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Abstract: The proliferation of many-core architectures has led to the explosive development of parallel applications
using programming models, such as OpenMP, TBB, and Cilk/Cilk++. With increasing number of cores, however, it be-
comes even harder to efficiently schedule parallel applications on these resourcessince current many-core runtime systems
still lack effective mechanisms to support collaborative scheduling of these applications. In this paper, we study feedback-
driven adaptive scheduling based on work stealing, which provides an efficient solution for concurrently executing a set
of applications on many-core systems. To dynamically estimate the number of cores desired by each application, a sta-
ble feedback-driven adaptive algorithm, called SAWS, is proposed using active workers and the length of active deques,
which well captures the runtime characteristics of the applications. Furthermore, a prototype system is built by extending
the Cilk runtime system, and the experimental results, which are obtained on a Sun Fire server, show that SAWS has
more advantages for scheduling concurrent parallel applications. Specifically, compared with existing algorithms A-Steal
and WS-EQUI, SAWS improves the performances by up to 12.43% and 21.32% with respect to mean response time
respectively, and 25.78% and 46.98% with respect to processor utilization, respectively.
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1 Introduction

Recent developments in microprocessor design show a clear trend towards many-core architectures. In the near future, it
will be common to have a many-core processor with hundreds oreven thousands of cores on the chip [1]. Exploiting all
the advantages offered by these abundant cores, however, will be a great challenge because it is not trivial to efficiently
utilize the available computing power.

To exploit the hardware resources of modern processors, various programming models for many-core systems have
been developed, such as OpenMP [2], TBB [3], Cilk/Cilk++ [4] which is recently extended to Intel Cilk Plus [5]. Com-
pared with other parallel programming models, such as MPI and POSIX threads, these models, supported by their flexible
runtime systems, provide good programmability, portability, and ability to manage dynamic parallelism for many-core
systems. When using these programming models in practice, however, many issues remain to be addressed to efficiently
utilize the increasing number of cores.

First, current many-core runtime systems may have poor scalability. It is a typical requirement in most many-core
runtime systems to explicitly or implicitly (via function calls) specify the number of cores to use for the execution of an
application. As more cores are becoming available, many applications will start to experience diminishing returns with
increased processor allocation. Without knowing the execution characteristic of the application on a particular hardware
platform, simply allocating all available cores to the application may not ensure satisfying performance. As we can seein
Fig.1(a), which is conducted on a Sun Fire server using several Cilk applications1, only a couple of applications, namely
FIB and LU, have nearly linear speedup when increasing the number of allocated cores.

Second, competitions for processor resources are unavoidable in current many-core runtime systems. It is very com-
mon for multiple users or applications to share a high-performance computing platform nowadays. Using current solutions
by themselves, the performance may not scale well with increasing number of cores, particularly in the presence of con-
currently running parallel applications. To demonstrate this with an example, Fig.1(b) and Fig.1(c) give the results of
running multiple copies of two Cilk applications on a Sun Fire server∗∗. As shown in these figures, the overall run-
ning time (makespan) of both applications under the defaultscheduler, which runs each copy of the Cilk application on

1The detailed information related to this experiment can be found in Section 5.
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Figure 1: Speedup and makespan comparison of different scheduling strategies using Cilk applications.

all available cores, becomes much worse than that of the FCFS(First-Come First-Serve) scheduler when increasing the
number of concurrently running copies.

Aiming at addressing these problems in the current many-core runtime systems, adaptive scheduling algorithms are
studied in this paper. Compared to scheduling all applications in a time-sharing manner as described above, adaptive
scheduling based on space-sharing seems to provide a more efficient solution for simultaneously executing a set of ap-
plications. Since the parallelism of most applications often changes over time, adaptive scheduling takes advantage of
the application malleability by dynamically allocating a variable number of processors to each job during runtime, thus it
is able to achieve better utilization of the available resources. Fig.1(b) and Fig.1(c) also show the results of runningthe
same set of applications as described previously, but with the simple space-sharing scheduler EQUI (Equi-Partitioning)
[6] which at any time divides the total number of cores evenlyamong all running jobs. The results demonstrate that EQUI
has much better performance in terms of makespan, especially when the applications have sublinear speedups. While this
simple example shows the benefit of adaptive scheduling, in the rest of this paper we will study more effective mechanisms
that can better capture and explore the parallelism variations of the jobs.

Although some existing work have studied adaptive scheduling, most results are based on theoretical analysis and
simulation approaches [7, 8, 9, 10, 11]. Unlike these results, in this paper we study the benefits of adaptive scheduling
based on solid experiments conducted on practical systems and actual workloads. The adaptive runtime system we build is
based on the well-known work-stealing strategy, which has been shown to have good performances from both theoretical
and practical perspectives [4, 12]. The main contributionsof the paper are the following:

• An adaptive runtime system is implemented based on the work-stealing load balancing strategy. The runtime system
has the ability to dynamically change the number of cores allocated to each job so that it can effectively exploit the
runtime characteristics of the jobs, and more importantly it eliminates the need of manually specifying the number
of cores required by most existing many-core runtime systems.

• To dynamically estimate the number of cores desired by each job, a stable feedback algorithm, called SAWS, is
proposed using active workers and the length of active deques. Compared to existing algorithms, SAWS captures
more precisely the parallelism of the jobs, and more importantly it solves the desire instability problem of an
existing algorithm.

• A prototype system is built by heavily modifying the original Cilk runtime system. The experimental results show
that feedback-driven algorithms have more advantages for scheduling parallel applications with dynamic changing
parallelism, and better overall performance will be achieved with more accurate and stable feedback mechanism.

The rest of this paper is organized as follows: Section 2 briefly introduces adaptive scheduling based on work stealing.
Section 3 describes how to obtain stable parallelism feedback using active workders and the length of active deques.
Section 4 gives the detailed implementation of the adaptivescheduling framework. Our experimental results are presented
in Section 5 and Section 6 concludes the paper.

2 Adaptive Scheduling Based on Work Stealing

In order to present our adaptive runtime system and the feedback-driven algorithm, it is necessary to review adaptive
scheduling and work stealing. In this section, we will first define the basic concepts in the two scheduling paradigms. We
then discuss challenges in adaptive work stealing.
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2.1 Work Stealing

Work stealing [12] is a popular thread-level scheduling mechanism to schedule parallel computations with dynamic paral-
lelism. Because of the good performance and ease of implementation, it has been successfully applied to runtime systems
in Cilk [4], Cilk Plus [5], TBB [3] and OpenMP [13].

In traditional work stealing, as shown in Fig. 2, an application is given a fixed set ofP processors throughout execution.
Each processor (or worker) maintains a double-ended queue,calleddeque, which contains the ready threads of the job.
A worker treats its own deque as a stack and treats the deque ofanother worker as a queue. At any time, each worker
works as follows: (1) when the thread it is currently runningspawns a new thread, the worker pushes the parent onto the
bottom of its deque and starts working on the child thread; (2) when the running thread completes or blocks, the worker
checks its own deque. If the deque is not empty, it pops the thread from the bottom of the deque and starts working on
it. In case the deque is empty, e.g., for Workeri in Fig. 2, the worker becomes a “thief” and starts work stealing. In this
process, the thief randomly chooses another worker, called“victim”, e.g., Worker 1 in Fig. 2, and removes the thread
from the top of victim’s deque if it is not empty. If the victim’s deque is empty, the thief restarts the stealing process by
randomly choosing another victim until its finds a thread to work on. Clearly, when an application first starts to run, all of
its allocated processors have empty deques except one worker that works on the job’s root thread.

Work stealing has been shown to have provably-efficient performances in terms of both time and space bounds [12].
Moreover, unlike centralized schedulers based on work sharing such as the Greedy scheduler [9], a work stealing scheduler
operates in a decentralized manner without knowing all the available threads of a job at any time. Therefore, due to ease
of implementation, it has also been shown to be an effective thread scheduling mechanism in practice.

2.2 Adaptive Scheduling

Adaptive scheduling provides an efficient solution to better utilize the available processor resources for simultaneously
executing a set of applications, thus has gained popularityrecently [7, 8, 9, 10, 11, 14, 15, 16, 17]. Since the parallelism of
most applications often changes over time, adaptive scheduling takes advantage of the application malleability and gives
a variable processor allocations to the jobs.

One common approach used in adaptive scheduling is the two-level scheduling framework [7]. In this framework,
the executions of the jobs are divided into regular intervals, called scheduling quantum, and the processors are reallo-
cated based on the interaction between the job-level threadscheduler and the global-level resource allocator or processor
controller. Specifically, at the beginning of each scheduling quantumq, a thread scheduler for each job calculates its
processor desired(q), that is, how many processors the job needs, in this quantum. The processor controller at the global
level then based on the processor desires of all jobs and its scheduling policy decides a processor allocationa(q) for the
job in quantumq. This process, calledrequest-allocation protocol [9], will repeat after each scheduling quantum until the
completion of all jobs.

One important aspect of two-level adaptive scheduling is how to calculate processor desires from the thread scheduler.
Since the future parallelism of the job is usually unknown, the desire calculation is usually based on the execution history
of the job in the previous quantum, such as measurements about the job’s processor utilizations or average parallelism
[7, 10]. Another aspect is for the processor controller to decide the processor allocation of each job. In this paper, we use
the well-known dynamic equi-partitioning (DEQ) policy [18], which we will describe in detail in Section 4.

2.3 Adaptive Work Stealing

Compared with conventional thread schedulers that use onlya fixed set of processors at any time, adaptive scheduling
has the additional challenge of dealing with variable processor allocations at different times. When the thread scheduler
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uses distributed work stealing, this task becomes even morechallenging since the scheduler does not possess global
information on the deques of the processors.

To handle processor changes, we adopt the concept ofmugging [14]. While the number of processors and therefore
the number of deques is fixed for an application in traditional work stealing, it is no longer the case in adaptive work
stealing. In particular, when the processor allocation decreases from quantumq to q + 1, the job losesa(q) − a(q + 1)
processors, who may have non-empty deques. These deques, which contain ready threads for the job and therefore still
belong to the job, are however not associated with any processor at this time, and thus become muggable. When any
processor of the job runs out of work during quantumq+1, instead of immediately stealing work from another processor,
it will first look for muggable deques. If there are indeed deques waiting to be mugged, it will claim any such deque as
its own and starts working on its bottom-most thread. Otherwise, if there is no muggable deque, it will start stealing as
normal. On the other hand, when the processor allocation increases from quantumq to q+ 1, the job gainsa(q+ 1)− a(q)
additional processors with empty deque. Again, each of these processors will first look for a muggable deque, which may
be available from previous quantum, before stealing work asdescribed before.

Moreover, besides dealing with processor changes, anothervery important challenge in adaptive work stealing is how
to calculate processor desires for a job in each scheduling quantum. In the next section, we will design a novel desire
calculation strategy that directly utilizes the lengths ofthe active deques, which solves the desire instability problem of an
existing scheduler.

3 Stable Desire Calculation Using Both Processor Utilization and Length of
Active Deques

In this section, we propose an novel desire calculation algorithm, called SAWS, based on the utilization of active workers
and the length of active deques. We show that the processor desires calculated by SAWS well reflects the parallelism of
the job, and more importantly, it solves the desire instability problem of an existing scheduler.

3.1 A Novel Algorithm: SAWS

SAWS works based on both processor utilization and length ofactive deques in each scheduling quantum. Intuitively,
the status of the processors in terms of whether they are busyor idle indicates the utilization of the resources allocated to
a job, thus it can be used to determine the number of processors in the next quantum. Moreover, the total length of the
active deques of the job at any time gives the number of ready threads that can be stolen when the job is provided with
sufficient processors to execute, thus it can indicate the unexploited parallelism of the job. SAWS explores both of these
indicators and computes the processor desire of the job as described in the following.

Since the processor allocation can be changed dynamically in adaptive scheduling, only a worker that is associated
with a physical processor is called an active worker; otherwise it is called an inactive worker. Suppose that quantumq
starts at timetq and lastsL units of time. Since an active worker is either working, mugging, or stealing at any time
t ∈ [tq, tq + L], let X j(t) denote the status of thejth processor at timet, where 1≤ j ≤ a(q). Specifically, if processor
j is either working or mugging att, we haveX j(t) = 1. Otherwise, if processorj is stealing att, we haveX j(t) = 0.
As mugging is a result of reduced processor allocation, the time spent on mugging is considered as not wasted [8].
Apparently,1

L

∫ tq+L

tq

∑a(q)
j=1 X j(t)dt represents the average number of processor cycles not wasted at any time in quantumq,

thus it reflects the processor utilization in the quantum.
Let e(t) denote the number of active deques of the job at timet ∈ [tq, tq + L], including the muggable ones that are not

attached to any processor. For thejth active deque, letQ j(t) denote its length, or the number of ready threads on the top

of the deque waiting to be stolen at timet. Hence,1L
∫ tq+L

tq

∑e(t)
j=1 Q j(t)dt represents the average length of all active deques

at any time in quantumq, which reflects the potential parallelism of the job not explored in the quantum.
The processor desire for the job in next quantumq + 1 is then calculated based on bothX j(t) andQ j(t) as follows:

d(q + 1) =
1
L

∫ tq+L

tq

















a(q)
∑

j=1

X j(t) + β
e(t)
∑

j=1

Q j(t)

















dt, (1)

whereβ ≥ 1 is the exploration parameter that controls how aggressively the scheduler exploits the job’s parallelism.
For instance, suppose a processorj is busy working at timet and has one more ready thread on its current deque,

that is,X j(t) = Q j(t) = 1. From this deque’s perspective, an extra processor would be able to steal its ready thread, thus
explores the available parallelism of the job. Settingβ = 1 will satisfy this requirement. However, since the ready thread
is in higher level of the job’s structure, it is more likely tospawn more threads in the future. Thus, having a larger value
for β, such as settingβ = 2, will further explore the unexposed parallelism of the job. To explore the entire parallelism of
the job and to smooth out the processor desire, this calculation is taken from all processors and deques, and is averaged
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for (i = 0; i < N; i++) {

Spawn Work(i);

}

sync;

Figure 3: A simple data-parallel program written in Cilk andits DAG representation.
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Figure 4: Processor desires calculated by (a) A-Steal and (b) SAWS, when the parallelism of the job is constant atN = 10.

over the entire quantum as shown in Eq (1). In case that no morethread is spawned by the extra processors, the processor
desire will be reduced to the number of busy processors in thefollowing quantum.

3.2 An Existing Algorithm: A-Steal

We now describe an existing adaptive work stealing algorithm, called A-Steal [14], which calculates the processor desire
for a job in each quantum based on only the utilization of the job’s allocated processors in the previous quantum. The
calculation uses a simple multiplicative-increase multiplicative-decrease strategy first introduced in [7].

Recall thatX j(t) denotes the status of thejth processor at timet, where 1≤ j ≤ a(q). The usage of the allocated

processors in quantumq is then given byw(q) =
∫ tq+L

tq

∑a(q)
j=1 X j(t)dt. Since maximum possible usage of the quantum is

a(q)L, the utilization of the processors isu(q) = w(q)/(a(q)L). The quantum is said to be “efficient” if the utilization
satisfiesu(q) ≥ δ, whereδ is a threshold usually set in the range of 80% to 95%. Otherwise, the quantum is said to
be “inefficient”. In addition, the quantum is said to be “satisfied” if we havea(q) ≥ d(q). Otherwise, the quantum is
“deprived”. The processor desire for the job in next quantumq + 1 is calculated depending on whether quantumq is
efficient or inefficient and whether it is satisfied or deprived as follows:

d(q + 1) =



















d(q) · ρ if q is efficient and satisfied,
d(q)/ρ if q is inefficient,
d(q) if q is efficient and deprived,

whereρ is a responsiveness parameter usually set in the range of 1 to3. In both SAWS and A-Steal, the processor desire
for the first quantum is fixed to be 1, since the job usually starts with a single thread.

Note that A-Steal also actively explores the potential parallelism of the job by increasing its processor desire by a
multiplicative factorρ each time. Since such calculation is blind to the actual parallelism of the job, it can result in
desire instability as we will show in the next subsection. SAWS, on the other hand, performs such exploration with more
precision and stability, as it directly makes use of the information about the length of active deques, which is a strong
indicator on job’s actual parallelism.

3.3 Desire Stability of SAWS and A-Steal

It was shown in [16, 10] that another adaptive scheduler based on centralized work sharing, called A-Greedy [7], ex-
hibits desire instability problem, even when the parallelism of the job is constant. Since both A-Steal and A-Greedy use
multiplicative-increase multiplicative-decrease strategy to calculate processor desires, such instability problem can also
be observed in A-Steal. In this section, we use a simple data-parallel program to demonstrate the desire instability of
A-Steal, and to compare it with SAWS.

Suppose that we have a data-parallel application written inCilk [4] as shown in Fig.3, whereN children threads are
spawned by the parent thread at almost the same time2, and each child contains a large amount of work to be done in the

2TheN threads are spawned with a small delay after each iteration of the for loop. Compared to the large amount of time to complete the function
Work(), however, such delay is negligible.
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Work() function. The graph at the right of Fig.3 shows the DAG (Directed Acyclic Graph) that represents the structure of
the program. The parallelism of this application is therefore constant atN for a long period of time.

To schedule this application with SAWS or A-Steal, we make the following two assumptions. First, we assume that the
desires of the job can be satisfied by the global-level processor controller as much as possible. This corresponds to light
to medium workloads, in which two-level adaptive schedulers tend to work better compared to non-adaptive schemes
[17, 10]. Second, we assume that the ready threads of a deque can be stolen as quickly as possible by steal attempts
from other processors. Since the victims are chosen uniformly at random, this is usually true for a reasonable number
of processors and when the quantum is set to be sufficiently long. Given these two assumptions, the processor desire
and hence the processor allocation of the job can be shown to exhibit unstable behavior as shown in Fig.4(a), where the
responsiveness parameter of A-Steal is set to beρ = 2, the utilization threshold is set toδ = 0.8, and the parallelism of the
job is atN = 10.

Although Fig.3 only gives a simple example, it is not hard to see that such instability problem of A-Steal will remain
in many other data-parallel programs like this. Varying parametersρ and δ can alleviate the problem for a specific
parallelism. However, it will inevitably affect the responsiveness of the desires or the utilization of the processors for
other sections of the job with different parallelism.

Fig.4(b), on the other hand, shows the processor desires calculated by SAWS for the same application when its
exploration parameter is set to beβ = 2. Compared to A-Steal, which catches up with the job’s parallelism in about
logρ N steps, but never converges toN, SAWS converges to the target parallelism in aboutN/β steps, and exhibits no
desire oscillation afterwards. With comparable values inρ andβ, A-Steal tends to have better convergence for largeN
initially, but its desire instability will delay job execution and cause resource waste for the majority of time steps inthe
steady state. SAWS, on the other hand, is more conservative in estimating the processor desires, but guarantees stability,
no steady-state error and as shown in Fig.4(b) a small amountof transient overshoot3. These properties not only ensure
more efficient job execution and resource utilization, but also helpto reduce scheduling overheads in practice caused by
context switching and cache reloading when adjusting processor allocations for a job [16, 10].

4 Implementations

In this section, we present an adaptive scheduling framework called ACilk, which provides the ability to feedback the pro-
cessor desires and to support dynamical processor reallocation in runtime. We also present more efficient implementations
of the desire calculation algorithms based on sampling methods that approximate the required statistics.

4.1 The framework of ACilk

To implement the feedback-driven scheduling algorithms, we build an adaptive scheduling framework ACilk (Adaptive
Cilk), as shown in Fig. 5, which is an extension to the Cilk runtime system [4]. Cilk is a language for multithreaded
parallel programming based on ANSI C and it employs the work-stealing scheduler in its runtime system. Based on
POSIX threads library, ACilk is built on top of operating systems, such as Linux, and includes three main components:
System Config, Processor Controller, and ACilk Runtime, as shown in Fig. 5. The System Config component provides the
ability to collect the hardware information, such as available cores in system, and to specify user-oriented configuration
information such as scheduling quantum, scheduling algorithms to be used by ACilk. The obvious benefit provided by
System Config is to enhance the system scalability and to eliminate the drawback of explicitly specifying the number

3The desire overshoot is because of the parent thread that continues after thefor loop, but immediately blocks when executing thesync statement.
Since SAWS does not have advanced information about the program structure, it requests for more processors to explore the potential parallelism. The
extra processor is immediately released in the next quantumwhen the parent blocks and no longer spawns more threads.
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of cores by users. The Processor Controller is located in thecenter of ACilk, which provides two main functions: 1)
coordination with runtime systems by employing a request-allocation protocol [9] to control processor allocations and
feedback processor desires of jobs; 2) reallocation of processor resources among running jobs, which currently supports
two processor reallocation strategies, namely, EQUI and DEQ. The Processor Controller is implemented as a daemon
process on operating systems, and the Shared Memory technique is used as the Inter-Process Communication (IPC)
between the controller and ACilk runtime systems. ACilk Runtime extends the original Cilk runtime system but has the
following major improvements: 1) supporting dynamic readjustment of processor allocations without interrupting the
execution of the jobs; 2) providing an efficient approximating method to collect and feedback processor desires of jobs at
runtime. The more detailed implementation information of ACilk is given in the following subsections.

4.2 Sampling Methods for Desire Calculation

As described in Section 3, the desire calculation algorithms in SAWS and A-Steal require utilization information of the
active workers in a quantum, and SAWS also needs the length ofits active deques at any time during a quantum. Gathering
these information can be very expensive in practice, which will incur a large amount of overhead in the implementation.
In this subsection, we will present a more efficient implementation of the algorithms based on sampling methods that
approximate the required statistics.

4.2.1 Approximating Processor Utilization

To approximate the processor utilization in a quantum, we adopt the technique used in [19], which takes the ratio between
the total number of purely unsuccessful steal attempts and the total number of all steal attempts. Specifically, for eachjob
in quantumq, let total steal j denote the total number of steal attempts by thejth allocated processor or active worker,
where 1≤ j ≤ a(q). Among all steal attempts, letpurely unsucc steal j denote the total number of purely unsuccessful
steal attempts. A steal attempt is called purely unsuccessful if the victim itself is attempting to steal work from other
processors. The processor utilizationu(q) of the job in quantumq can then be approximated by

u(q) = 1−

∑a(q)
j=1 purely unsucc steal j

∑a(q)
j=1 total steal j

,

which can be used to calculate the processor desires of A-Steal. As shown in Section 3.2, we can also get1
L

∫ tq+L

tq

∑a(q)
j=1 X j(t)dt =

u(q)a(q), which can be used to calculate the processor desires of SAWS in Eq (1).
The intuition for the above approximation of the processor utilization is the following. Since a processor at any time is

either working, mugging or stealing and the victim is chosenuniformly at random, the ratio between the number of purely
unsuccessful steal attempts and the total number of all steal attempts gives a reasonable approximation for the inefficiency,
that is 1− u(q), of the processors in quantumq. From a sampling perspective, the approximation is more accurate if there
is a larger number of steal attempts. Furthermore, since thework-stealing scheduler of Cilk runtime already has built-in
counters to measure the steal attempts, collecting these information would incur very little extra overhead.

4.2.2 Approximating Active Deques Length

To approximate the length of active deques in a quantum to be used in the desire calculation of SAWS, we again use the
technique for approximating processor utilization, but combine it with the length of the deques sampled at the end of the
quantum for better accuracy.

We introduce a new counter in ACilk to accumulate the length of the victims’ deques at every steal attempt for each
active workerj, and denote the accumulated length at the end of quantumq by length j. The approximated length of all
active deques is then given by

Q(q) = e(tq + L)

∑a(q)
j=1 length j

∑a(q)
j=1 total steal j

,

wheree(tq + L) denotes the number of active deques when quantumq ends at timetq + L. Since each steal attempt will
collect the deque length of the victim processor, the ratio between the total accumulated deque length from all active
workers and the total number of steal attempts intuitively gives the average length of any single deque in the quantum.
Multiplying this ratio by the number of active deques then gives a natural approximation for the total length of all active
deques.

In addition, we use the length of the deques sampled at the endof the quantum as another approximation, and it is
given byQ′(q) =

∑e(tq+L)
j=1 Q j(tq + L), whereQ j(tq + L) denotes the length of thejth deque of the job at timetq + L when

quantumq ends.
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Figure 6: State diagram of a worker’s execution in adaptive work stealing.

The final approximation of the length of active deques then takes a linear combination of the two approximations and
is given by 1

L

∫ tq+L

tq

∑e(t)
j=1 Q j(t)dt = αQ(q) + (1− α)Q′(q), which can be used to complete the desire calculation of SAWS

shown in Eq (1). Intuitively, the first approximation is moreaccurate when there are more samples in steal attempts, thus
should have higher weight. In our implementation, we setα to be the ratio between the total number of steal attempts in
the quantum and the maximum possible steal attempts. Hence,the second approximation is always used in the calculation,
and when no steal attempt occurs in the quantum, the first approximation is simply ignored.

4.3 Processor Reallocation

For implementation of adaptive work stealing, one of important challenges in ACilk is how to deal with the dynamic
processor reallocations in runtime without interrupting the execution of jobs. To support adaptive work stealing, ACilk
introduces four different states, namely working, stealing, mugging, and sleeping to each processor or a worker in Cilk
runtime system. ACilk ensures that the number of active workers used by a job always matches the number of physical
processors assigned to it by controlling the state of the workers. The detailed process is depicted in Fig.6. At the
initialization stage, ACilk creates as many workers as the total number of physical processors for each job. After getting its
first processor allocation (which is usually 1), ACilk puts the extra workers into the sleeping state. After each scheduling
quantum, whenever the allocation of the job increases, someworkers of the job are waken up. When the allotment
decreases, the corresponding number of workers are put intosleeping state. Unlike the original work-stealing mechanism,
whenever a worker runs out work in ACilk, that is, its local deque becomes empty, it first enters the mugging state to look
for muggable deques instead of immediately stealing work from another worker.

In the Processor Controller, two different resource allocation strategies EQUI and DEQ are implemented. EQUI
(Equi-partitioning) [6] is one of the well-known resource allocation strategies, which at any time divides the total number
of all available cores evenly among all running jobs. Obviously, only when a new job is released or when a job completes,
EQUI starts to readjust the processor allocation among the running jobs, and any feedback from the jobs is not considered
in this algorithm.

DEQ [18] is a variant of EQUI, which can take advantage of the parallelism feedbacks. Compared with EQUI, DEQ
never allocates more processors to a job than the job’s processor desire, hence it is better known for its efficiency and
fairness in processor allocation [15]. LetJ(q) denote the set of active jobs when a new quantumq begins. Based on the
processor desires of all jobs collected by ACilk runtime, DEQ allocates the processors as shown in Algorithm 1, where
ai(q) anddi(q) denote the processor allocation and the processor desire of job Ji in quantumq respectively, andP denotes
the total number of available cores in the system.

5 Experiments

The experiments are carried out on a Sun Fire X4600 M2 server which is equipped with eight AMD Opteron(TM) 8384
quad-core processors, each with 2.7 GHz clock speed, 128 KB L1 cache, 512 KB L2 cache per core, 6 MB L3 cache, and
256GB main memory. The operating system is Ubuntu 9.10 (Linux kernel 2.6.28), and the compiler is GCC 4.4.1, with
the compiling option “-g -O2”. Six computation-intensive benchmarks are selected from the official released Cilk-5.4.6
for the experiments. The brief description and input sets ofthese benchmarks are listed in Table 1.

To compare the performances of different scheduling algorithms, we use the following metrics:makespan, mean
response time, and processor utilization. The makespan is defined as the completion time of the last completed job in the
job set. The response time of a single job is the time elapsed from when the job arrives to when it completes, and the
mean response time of the job set is used in our experiments. The utilization of the job’s allocated processors is collected
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Algorithm 1 DEQ(J(q), P)
1: if J(q) = ∅ then
2: return
3: S = {Ji ∈ J(q) : di(q) ≤ P/|J(q)|}
4: if S = ∅ then
5: for eachJi ∈ J(q) do
6: ai(q) = P/|J(q)|
7: return
8: else
9: for eachJi ∈ S do

10: ai(q) = di(q)
11: DEQ(J(q) − S , P −

∑

Ji∈S ai(q))

Table 1: The description and input sets of the benchmarks

Benchmark Description Input sets

CK Rudimentary checkers -b 10 -w 13
Fib Fibonacci numbers 46
FFT Fast Fourier Transform -n 226

LU LU decomposition -n 4096

Heat
Jacobi-type iteration to
Solve a finite-difference

-g 10 -nx 4096
-ny 4096 -nt 500

Strassen Multiplies two n× n matrices -n 4096

by counting the time of each processor during a quantum when the processor is doing useful work. Note that the time a
processor spends on stealing is considered as wasted, because although the processor is not idle during stealing, it is not
contributing towards the work of the job. In the experiments, the responsiveness parameterρ and the utilization threshold
δ of A-Steal are set to be 2 and 80% respectively, and the exploration parameterβ of SAWS is set to be 2.

As pointed out in previous sections, the WS (Work Stealing) algorithm implemented by original Cilk runtime system
does not support dynamically readjusting the jobs’ processor allocations at runtime. Therefore, manually specifyinga
fixed number of processors may easily lead to degraded performance when concurrently running multiple Cilk jobs. In
our experiment, we implement WS as a two-level scheduling algorithm by combining it with algorithm EQUI and name
the new algorithm WS-EQUI. Compared with WS, WS-EQUI does not need explicit specification on the number of cores
by each user and it can automatically share all available cores among the running jobs equally. Since WS-EQUI can be
considered as a special type of two-level adaptive scheduler with variable quantum length (a quantum only expires if a job
completes or a new job is released) and an oblivious parallelism feedbacks (which always divides the processors equally
among the active jobs regardless of each job’s processor desire), we use it as a reference to evaluate the performances of
the feedback-driven scheduling algorithms, such as A-Steal and SAWS in the following experiments.

5.1 Scheduling Quantum and Overhead

In adaptive scheduling, the length of the scheduling quantum is an important system parameter, which may significantly
affect the performance of a scheduling algorithm. Intuitively, smaller quantum length may lead to more efficiency for
capturing changes in a job’s parallelism, but it inevitablyincurs more scheduling overhead, including the cost of processor
reallocation. In this subsection, we conduct a set of experiments to examine the impact of scheduling quantum and
corresponding overhead on the performances of different scheduling algorithms. Specifically, only one job in Table 1 is
used for each experiment. The quantum length is varied from 1ms to 50ms. The experimental results for Strassen and LU
are shown in Fig.7 while the other benchmarks have similar results and are omitted.

The results demonstrate that, compared with WS-EQUI, the performance of A-Steal and SAWS are impacted by
varying scheduling quantum, especially that of A-Steal dueto its unstable parallelism feedbacks. As can be seen in Fig.
7, the makespans of A-Steal and SAWS are much worse when the quantum length is set to 1ms, as the overhead incurred
by the feedback-driven algorithms is too large to be ignoredin this case. With increasing quantum length, however,
the makespans of A-Steal and SAWS become smaller and tend to get closer to that of WS-EQUI since the scheduling
overhead is now better amortized over the entire schedulingquantum. Based on the experimental results, the length of the
scheduling quantum is set to be 10ms in all following experiments, which seems to provide a good tradeoff between the
responsiveness and the scheduling overhead.
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Figure 7: Impact of scheduling quantum and corresponding overhead on the performances of different scheduling algo-
rithms
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Figure 8: Performance comparison of different algorithms using different types of batched jobs.

5.2 Performance Comparison of Different algorithms

In this subsection, we evaluate and compare the performances of different scheduling algorithms using two sets of experi-
ments. The first set uses different types of batched workloads, where each type of workload is represented by a particular
job shown in Table 1 and several copies of the same job are released simultaneously. This corresponds to typical burst
arrivals of jobs with the same characteristics. The system load is set to be proportional to the number of simultaneously
submitted copies, which is varied from 2 to 12. The second setuses the general non-batched workloads, where jobs are
randomly chosen from Table 1, and they are released into the system according to the Poisson process, where the inter-
arrival time follows exponential distributionf (t; λ) = λe−λt(t ≥ 0). The system load is proportional to the arrival rateλ of
the jobs, which is varied from 1/16 to 1, and the total number of jobs is fixed to be 16.

Batched jobs The experimental results, as shown in Fig.8, demonstrate that the feedback-driven adaptive scheduling
algorithms A-Steal and SAWS generally outperform WS-EQUI with respect to Makespan. In addition, better performance
tend to be achieved when the jobs have lower parallelism suchas CK and Strassen, as shown in Fig.1(a). The reason is that
feedback-driven scheduling strategies take advantage of the parallelism feedback based on the information of execution
history and thus can more precisely captures the running characteristics of jobs, while WS-EQUI is oblivious to the job’s
parallelism and thus wastes many processor resources. On the other hand, as shown in Fig.8(c), when the jobs have
sufficient parallelism, such as LU, the performances of all algorithms tend to eventually converge to each other, since
the jobs can efficiently utilize all available cores regardless of the algorithm. Nevertheless, it shows that feedback-driven
adaptive schedulers have more advantages than WS-EQUI, particularly when the runtime characteristics of the jobs are
unknown in advance.

Non-batched jobs The non-batched experiments represent more realistic scenarios when running parallel jobs in prac-
tice. The results as shown in Fig.9 suggest that SAWS generally achieves better performance than A-Steal and WS-EQUI
with respect to makespan, mean response time, and utilization. Specifically, the mean response time improvements of
SAWS over A-Steal and WS-EQUI are 12.43% and 21.32% respectively and the corresponding utilization improvements
are 25.78% and 46.98% respectively. The makespan improvements of SAWS, however, seem small, which are only 3.02%
and 7.18%, as it could be easily dominated by one large job in the job set with long execution time. The main advantage
of SAWS is that it directly benefits from its more accurate andstable parallelism feedbacks, as described in Section 3.3.
The experimental results also show that WS-EQUI seems to have better performance when the system load is light, but it
is at the cost of wasting more processor resources, as clearly shown in Fig.9(c).

6 Conclusion

In this paper, we studied feedback-driven adaptive scheduling based on a work-stealing load-balancing strategy, which
provides an efficient solution to better utilize the available processor resources and to improve efficiency when concur-
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Figure 9: Performance comparison of different algorithms using nonbatched jobs.

rently executing parallel applications on many-core platforms. The benefit of adaptive scheduling is reflected not only
in eliminating the need of manually specifying the number ofcores required by most existing many-core runtime sys-
tems, but also in enhancing the overall system performance by exploiting the runtime characteristics of individual parallel
applications. The experimental results demonstrated thatfeedback-driven adaptive scheduling algorithms achieve better
performance with respect to makespan, mean response time and processor utilization, especially when more accurate and
stable feedback mechanism is applied. For our future work, we plan to integrate our adaptive scheduling algorithm into
the Linux kernel, which will provide more benefits for efficiently controlling and collaborating with many-core runtime
systems.
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