values of c3, c4 and c5 depend on the specific task scheduler X used.
First, we present a lemma that will be useful to the proof of Inequality (4).

Lemma 1 Let 〈αi〉 and 〈βi〉 be two lists of nonnegative numbers with n elements each. Suppose that αi ≤ βi

for i = 1, 2, . . . , n, then we have
sq-sum(〈αi〉) ≤ sq-sum(〈βi〉).

Proof. Let f : {1, 2, . . . , n} → {1, 2, . . . , n} be a permutation satisfying αf(1) ≤ αf(2) ≤ . . . ≤ αf(n), and let
g : {1, 2, . . . , n} → {1, 2, . . . , n} be a permutation satisfying βg(1) ≤ βg(2) ≤ . . . ≤ βg(n). We will show that
αf(i) ≤ βg(i) for i = 1, 2, . . . , n. Then, directly from the definition of squashed sum, the claim holds.

We prove αf(i) ≤ βg(i) for i = 1, 2, . . . , n by contradiction. Suppose that there exists j ∈ {1, 2, . . . , n} such
that αf(j) > βg(j). Then, there must be at least j numbers less than αf(j) in 〈βi〉, namely βg(1), βg(2), . . . , βg(j).
Since αi ≤ βi for i = 1, 2, . . . , n, we have αg(i) ≤ βg(i) for i = 1, 2, . . . , j. Thus, there are at least j numbers
less than αf(i) in 〈αi〉, namely, αg(1), αg(2), . . . , αg(j). However, since αf(j) is the jth smallest number in 〈αi〉,
we obtain a contradiction that there are at most j − 1 numbers less than αf(j) in 〈αi〉, thereby establishing
αf(i) ≤ βg(i) for i = 1, 2, . . . , n.

By applying Lemma 1 and Inequality (12), and according to Definitions 3 and 5, we obtain

saaA (J ) =
1

P
sq-sum(〈a(Ji)〉)

≤ 1

P
sq-sum(〈c3 · T1(Ji)〉)

= c3 ·
1

P
sq-sum(〈T1(Ji)〉)

= c3 · swa (J ) .
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To prove Inequality (5), we can simply sum up the number of steps that satisfy property B given in
Inequality (13) over all jobs, that is,

tsB (J ) =
∑

Ji∈J

sB(Ji)

≤
∑

Ji∈J

(c4 · T∞(Ji) + c5)

≤ c4 ·
∑

Ji∈J

T∞(Ji) + c5 · n

= c4 · T∞(J ) + c5 · n.

Remarks. The analysis presented in this section suggests that in order to conclude on the mean response
time performance of a two-level algorithm XY on batched parallel jobs, we need only choose two appropriate
properties A and B for the jobs according to the scheduling algorithm analyzed, and then search for a lower
bound on the change of the squashed allotment area ∆ saaA with property A in a time step, as well as for the
values of c3 and c4 that satisfy Inequalities (12) and (13) with property A and B, respectively.

6 Applications of the Analysis Framework

In this section, we will describe two OS allocators and two task schedulers, which when combined together can
form three different two-level adaptive scheduling algorithms. We apply the generalized analysis framework
given in the preceding section to the three algorithms and show their mean response time performances on
batched parallel jobs.

Equi-Partitioning (EQUI) OS allocator

Equi-Partitioning (EQUI) [37, 17] OS allocator divides the total number of processors equally among all active
jobs in the system at each time step. Hence, each job receives P/ |J (t)| processors at each time t regardless
of the task scheduler’s processor desire. Reallocation of processors only occurs when a job finishes execution
and leaves the system. In this section, as with [15, 17, 21], we assume that the processor allotments can be
non-integral. The fractional allotment to a job can be interpreted as time-sharing a processor with other jobs.
In the next section, we will present strategies for dealing with strictly integral allotments.

Dynamic Equi-Partitioning (DEQ) OS allocator

Dynamic Equi-Partitioning (DEQ) [30, 14, 15] OS allocator shares the total number of processors among all
active jobs in the system similarly as EQUI, except that DEQ never allots more processors to a job than the
job’s desire. Let J (t) denote the set of active jobs at time t. Based on the processor desires from all jobs in

J (t), DEQ allocates the processors as follows:

DEQ (t,J (t), P )

1 if J (t) = Ø return

2 S ← {Ji ∈ J (t) : d(Ji, t) ≤ P/ |J (t)|}
3 if S = Ø
4 for each Ji ∈ J (t)
5 a(Ji, t)← P/ |J (t)|
6 return

7 else

8 for each Ji ∈ S
9 a(Ji, t)← d(Ji, t)

10 DEQ (t,J (t)− S, P −
∑

Ji∈S
a(Ji, t))

As can be seen in the above pseudocode, if a job’s processor desire is not more than the equal share
P/ |J (t)| of processors, the job will be satisfied (line 2 and line 9). After that, the equal share of processors
will be recalculated excluding the jobs already satisfied and the processors already allocated. The remaining
processors will then be allocated to the remaining jobs by recursively calling the main procedure (line 10) until
all jobs’ processor desires are more than the equal share, in which case each remaining job will be deprived and
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get the current equal share of processors (lines 3-6). According to this algorithm, if there are deprived jobs at
a time step t, then all P processors must have been allocated at t. In addition, all deprived jobs have the same
number of allotted processors, which is greater than the number of processors allotted to any satisfied job, and
is greater than the initial equal share P/ |J (t)|.

Instantaneous Greedy (IG) task scheduler

Instantaneous Greedy (IG) task scheduler simply uses the number of ready tasks, or the instantaneous paral-
lelism of a job at any time step t as the processor desire for the job. Again, we assume that the instantaneous
parallelism (or the number of ready tasks) of a job may be non-integral, resulted from executing the job with
fractional allotments in previous time steps.

Adaptive Greedy (AG) task scheduler

Adaptive Greedy (AG) task scheduler [1] estimates a job’s processor desire for a time step based on the execution
characteristics of the job in the previous step, namely whether the processor desire has been satisfied and whether
the allotted processors have been efficiently utilized. Specifically, let u(Ji, t) denote the work completed by AG
on time step t. Then AG calculates the processor desire d(Ji, t) for any step t > 1 with a multiplicative-increase
multiplicative-decrease (MIMD) strategy as follows:

AG (t)

1 if u(Ji, t− 1) < a(Ji, t− 1)
2 then d(Ji, t) = d(Ji, t− 1)/2 ✄ inefficient
3 elseif a(Ji, t− 1) ≥ d(Ji, t− 1)
4 then d(Ji, t) = 2d(Ji, t− 1) ✄ efficient and satisfied
5 else d(Ji, t) = d(Ji, t− 1) ✄ efficient and deprived

The processor desire for the very first step is set to the total number of processors P , i.e., d(Ji, 1) = P . Unlike
IG task scheduler, AG is not utilizing the instantaneous parallelism of the job and hence is non-clairvoyant,
which is desirable if information about the job’s instantaneous parallelism is difficult to obtain. The rationale
of the MIMD strategy of AG is as follows. If the allotted processors in the previous step were not utilized
efficiently, then the parallelism of the job may not be as high. Therefore the processor desire is reduced by a
factor of 2 for the current step (line 1 and line 2). If the allotted processors were utilized efficiently and the
processor desire was satisfied, then the parallelism of the job could be even higher. Thus, to execute the job
more quickly, the processor desire is increased by a factor of 2 for the current step (line 3 and line 4). Lastly,
if the allotted processors were utilized efficiently but the desire was deprived, then it is not known whether
the processors could still be efficiently utilized had the desire been satisfied. Therefore, the processor desire is
not changed for the current step (line 5). In [1], a job is referred to as accounted at a time step t if the job is
both deprived in its processor desire as well as efficient in its processor utilization at t. Otherwise, the job is
deductible.

Note that we modify the original AG algorithm proposed in [1] in two ways. Firstly, we set the multiplicative
factor to 2 while in [1] it can take any value greater than 1. Secondly, we set the initial processor desire to
P while in [1] it is set to 1. The modification is because the multiplicative factor and the initial desire only
affect the processor waste of the job on deductable time steps [1], which we show in this paper is independent
of mean response time for the job set. In addition, as will be seen in the later part of the section, the second
modification also tightens the deductible time of the job by a logarithmic factor in terms of the total number
of processors in comparison to the bound given in [1].

Now, combining the two OS allocators and the two task schedulers presented so far, we get three different
two-level scheduling algorithms, namely XEQUI, IGDEQ, AGDEQ. Since EQUI OS allocator does not utilize
the processor desires from the task scheduler, no matter what task scheduler X is coupled with EQUI, the same
two-level algorithm will result as far as the jobs’ processor allotments are concerned. Hence, we use “XEQUI”
to denote the two-level algorithm that couples EQUI with any task scheduler. From the analysis to be given
shortly, however, we can see that the competitive ratio of XEQUI is minimized when EQUI is “coupled” with IG
task scheduler for analytical purposes. Table 1 summarizes the constant coefficients as well as the competitive
ratios for the three two-level algorithms. Their detailed analysis is presented in the following subsections.
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Table 1: The constant coefficients and the competitive ratios for XEQUI, IGDEQ and AGDEQ.
c1 c2 c3 c4 C1 + C2

XEQUI 2.15 1.58 1 1 3.73
IGDEQ 2 1 1 1 3
AGDEQ 2.34 1.45 1 2 5.24

XEQUI two-level scheduler

XEQUI couples the OS allocator EQUI with the task scheduler IG. The choice of IG as the task scheduler gives
the best competitive ratio for XEQUI. We choose jobs with property A to be the “deprived” jobs and jobs with
property B to be the “satisfied” jobs for XEQUI algorithm.

According to Step (1) given in Section 5, we need to derive the change of the squashed allotment area ∆ saaA
for jobs that are deprived from time t to t + 1. The following lemma shows a property of the squashed sum
drawing analogy from the XEQUI algorithm.

Lemma 2 Let 〈αi〉 and 〈βi〉 be two lists of nonnegative numbers with n elements each, and let h ≥ 0 be any
number. Suppose that βi = αi + si, where si is either h or 0 for i = 1, 2, . . . , n. Let l denote the number of
instances of si that have value h. We have

sq-sum(〈βi〉)− sq-sum(〈αi〉) ≥
hl(l+ 1)

2
.

Proof. Let Υ = {g|g : {1, 2, . . . , n} → {1, 2, . . . , n}} denote the set of all permutations on {1, 2, . . . , n}. Let
f ∈ Υ denote a permutation that satisfies βf(1) ≤ βf(2) ≤ · · · ≤ βf(n). Then, according to Definition 2, we have

sq-sum(〈βi〉) =

n
∑

i=1

(n− i+ 1)βf(i)

=

n
∑

i=1

(n− i+ 1)(αf(i) + sf(i))

=

n
∑

i=1

(n− i+ 1)αf(i) +

n
∑

i=1

(n− i+ 1)sf(i)

≥ min
g∈Υ

n
∑

i=1

(n− i+ 1)αg(i) +min
k∈Υ

n
∑

i=1

(n− i+ 1)sk(i)

= sq-sum(〈αi〉) + sq-sum(〈si〉) .

The squashed sum of 〈si〉, according to definition, is simply given by sq-sum (〈si〉) =
∑n

i=n−l+1(n−i+1)·h =
∑l

i=1 i · h = hl(l+ 1)/2.

For the analysis of XEQUI, we now use Lemma 2 to complete Step (1). Let αi and βi represent the total

deprived allotment for a job Ji from time t+1 and t onwards, respectively, i.e., αi =
∑T (J )

t′=t+1 a(Ji, t
′)·[a(Ji, t′) <

d(Ji, t
′)] and βi =

∑T (J )
t′=t a(Ji, t

′) · [a(Ji, t′) < d(Ji, t
′)]. Let si = P/ |J (t)| denote the deprived allotment for

job Ji on time t. By Definition 5 and Lemma 2, we have

∆ saaA = saaA

(

J
(−→
t
))

− saaA

(

J
(−−→
t+ 1

))

=
1

P
(sq-sum(〈βi〉)− sq-sum(〈αi〉))

≥ |JA(t)| (|JA(t)| + 1)

2 |J (t)| . (14)

Substituting Inequality (14) into Inequality (11), we need to choose values for c1 and c2 to satisfy

|J (t)| ≤ c1 ·
|JA(t)| (|JA(t)|+ 1)

2 |J (t)| + c2 · |JB(t)| . (15)

Given |J (t)| = |JA(t)|+ |JB(t)|, we can simplify Inequality (15) to

(c1 − 2) |JA(t)|2 + (2c2 − 4) |JA(t)| |JB(t)| + (2c2 − 2) |JB(t)|2 ≥ 0 . (16)

9



One set of sufficient conditions that satisfy Inequality (16) is given by

c1 − 2 ≥ 0 =⇒ c1 ≥ 2 , (17)

2c2 − 2 ≥ 0 =⇒ c2 ≥ 1 , (18)

4(c1 − 2)(2c2 − 2) ≥ (2c2 − 4)2 =⇒ 2c1c2 − 2c1 ≥ c22 . (19)

For task scheduler IG, since all processors allotted to deprived jobs will be used efficiently on the work
of the jobs, consequently, we have aA(Ji) ≤ T1(Ji), which according to the elaboration of Step (2) gives
saaA (J ) ≤ swa (J ).

On a satisfied time step for a job scheduled by task scheduler IG, the number of allotted processors is at
least the instantaneous parallelism of the job. Therefore, all ready tasks of the job on that step will be executed,
which will result in the span of the job being reduced by 1. Thus, the total number of satisfied steps for the job
is no more than the total span of the job, i.e., sB(Ji) ≤ T∞(Ji), which gives tsB (J ) ≤ T∞ (J ).

Now, minimizing c1+c2 with the constraints given in Inequalities (17), (18) and (19) yields c1 = 1+2/
√
3 ≈

2.15 and c2 = 1 + 1/
√
3 ≈ 1.58. Therefore, the competitive ratio of XEQUI is c1 + c2 = 2 +

√
3 ≈ 3.73.

IGDEQ two-level scheduler

IGDEQ couples the OS allocator DEQ with the task scheduler IG. We choose jobs with property A to be “all”
jobs in the system and jobs with property B to be the “satisfied” jobs.

We need to derive the change of the squashed allotment area ∆ saaA for all jobs from time t to t + 1. The
following lemma abstracts the processor allocations for the DEQ algorithm and is helpful for our derivation.

Lemma 3 Let 〈αi〉 and 〈βi〉 be two lists of nonnegative numbers with n elements each, and let h ≥ 0 be any
number. Suppose that βi = αi + si, where 0 ≤ si ≤ h for i = 1, 2, . . . , n, and

∑n

i=1 si = P . Let l denote the
number of instances of si that have value h. If l > 0, then we have

sq-sum(〈βi〉)− sq-sum(〈αi〉) ≥
P (l + 1)

2
.

Proof. From the proof of Lemma 2, we can see that Inequality (14) still holds here. Therefore, we need only
show that sq-sum(〈si〉) ≥ P (l + 1)/2.

To simplify the notations, rename the elements of list 〈si〉 such that s1 ≤ s2 ≤ · · · ≤ sn−l < sn−l+1 =

sn−l+2 = · · · = sn = h. Since
∑n

i=1 si = P , we have h = (P −
∑n−l

i=1 si)/l. The squashed sum of 〈si〉 is thus
given by

sq-sum(〈si〉) =

n
∑

i=1

(n− i+ 1)si

=

n−l
∑

i=1

(n− i+ 1)si +

n
∑

i=n−l+1

(n− i + 1)si

=
n−l
∑

i=1

(n− i+ 1)si +
(P −∑n−l

i=1 si)

l

l
∑

i=1

i

=
n−l
∑

i=1

(n− i+ 1)si +
(P −∑n−l

i=1 si)

l
· l(l + 1)

2

=

∑n−l

i=1 (2n− 2i+ 2)si
2

+
(P −∑n−l

i=1 si)(l + 1)

2

=
P (l + 1)

2
+

∑n−l
i=1 (2n− 2i− l+ 1)si

2

≥ P (l + 1)

2

The last inequality holds because si ≥ 0 and 2n− 2i− l + 1 > 0 for i = 1, 2, . . . , n− l.

Let αi and βi denote the total allotment for job Ji from time t + 1 and t onwards, respectively, i.e.,

αi =
∑T (J )

t′=t+1 a(Ji, t
′) and βi =

∑T (J )
t′=t a(Ji, t

′). Let si denote the processor allotment for job Ji on time t. We
assume that there is at least one deprived job on time t; otherwise Inequality (11) will hold trivially as long as
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c2 ≥ 1. Thus, we have
∑n

i=1 si = P . Let JD denote the set of deprived jobs at time t. By Definition 5 and
Lemma 3, we have

∆ saaA = saaA

(

J
(−→
t
))

− saaA

(

J
(−−→
t+ 1

))

=
1

P
(sq-sum(〈βi〉)− sq-sum(〈αi〉))

≥ |JD(t)| + 1

2
. (20)

Substituting Inequality (20) into Inequality (11), we need to choose values for c1 and c2 to satisfy

|J (t)| ≤ c1 ·
|JD(t)|+ 1

2
+ c2 · |JB(t)| . (21)

Given |J (t)| = |JD(t)|+ |JB(t)|, the choices of c1 ≥ 2 and c2 ≥ 1 can obviously satisfy Inequality (21).
Since DEQ never allots more processors than a job desires, all allotted processors will be efficiently utilized

by the task scheduler IG. Hence, we also have c3 = 1 and c4 = 1 in this case. Therefore, taking the minimum
values of c1 and c2, the competitive ratio of IGDEQ is given by c1 + c2 = 3.

AGDEQ two-level scheduler

AGDEQ couples the OS allocator DEQ with the task scheduler AG. We choose jobs with property A to be the
“accounted” jobs and jobs with property B to be the “deductible” jobs. Recall that a job is accounted if it is
both deprived and efficient, and a job is deductible if it is either satisfied or inefficient.

Since an accounted job on time t is also deprived, according to the DEQ algorithm, all accounted jobs get
the same allotment, which is greater than the equal share of P/ |J (t)|. The scenario described by Lemma 2 is
also applicable to the accounted jobs here, and therefore the change of the squashed allotment area ∆ saaA for
the accounted jobs from time t to t+ 1 satisfies Inequality (14) as well. Thus, the values of c1 and c2 are also
constrained by Inequalities (17), (18) and (19).

In addition, an accounted job Ji on a time step is also efficient. Thus, all processors allotted to the accounted
job are efficiently utilized. Hence, again we have c3 = 1. We now bound the value of c4. By setting the initial
desire to 1, the authors in [1] have established the following bound on the total number of deductible steps
for a job Ji scheduled by AG: sB(Ji) ≤ 2T∞(Ji) + lgP + 1. This bound is obtained by considering the total
number of inefficient steps and the total number of efficient and satisfied steps of the job, separately. The
former is at most the span of the job, which is reduced by 1 on each inefficient step. The latter is related to the
former by exploring the correspondence between the set of inefficient steps and the set of efficient and satisfied
steps induced by the multiplicative-increase multiplicative-decrease strategy [3]. Adopting the same analysis,
we can show that, by setting the initial desire to P , the total number of deductible steps turns out to satisfy
sB(Ji) ≤ 2T∞(Ji) + 1. Hence, we have c4 = 2.

Minimizing c1+2c2 with the constraints given in Inequalities (17), (18) and (19) yields c1 = 1+3/
√
5 ≈ 2.34

and c2 = 1 + 1/
√
5 ≈ 1.45. Therefore, the competitive ratio of AGDEQ is c1 + 2c2 = 3 +

√
5 ≈ 5.24.

Remarks. The competitive ratios of IGDEQ and AGDEQ shown in Table 1 improve upon the original ratios
of the respective algorithms given in [14] and [21]. The improvements come from choosing more appropriate
properties A and B for each algorithm, and our analysis framework given in Section 5 provides sufficient
flexibility in this regard. Note that both our results shown in Table 1 and the results of [14, 17, 21] assume that
fractional processor allotments are allowed. In the next section, we will present strategies that handle strictly
integer allotments.

7 Round Robin Augmented Scheduling: RR-XY Algorithm

In the previous sections, we assumed that the OS allocator can allot fractional number of processors to a job. In
this section, we provide strategies to restrict the allotments to strictly integer values. In particular, we present
a round robin (RR) strategy that augments a two-level adaptive scheduling algorithm XY when the number
of jobs in the system is more than the number of processors. We call the resulting algorithm RR-XY. We will
describe the round robin strategy in detail and analyze the mean response time of RR-XY on batched parallel
jobs.

First of all, when the number of jobs in the system is not more than the number of processors at time t,
i.e., |J (t)| ≤ P , using EQUI as an example, we can allot ⌈P/ |J (t)|⌉ processors to (P mod |J (t)|) arbitrarily
selected jobs, and allot ⌊P/ |J (t)|⌋ processors to the rest on that time step. The same strategy can be applied
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to DEQ on deprived jobs, as the processor desires from both IG and AG are strictly integral as well. With this
simple strategy, we observe that the changes of the squashed sum as given in Inequalities (2) and (3) will be
reduced by at most a factor of 2, since in the worst case, the integral allotment to a job is at least half of its
original allotment. We can then recalculate the constant coefficients and the competitive ratios for the three
algorithms, and their revised values are given in Table 2.

Table 2: The constant coefficients and the competitive ratios for XEQUI, IGDEQ and AGDEQ when the
processor allotments are restricted to integer values.

c1 c2 c3 c4 C1 + C2

XEQUI 4.12 1.71 1 1 5.83
IGDEQ 4 1 1 1 5
AGDEQ 4.3 1.58 1 2 7.46

On the other hand, when the number of jobs is more than the number of processors at time t, i.e., |J (t)| > P ,
we use RR-XY algorithm to schedule the jobs. RR-XY works by maintaining a queue of all jobs in the system.
At the beginning of each time step, it pops P jobs from the front of the queue, and allots one processor to
each of them. At the end of the step, RR-XY pushes the P jobs back to the end of the queue if they are not
completed. In this paper, since we assume that all jobs in the job set J arrive at time step 0, the number of
uncompleted jobs decreases monotonically. When the number of uncompleted jobs drops down to P or below,
RR-XY switches back to the XY algorithm.

In order to analyze the performance of RR-XY, we divide the batched job set J into two subsets: RR set and
XY set. The RR set, denoted as JRR, includes all jobs in J that are entirely scheduled by RR throughout their
execution. The XY set, denoted as JXY , includes all jobs in J that are scheduled by RR at the beginning, and by
XY eventually. There exists a unique time step t called the final RR step such that t is the last step when jobs are
scheduled by RR, while from step t+1 onwards, XY takes over. Hence, there must be more than P uncompleted
jobs at the beginning of t, and no more than P uncompleted jobs immediately after t. For convenience, Let
n = |J |, n1 = |JRR| and n2 = |JXY |. Therefore, we have n = n1 + n2. Since RR always gives each job an
equal share of computation time, the work done for two uncomplete jobs in JRR at any time differs by at most
one. Hence, a job in JRR with strictly less work will be completed no later than a job in JRR with more work.
Rename the jobs according to their work such that T1 (J1) ≤ T1 (J2) ≤ · · · ≤ T1 (Jn), breaking the ties according
to the completion time of the jobs. We have JRR = {J1, J2, . . . , Jn1

} and JXY = {Jn1+1, Jn1+2, . . . , Jn}.
Now, suppose that a job Ji ∈ JRR is completed at time t = T (Ji), then any other job Jj ∈ J and j < i

should have also completed by t. For any other job Jk ∈ J and k > i, no more than P of them should have
completed one more unit of work than the total work of Ji, and all the rest should have completed no more
work than the total work of Ji. Therefore, the total amount of work completed in J by time t is no more than
(n− i)T1 (Ji)+

∑i

j=1 T1 (Jj)+P . Since the P processors are always busy at all time under the schedule of RR,
the completion time T (Ji) of job Ji is thus given by

T (Ji) <
1

P



(n− i)T1 (Ji) +

i
∑

j=1

T1 (Jj)



 + 1. (22)

We are now ready to show the performance of RR-XY algorithm. We prove in the following theorem that the
competitive ratio of XY algorithm can be carried over to RR-XY algorithm, provided that certain conditions
are satisfied.

Theorem 4 Suppose that the total response time for any batched job set J scheduled by XY algorithm on P
processors, where |J | ≤ P , satisfies

RXY (J ) ≤ C1 · swa (J ) + C2 · T∞ (J ) + C3 · n. (23)

Then RR-XY algorithm is (C1 + C2)-competitive with respect to the mean response time of any batched job set,
provided that C1 and C3 are constants and C1 ≥ 2.

Proof. Our analysis is divided into the following three steps: (1) we calculate the total response time R(JRR)
of the RR set. (2) we derive the total response time R(JXY ) of the XY set. (3) we sum them up and obtain
the main result.
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(1) Calculate R(JRR): Since for any job Ji ∈ JRR, its response time is given by Inequality (22), the total
response time of all jobs in JRR is then

R(JRR) <
1

P





n1
∑

i=1

(n− i)T1 (Ji) +

n1
∑

i=1

i
∑

j=1

T1 (Jj)



 + n1

=
1

P

(

n1
∑

i=1

(n− i)T1 (Ji) +

n1
∑

i=1

(n1 − i+ 1)T1 (Ji)

)

+ n1

≤ 2

P

n1
∑

i=1

(n− i+ 1)T1 (Ji)−
n2

P

n1
∑

i=1

T1 (Ji) + n1. (24)

(2) Calculate R(JXY ): The n2 jobs in JXY are scheduled by RR until the time step t = T (Jn1
) at which

job Jn1
completes, and then scheduled by XY afterwards. The total response time of JXY is then

R (JXY ) = R
(

JXY

(−−→
t+ 1

))

+ n2 · T (Jn1
). (25)

For each job Ji ∈ JXY , the work completed by time t is at least T1

(

Ji

(←−
t
))

≥ T1 (Jn1
) − 1, and the

remaining work after t is then given by T1

(

Ji

(−−→
t+ 1

))

≤ T1 (Ji) − T1 (Jn1
) + 1. The squashed work area

JXY

(−−→
t+ 1

)

, according to Definition 2, Equation (3) and Lemma 1, satisfies

swa
(

JXY

(−−→
t+ 1

))

≤ 1

P

n2
∑

i=1

(n2 − i+ 1) (T1 (Ji)− T1 (Jn1
) + 1)

=
1

P

n
∑

i=n1+1

(n− i+ 1) (T1 (Ji)− T1 (Jn1
) + 1)

=
1

P

n
∑

i=n1+1

(n− i+ 1)T1 (Ji)−
n2(n2 + 1)

2P
T1 (Jn1

) +
n2(n2 + 1)

2P

≤ 1

P

n
∑

i=n1+1

(n− i+ 1)T1 (Ji)−
n2(n2 + 1)

2P
T1 (Jn1

) + P. (26)

The last step of Inequality (26) is because n2 ≤ P from the description of the RR-XY algorithm. Now, with
condition C1 ≥ 2, and substituting Inequalities (22), (23) and (26) into Equation (25), we have

R (JXY ) = R
(

JXY

(−−→
t+ 1

))

+ n2 · T (Jn1
)

≤ C1 · swa
(

JXY

(−−→
t+ 1

))

+ C2 · T∞

(

JXY

(−−→
t+ 1

))

+ C3 · n2 + n2 · T (Jn1
)

≤ C1

P

n
∑

i=n1+1

(n− i+ 1)T1 (Ji)−
C1

2
· n2(n2 + 1)

P
T1 (Jn1

) + C1 · P

+C2 · T∞ (J ) + C3 · n2 +
n2

P

(

n2T1 (Jn1
) +

n1
∑

i=1

T1 (Ji)

)

+ n2

≤ C1

P

n
∑

i=n1+1

(n− i+ 1)T1 (Ji) + C2 · T∞ (J ) + n2

P

n1
∑

i=1

T1 (Ji)

+C1 · P + C3 · n2 + n2. (27)

(3) Calculate R (J ): Summing together R(JRR) in Inequality (24) and R(JXY ) in Inequality (27), the
total response time of J is

R (J ) = R (JRR) +R (JXY )

≤ C1

P

n
∑

i=1

(n− i+ 1)T1 (Ji) + C2 · T∞ (J ) + C1 · P + (C3 + 1) · n

≤ C1 · swa (J ) + C2 · T∞ (J ) + (C1 + C3 + 1) · n.
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The mean response time of job set J is then R(J ) ≤ (C1 +C2) ·R
∗
(J ) +C1 +C3 +1, which indicates that

RR-XY is (C1 + C2)-competitive when C1 and C3 are constants.

Based on Theorem 4, we can conclude that the competitive ratios summarized in Table 2 for the three
algorithms we considered also apply to the corresponding algorithms with round-robin augmentation.

8 Discussion and Conclusion

We have presented a generalized framework for analyzing the mean response time of online scheduling algorithms
on batched parallel jobs. We have demonstrated the use of this framework on three two-level adaptive scheduling
algorithms, namely XEQUI, IGDEQ, and AGDEQ, and we have improved the competitive ratios of IGDEQ
and AGDEQ from their previous results.

In fact, the three algorithms studied in this paper represent schedulers with different degrees of non-
clairvoyance, and therefore can be used in different system environments. The simplest algorithm XEQUI,
being completely non-clairvoyant, is probably most suitable in highly dynamic environments, where no infor-
mation about the jobs is known. In other circumstances, where the jobs’ current parallelism is available, the
clairvoyant algorithm IGDEQ can achieve better efficiency with its more dynamic processor allocation policy.
In yet other systems, where the jobs’ current parallelism is not known, but their past execution characteristics
can be measured and they do not change frequently, AGDEQ that is only aware of the history of the jobs, may
yield desirable performances in this case. As we have demonstrated in this paper, the clairvoyant algorithm
IGDEQ indeed gives the best competitive ratio among the three algorithm. It may be a bit surprising, however,
that AGDEQ algorithm, which utilizes the jobs’ past parallelism, has a larger competitive ratio than the non-
clairvoyant algorithm XEQUI. The reason is because we do not assume that the future parallelism of the jobs
is correlated to their past, and AGDEQ that attempts to explore this correlation may end up having a poorer
processor distribution among the jobs in the worst case and hence a larger competitive ratio. Nevertheless,
the empirical results in [36, 2, 22] have shown that adaptive schedulers that utilize jobs’ historical parallelism
actually have much better performance in practice and that a variant of AGDEQ in fact outperforms EQUI
on different workload conditions [2]. Incidentally, several empirical results [37, 30, 27, 29, 40, 13, 19] have also
studied various two-level algorithms and their performances on different platforms for the scheduling of parallel
jobs.

Finally, for scheduling non-batched sequential or parallel jobs, some researchers [11, 20, 26, 4, 6, 16, 34]
have presented various algorithms and analyzed their performances. In particular, using resource augmentation
analysis [26], which allows an online algorithm to have access to more processors than the optimal, Edmonds [16]
has shown that EQUI achieves O(1)-speed O(1)-competitiveness with respect to the mean response time on
parallel jobs modeled by multiple phases of arbitrary non-decreasing and sub-linear speedup functions. Using
the same model, Robert et al. [34] have generalized the results to jobs with precedence constraints. It will be
of particular interest for the parallel scheduling community to see if such analysis can be extended to two-level
adaptive scheduling algorithms, such as IGDEQ and AGDEQ, to bound their mean response time performances
in this more general setting.
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