Chapter 9: Biochemical Mechanisms for Information Storage at the Cellular Level

From *Mechanisms of Memory*, second edition By J. David Sweatt, Ph.D.

Chapter 9: Dendritic Spine

Summary: Three Primary Issues Related to Mechanisms for E-LTP

Structures of Calcium-Binding Proteins

Structure of CAMKII

Three Different Effects of Ca/CaM on CaMKII

Catalysis of cAMP by Adenylyl Cyclases

LTP in Adenylyl Cyclase-Deficient Mice

Domain Structures of Isoforms of PKC

Hippocampal LTP in PKC Isoform-Specific Knockout Mice

PKMζ mRNA Formation from Internal Promoter within PKCζ Gene

PKMζ and LTP Maintenance

TABLE I:PROPOSED MECHANISMS FOR GENERATING
PERSISTING SIGNALS IN E-LTP

MOLECULE	MECHANISM	ROLE
CaMKII	Self-perpetuating autophosphorylation	Effector phosphorylation,
	coupled with low phosphatase activity	Structural changes
Various PKCs	Direct, irreversible covalent modification by reactive oxygen species	Effector phosphorylation
ΡΚΜζ	De novo synthesis of a constitutively	Effector phosphorylation
	active kinase	

TABLE II: PROPOSED MECHANISMS FOR AUGMENTING AMPA
RECEPTOR FUNCTION IN E-LTP

Mechanism	Likely molecular basis
Increased single-channel conductance	Direct phosphorylation of AMPA receptor
	alpha subunits by CaMKII or PKC
Increased steady-state levels of AMPAR	CaMKII (+ PKC?) phosphorylation of AMPAR- associated trafficking and scaffolding proteins
Insertion of AMPAR into silent synapses	CaMKII phosphorylation of GluR1-associated trafficking
	proteins

AMPA Receptor Regulation During LTP

Glutamate Receptor Insertion and Stabilization in E-LTP

Retrograde Signaling in E-LTP

Activity-Dependent Regulation of Local Protein Synthesis and Spine Morphological Changes in LTP

Altered Protein Synthesis as Trigger for Memory

CAMKII as a Temporal Integrator

Oxidative Activation of PKC in LTP

Sites of Cleavage of Phospholipids by Phospholipases

Synaptic Tagging and the E-LTP/ L-LTP Transition

