
Improved Semi-Online Makespan Scheduling with a Reordering Buffer

Hongyang Sun, Rui Fan

School of Computer Engineering, Nanyang Technological University, Singapore

{sunh0007, fanrui}@ntu.edu.sg

Abstract: We study semi-online scheduling with a reordering buffer for identical parallel machines. In this
problem, jobs arrive one by one and the online algorithm is equipped with a buffer of limited size, which can
be used to reorder the jobs when making scheduling decisions. When the buffer is full, one of the jobs in the
buffer must be irrevocably assigned to a machine before the next job can be revealed. No preemption is allowed
and the objective is to minimize the makespan. We propose an optimal online algorithm using a buffer size
of 2.068m and a 1.5-competitive algorithm using a buffer size of 1.477m, where m is the number of machines.
Both results improve upon the best existing buffer sizes for the corresponding competitive ratios by a constant
fraction of m.

Keywords: Semi-online scheduling; Reordering buffer; Competitive analysis

1 Introduction

In a classical online scheduling problem, a sequence of n jobs arrive one by one, and they need to be scheduled
on m identical parallel machines. Each job must be assigned irrevocably to a machine before the next job
can be revealed. No preemption is allowed, and the objective is to minimize the makespan, i.e., the maximum
completion time of any job. For this classical online problem, the well-known list scheduling algorithm by
Graham [6], which always assigns each arriving job to the machine with the least load, is (2−1/m)-competitive.
Several improved deterministic algorithms [2, 7, 1, 5] have been obtained over the years for large m. The current
best algorithm gives a competitive ratio of 1.9201 [5], and the current best lower bound is 1.88 [10].

In this paper, we consider a semi-online variant of the above scheduling problem. In this variant, jobs still
arrive one by one, but an online algorithm is equipped with a buffer of limited size, say k, which can be used to
reorder the jobs when making scheduling decisions. At any time when the buffer is not full, the algorithm can
choose to admit the arriving job into the buffer without having to assign any job to a machine. However, when
the capacity of the buffer is reached, i.e., there are already k jobs in the buffer, one of the jobs stored in the
buffer or the arriving job must be irrevocably assigned to a machine before the next job can be revealed. Hence,
the classical online scheduling problem can be considered as a special case of this problem with a reordering
buffer of size 0.

For this semi-online problem, Kellerer et al. [8] and Zhang [11] independently showed that when m = 2 a
competitive ratio of 4/3 can be achieved with a reordering buffer of size k = 1, which is the minimum buffer size
that allows reordering. The ratio 4/3 was also shown to be a lower bound in this case even when a larger buffer
is allowed [8]. Englert et al. [4] considered this problem for general m, and presented an online algorithm with
competitive ratio rm, whose value monotonically increases with m and is the solution to a certain equation.
Specifically, for m = 2, r2 = 4/3 and limm→∞ rm ≈ 1.4659. Their algorithm uses a reordering buffer of size
k = ⌈(1 + 2/rm) ·m⌉ + 1 for any m ≥ 2. They also showed that any semi-online algorithm cannot achieve a
better competitive ratio using a reordering buffer whose size does not depend on the input size, i.e., the number
of jobs n.

In contrast to the classical online scheduling problem, where there is still a gap between the best competitive
ratio (1.9201) and the best lower bound (1.88), the competitive ratio rm for the semi-online problem is completely
settled and is considerably below the best result in the classical setting. The challenge for this problem, therefore,
has become finding the minimum buffer size k in order to admit the optimal competitive ratio [3]. It was shown
in [4] that no online algorithm with a buffer size smaller than ⌊m/2⌋ can achieve a competitive ratio less than
3/2. This suggests that any online algorithm will require a buffer size in the range of [0.5m, 2.364m] in order
to achieve the optimal competitive ratio for large m. In this paper, we take a step forward in closing this gap
by presenting an online algorithm that requires a smaller buffer size. The following theorem states our main
result.

1

Theorem 1 We present an online algorithm that achieves the optimal competitive ratio rm using a reordering
buffer of size k = ⌈(5 − 2rm) ·m⌉+ 1 for any m ≥ 2.

For large m, our algorithm uses a buffer size of 2.068m while the algorithm by Englert et al. needs a buffer
size of 2.364m. This improves upon the existing result by nearly 0.3m in the buffer size.

In addition, we consider the tradeoff between the buffer size and the competitive ratio. Specifically, to get
a competitive ratio of 3/2, Englert et al. [4] presented an algorithm, which requires a reordering buffer of size
⌈(2/3 + 2/(1 + ln 3)) ·m⌉ ≥ 1.619m. Recently, Lan et al. [9] improved the buffer size to 1.5m while maintaining
the same competitive ratio. In this paper, we present a 3/2-competitive algorithm that further improves the
buffer size given in [9] by 0.023m for large m. The following theorem states our result in this case.

Theorem 2 We present a 3/2-competitive online algorithm using a reordering buffer of size k = ⌈(1 + 1/(1 + ln 3)) ·m⌉+
1 ≤ 1.477m+ 1 for any m ≥ 2.

2 Preliminaries

In this section, we present some preliminary concepts and notations. Let M = {M0,M1, · · · ,Mm−1} denote a
set of m identical parallel machines, and let J = {J1, J2, · · · , Jn} denote a sequence of n jobs, which arrive one
by one into the system. For convenience, let t denote the time right after job Jt has arrived but the algorithm
has not done any job assignment in response to the arrival of Jt. For each machine Mi, where 0 ≤ i ≤ m − 1,
let Li(t) denote its load at time t, i.e., the sum of the sizes of all jobs assigned to it after job Jt arrives. Let

T (t) =
∑m−1

i=0 Li(t) denote the total load of all machines at time t. The weight wi of machine Mi, which was
first defined in [4] and will be heavily used in the analysis of the optimal online algorithm, is given by

wi :=

{ rm
m if 0 ≤ i < rm−1

rm
·m

rm−1
i if rm−1

rm
·m ≤ i ≤ m− 1

,

where rm is the optimal competitive ratio, and is the solution to the equation
∑m−1

i=0 wi = ⌈(rm − 1)m/rm⌉ ·

rm/m + (rm − 1) ·
∑m−1

i=⌈(rm−1)m/rm⌉ 1/i = 1. Note that in the above equation we ensure the weights of all
machines sum up to 1. Solving rm numerically shows that its value monotonically increases with m from
r2 = 4/3 to limm→∞ rm ≈ 1.4659 [4]. For the convenience of our analysis, we also define index i′ to be

i′ :=

{
⌊

rm−1
rm

·m
⌋

if 0 ≤ i < rm−1
rm

·m

i if rm−1
rm

·m ≤ i ≤ m− 1
.

The following lemma provides a useful lower bound on the sum of wi · i
′.

Lemma 1 For m ≥ 2,
∑m−1

i=0 wi · i
′ ≥ (rm − 1) ·m− 1.

Proof. According to definitions, wi · i
′ ≥ rm − 1 − rm/m if 0 ≤ i < (rm − 1) ·m/rm and wi · i

′ = rm − 1 if
(rm − 1) ·m/rm ≤ i ≤ m− 1. Therefore, we have

m−1
∑

i=0

wi · i
′ ≥ (rm − 1) ·m− rm/m · ((rm − 1) ·m/rm + 1)

= (rm − 1) ·m− (rm − 1 + rm/m)

≥ (rm − 1) ·m− 1. (1)

The last inequality is because rm−1+rm/m ≤ 1, since r2−1+r2/2 = 1 and rm−1+rm/m < 1.5−1+1.5/3 = 1
for all m ≥ 3.

Both algorithms we present in this paper follow the basic three-phase procedure [4]: An algorithm first starts
with the initial phase, in which it admits k jobs into the reordering buffer without assigning any job to any
machine. Then, it enters the iterative phase. At each step of this phase, when a new job arrives, the smallest
job among the ones in the buffer and the arriving job is selected and assigned to a machine, the choice of which
depends on the target competitive ratio. After all jobs have arrived, the algorithm enters the final phase by
scheduling the remaining jobs in the buffer. The assignment scheme for this phase again depends on the target
competitive ratio. Based on this general three-phase framework, the following two sections present the details
of our rm-competitive algorithm and 3/2-competitive algorithm, respectively.

2

Algorithm 1

Require: Buffer size k = ⌈(5− 2rm) ·m⌉+ 1
Ensure: Optimal competitive ratio rm

1: Initial phase: Admit the first k jobs, i.e., J1, · · · , Jk, into the reordering buffer without assigning any job
to any machine.

2: Iterative phase: At any time t right after a new job Jt arrives, where k+1 ≤ t ≤ n, find a job J of smallest
size p among all the jobs in the buffer and Jt. Assign J to a machine Mi whose load at time t satisfies

Li(t) ≤ wi · (T (t) + (k + 1− 2(m− i′)) · p)− p,

where T (t) denotes the total load of all machines at time t after job Jt has arrived but before job J is
assigned.

3: Final phase: At the end of the iterative phase, k jobs remain the reordering buffer. There are two steps in
the final phase.

• In the first step, the k remaining jobs are first scheduled virtually on a set M ′ = {M ′
0,M

′
1, · · · ,M

′
m−1}

of m empty machines using the Longest Processing Time (LPT) algorithm, which assigns the jobs in
descending order of size to a machine with minimum load. However, the schedule is aborted when
a new job assignment will make one of the virtual machines have more than two jobs on it. Let L′

i

denote the load of virtual machine M ′
i at the end of this step, and assume that L′

0 ≤ L′
1 ≤ . . . ≤ L′

m−1.
Then for each 0 ≤ i ≤ m− 1, schedule the jobs of virtual machine M ′

i on the actual machine Mi.

• In the second step, schedule the remaining jobs in the reordering buffer using the greedy algorithm,
which assigns the jobs in any order to a machine with minimum load.

3 An Optimal rm-competitive Algorithm

Our optimal competitive algorithm uses a reordering buffer of size k = ⌈(5− 2rm) ·m⌉+1, and it is described
in detail in Algorithm 1. Compared to the algorithm proposed in [4], the novelty of our algorithm lies in machine
selection when assigning jobs in the iterative phase. In particular, instead of using a uniform total load for all
machines, our algorithm uses non-uniform loads for different machines. Based on an important observation, we
show that such nonuniformity leads to the optimal competitive ratio while requiring a smaller buffer size.

Before proving the optimality of the algorithm, we first show in the following lemma that the iterative phase
is always feasible.

Lemma 2 At any time t in the iterative phase after job Jt has arrived but before job J with smallest size p is
assigned, there always exists a machine Mi whose load satisfies Li(t) ≤ wi · (T (t) + (k + 1− 2(m− i′)) · p)− p,
where k = ⌈(5 − 2rm) ·m⌉+ 1.

Proof. Suppose that the load of machine Mi is strictly greater than wi · (T (t) + (k + 1− 2(m− i′)) · p) − p

for all 0 ≤ i ≤ m− 1. Since
∑m−1

i=0 wi = 1 by definition and
∑m−1

i=0 wi · i
′ ≥ (rm − 1) ·m− 1 from Lemma 1, the

total load of all machines at time t satisfies

T (t) >

m−1
∑

i=0

(wi · (T (t) + (k + 1− 2(m− i′)) · p)− p)

= T (t) +

m−1
∑

i=0

(wi · (k + 1− 2(m− i′)) · p)−m · p

= T (t) +

(

k + 1− 2m+ 2

m−1
∑

i=0

wi · i
′

)

· p−m · p

≥ T (t) + ((3− 2rm) ·m+ 2(rm − 1) ·m) · p−m · p

= T (t),

which yields a contradiction. Hence, at least one machine satisfies the target load at any time, so the iterative
phase is always feasible.

Now, we will prove a sequence of lemmas in the following, which will bound the load of any machine Mi

at the end of each step of the online algorithm. The last lemma of the section (Lemma 5) will then imply

3

Theorem 1 and hence the optimality of the algorithm. For convenience, let n + 1 denote the time after the
iterative phase has finished, and let t1 and t2 denote the time at the end of the first step and the second step
of the final phase, respectively.

Lemma 3 At time n+1 after the iterative phase has ended, the load of each machine Mi satisfies Li(n+1) ≤
wi · (T (n+ 1) + (k − 2(m− i′)) · pmin), where pmin is the smallest size of all jobs remaining in the buffer.

Proof. Let t ≤ n + 1 denote the time right before the last job J is scheduled on machine Mi, and let
p denote the size of J . Apparently, we have T (t) + p ≤ T (n + 1), and since the algorithm always assigns
the smallest job during the iterative phase, we also have p ≤ pmin. Because job J is assigned to machine
Mi, according to the choice of the algorithm and Lemma 2, the load of machine Mi at time t must satisfy
Li(t) ≤ wi · (T (t) + (k + 1− 2(m− i′)) · p)− p. Also because k− 2(m− i′) ≥ 0 for all i′ and m ≥ 2, the load of
the machine at the end of the iterative phase satisfies Li(n+1) = Li(t)+p ≤ wi·(T (t) + (k + 1− 2(m− i′)) · p) ≤
wi · (T (n+ 1) + (k − 2(m− i′)) · pmin).

Lemma 4 At time t1 after the first step of the final phase has ended, the load of each machine Mi satisfies
Li(t1) ≤ rm · OPT , where OPT denotes the minimum makespan achieved by an optimal offline algorithm.

Proof. Recall that in the first step of the final phase, the k remaining jobs in the reordering buffer are first
scheduled by the LPT algorithm on m virtual machines, and this process is aborted with each virtual machine
having at most 2 jobs on it. Since it is well known that LPT produces an optimal schedule if at most two jobs
are assigned to each machine, we have L′

i ≤ OPT for each 0 ≤ i ≤ m− 1. Let Ji denote the set of jobs in the
reordering buffer which are not scheduled on virtual machines M ′

i to M ′
m−1. Then, we have | Ji | ≥ k−2(m− i).

Let pj denote the size of any job Jj ∈ Ji, and we have that pj is at least the smallest size pmin of all jobs in the
buffer. Therefore, the makespan of the optimal schedule can be bounded by

OPT ≥
T (n+ 1) +

∑m−1
l=i L′

l +
∑

Jj∈Ji
pj

m

≥
T (n+ 1) + (m− i) · L′

i + (k − 2(m− i)) · pmin

m
, (2)

which holds for each 0 ≤ i ≤ m − 1. We now bound the loads of the machines at the end of the first step for
the following two cases.

Case (1): For each rm−1
rm

·m ≤ i ≤ m− 1, we have wi =
rm−1

i and i′ = i according to the definitions of wi

and i′. Based on Lemma 3 and Inequality (2), the load of machine Mi at time t1 is given by

Li(t1) = Li(n+ 1) + L′
i

≤ wi · (T (n+ 1) + (k − 2(m− i)) · pmin) + L′
i

≤
rm − 1

i
· (m · OPT − (m− i) · L′

i) + L′
i

=
(rm − 1) ·m

i
· (OPT − L′

i) + rm · L′
i

≤ rm · (OPT − L′
i) + rm · L′

i

= rm · OPT.

Case (2): For each 0 ≤ i < rm−1
rm

· m, we have wi = rm
m and i′ =

⌊

rm−1
rm

·m
⌋

. Define l =
⌊

rm−1
rm

·m
⌋

≤
rm−1
rm

· m, so we have L′
i ≤ L′

l. Also from Lemma 3 and Inequality (2), the load of machine Mi at time t1 is
given by

Li(t1) = Li(n+ 1) + L′
i

≤ wi · (T (n+ 1) + (k − 2 (m− l)) · pmin) + L′
i

≤
rm
m

· (m · OPT − (m− l) · L′
l) + L′

l

≤
rm
m

·

(

m · OPT −
1

rm
·m · L′

l

)

+ L′
l

= rm · OPT.

4

Lemma 5 At time t2 after the second step of the final phase has ended, the load of each machine Mi satisfies
Li(t2) ≤ rm · OPT , where OPT denotes the minimum makespan achieved by an optimal offline algorithm.

Proof. Suppose that l largest jobs out of the k remaining jobs in the buffer are scheduled during the first step
of the final phase by the LPT algorithm. Now, consider the l + 1 largest jobs in the reordering buffer before
the final phase begins. An optimal schedule for these l+ 1 jobs must have at least three jobs on at least one of
the machines, otherwise the LPT algorithm would not have stopped at the (l + 1)-th job. Let pl+1 denote the
size of the (l + 1)-th largest job. Because all jobs in this optimal schedule have size at least pl+1, the optimal
makespan satisfies OPT ≥ 3pl+1.

In the second step of the final phase, the k − l remaining jobs in the reordering buffer are scheduled by the
greedy algorithm. If a machineMi does not have any job scheduled on it during this step, its final load according
to Lemma 4 satisfies Li(t2) = Li(t1) ≤ rm · OPT . Otherwise, let t denote the time when the last job J of size
p is about to be scheduled on machine Mi, where t1 < t ≤ t2. According to the greedy algorithm, machine Mi

must have the minimum load Li(t) among all machines at time t. Therefore, we must have Li(t) ≤ OPT , since
the average load at any time is always a lower bound on the optimal makespan. Also, because the size of job
J satisfies p ≤ pl+1 ≤ OPT/3 ≤ (rm − 1) ·OPT , the load of machine Mi at the end of the second step satisfies
Li(t2) = Li(t) + p ≤ OPT + (rm − 1) · OPT = rm ·OPT .

4 A 3/2-competitive Algorithm

In this section, we present a 3/2-competitive algorithm, which uses a reordering buffer of size k = ⌈(1 + 1/(2a)) ·m⌉+
1 ≤ 1.477m+ 1, where a = (1 + ln 3)/2 ≈ 1.05. The algorithm adopts of the idea of the optimal competitive
algorithm by selecting machines in the iterative phase according to nonuniform total loads. A similar idea has
been used in [9] to show a 3/2-competitive algorithm with a reordering buffer of size 1.5m.

Algorithm 2 shows the details of our algorithm. For presentation purpose, we redefine the weight wi of
machine Mi to be

wi :=

{

3
2m if 0 ≤ i < m

3
1
2i if m

3 ≤ i ≤ m− 1
.

The sum of the weights of all machines is then given by
∑m−1

i=0 wi = ⌈m/3⌉ · 3/(2m) +
∑m−1

i=⌈m/3⌉ 1/(2i), which

monotonically decreases with m according to [4]. Therefore, given that limm→∞

∑m−1
i=0 wi = 1/2− ln(1/3)/2 =

(1 + ln 3)/2 = a, we have
∑m−1

i=0 wi ≥ a for all m ≥ 2. Also, we redefine the index i′ to be

i′ :=

{ ⌊

m
3

⌋

if 0 ≤ i < m
3

i if m
3 ≤ i ≤ m− 1

.

Similarly to Lemma 1, the sum of wi · i
′ can be shown to satisfy the following inequality for any m ≥ 2,

m−1
∑

i=0

wi · i
′ ≥ m/2− 3/(2m) · (m/3 + 1)

= m/2− (1/2 + 3/(2m))

≥ m/2− 5/4. (3)

First, the following lemma shows that the iterative phase of our algorithm is always feasible.

Lemma 6 At any time t in the iterative phase after job Jt has arrived but before job J with smallest size p is
assigned, there always exists a machine Mi whose load satisfies Li(t) ≤ wi · (T (t) + (k + 1− (m− i′)) · p)− p,
where k = ⌈(1 + 1/(2a)) ·m⌉+ 1 and a = (1 + ln 3)/2.

Proof. Suppose that the load of machine Mi is strictly greater than wi · (T (t) + (k + 1− (m− i′)) · p)− p for

5

Algorithm 2

Require: Buffer size k = ⌈(1 + 1/(2a)) ·m⌉+ 1 where a = (1 + ln 3)/2
Ensure: Competitive ratio 3/2

1: Initial phase: Admit the first k jobs, i.e., J1, · · · , Jk, into the reordering buffer without assigning any job
to any machine.

2: Iterative phase: At any time t right after a new job Jt arrives, where k+1 ≤ t ≤ n, find a job J of smallest
size p among all the jobs in the buffer and Jt. Assign J to a machine Mi whose load at time t satisfies

Li(t) ≤ wi · (T (t) + (k + 1− (m− i′)) · p)− p,

where T (t) denotes the total load of all machines at time t after job Jt has arrived but before job J is
assigned.

3: Final phase: At the end of the iterative phase, k jobs remain in the reordering buffer. There are two steps
in the final phase.

• In the first step, m largest jobs are selected from the k remaining jobs in the reordering buffer. Let
{J ′

0, J
′
1, · · · , J

′
m−1} denote these jobs, and we assume that they are sorted in ascending order of size,

i.e., p′0 ≤ p′1 ≤ · · · ≤ p′m−1. Assign job J ′
i to machine Mi for each 0 ≤ i ≤ m− 1.

• In the second step, schedule the remaining k − m jobs in the reordering buffer using the greedy
algorithm, which assigns the jobs in any order to a machine with minimum load.

all 0 ≤ i ≤ m− 1. Since
∑m−1

i=0 wi ≥ a > 1 and
∑m−1

i=0 wi · i
′ ≥ m/2− 5/4 from Inequality (3), we have

T (t) >

m−1
∑

i=0

(wi · (T (t) + (k + 1− (m− i′)) · p)− p)

> T (t) +

m−1
∑

i=0

(wi · (k + 1− (m− i′)) · p)−m · p

= T (t) +

(

(k + 1−m) · a+

m−1
∑

i=0

wi · i
′

)

· p−m · p

≥ T (t) + ((m/(2a) + 2) · a+m/2− 5/4) · p−m · p

> T (t),

which yields a contradiction.

As with the analysis of the optimal online algorithm, we bound the load of any machine Mi at the end of
each step in the following lemmas. In particular, Lemma 9 implies Theorem 2 and shows that our algorithm is
3/2-competitive. Again, let n+1 denote the time after the iterative phase has finished, and let t1 and t2 denote
the time at the end of the first step and the second step of the final phase, respectively.

Lemma 7 At time n+1 after the iterative phase has ended, the load of each machine Mi satisfies Li(n+1) ≤
wi · (T (n+ 1) + (k − (m− i′)) · pmin), where pmin is the smallest size of all jobs remaining in the buffer.

Proof. Let t ≤ n+1 denote the time right before the last job J is scheduled on machine Mi, and let p denote
the size of J . We have T (t)+ p ≤ T (n+1) and p ≤ pmin. According to the algorithm and Lemma 6, the load of
machine Mi at time t satisfies Li(t) ≤ wi ·(T (t) + (k + 1− (m− i′)) · p)−p. Because k−(m−i′) ≥ 0, the load of
the machine at the end of the iterative phase satisfies Li(n+1) = Li(t)+p ≤ wi ·(T (t) + (k + 1− (m− i′)) · p) ≤
wi · (T (n+ 1) + (k − (m− i′)) · pmin).

Lemma 8 At time t1 after the first step of the final phase has ended, the load of each machine Mi satisfies
Li(t1) ≤ 3/2 · OPT , where OPT denotes the minimum makespan achieved by an optimal offline algorithm.

Proof. In the first step of the final phase, m largest jobs out of the k remaining jobs are scheduled on the m
machines by assigning job J ′

i to machine Mi for each 0 ≤ i ≤ m − 1. Let pmin denote the smallest size of all
jobs that remain in the reordering buffer. The makespan of the optimal schedule can be bounded by

OPT ≥
T (n+ 1) + (m− i) · p′i + (k − (m− i)) · pmin

m
, (4)

6

which holds for each 0 ≤ i ≤ m− 1. We again consider two cases.
Case (1): For each m/3 ≤ i ≤ m− 1, we have wi = 1/(2i) and i′ = i. Based on Lemma 7 and Inequality (4),

the load of machine Mi at time t1 is given by

Li(t1) = Li(n+ 1) + p′i

≤ wi · (T (n+ 1) + (k − (m− i)) · pmin) + p′i

≤
1

2i
· (m ·OPT − (m− i) · p′i) + p′i

=
m

2i
· (OPT − p′i) +

3

2
· p′i

≤
3

2
· (OPT − p′i) +

3

2
· p′i

=
3

2
· OPT.

Case (2): For each 0 ≤ i < m/3, we have wi = 3/(2m) and i′ = ⌊m/3⌋ ≤ m/3. The load of machine Mi at
time t1 is given by

Li(t1) = Li(n+ 1) + p′i

≤ wi · (T (n+ 1) + (k − (m− ⌊m/3⌋)) · pmin) + p′i

≤
3

2m
·
(

m ·OPT − (m− ⌊m/3⌋) · p′⌊m/3⌋

)

+ p′⌊m/3⌋

≤
3

2m
·

(

m · OPT −
2

3
·m · p′⌊m/3⌋

)

+ p′⌊m/3⌋

=
3

2
·OPT.

Lemma 9 At time t2 after the second step of the final phase has ended, the load of each machine Mi satisfies
Li(t2) ≤ 3/2 · OPT , where OPT denotes the minimum makespan achieved by an optimal offline algorithm.

Proof. Consider the m + 1 largest jobs that remain in the reordering buffer before the final phase begins,
and let pm+1 denote the size of the smallest job in this set. An optimal schedule for this set of jobs must have
exactly two jobs on one of the machines. Since all jobs in this set have size at least pm+1, the optimal makespan
satisfies OPT ≥ 2pm+1.

In the second step of the final phase, the k − m remaining jobs in the reordering buffer are scheduled by
the greedy algorithm. If a machine Mi does not have any job scheduled on it during this step, its final load
according to Lemma 8 satisfies Li(t2) = Li(t1) ≤ 3/2 ·OPT . Otherwise, let t denote the time when the last job
J of size p is about to be scheduled on machine Mi, where t1 < t ≤ t2. Then, we must have Li(t) ≤ OPT , and
the size of job J satisfies p ≤ pm+1 ≤ OPT/2. The load of machine Mi at the end of the second step satisfies
Li(t2) = Li(t) + p ≤ OPT + 1/2 ·OPT = 3/2 · OPT .

References

[1] S. Albers. Better bounds for online scheduling. SIAM Journal on Computing, 29(2):459–473, 1999.

[2] Y. Bartal, A. Fiat, H. J. Karloff, and R. Vohra. New algorithms for an ancient scheduling problem. Journal
of Computer and System Sciences, 51(3):359–366, 1995.

[3] M. Englert. An overview of some results for reordering buffers. Computer Science - Research and Devel-
opment, 27(3):217-223, 2012.

[4] M. Englert, D. Özmen, and M. Westermann. The power of reordering for online minimum makespan
scheduling. In FOCS, pages 603–612, Philadelphia, PA, USA, 2008.

[5] R. Fleischer and M. Wahl. On-line scheduling revisited. Journal of Scheduling, 16(3):554–560, 2000.

[6] R. L. Graham. Bounds on multiprocessing anomalies. SIAM Journal on Applied Mathematics, 17(2):416–
429, 1969.

7

[7] D. R. Karger, S. J. Phillips, and E. Torng. A better algorithm for an ancient scheduling problem. Journal
of Algorithms, 21(5):235–242, 1997.

[8] H. Kellerer, V. Kotov, M. G. Speranza, and Z. Tuza. Semi on-line algorithms for the partition problem.
Operations Research Letters, 21(5):235–242, 1997.

[9] Y. Lan, X. Chen, N. Ding, G. Dósa, X. Han. Online Minimum Makespan Scheduling with a Buffer.
FAW-AAIM, pages 161–171, Beijing, China, 2012.

[10] J. F. Rudin III. Improved Bound for the Online Scheduling Problem. PhD thesis, University of Texas at
Dallas, 2001.

[11] G. Zhang. A simple semi on-line algorithm for P2||Cmax with a buffer. Information Processing Letter,
61(3):145–148, 1997.

8

