Contradiction Example

Question: Show there is no rational number whose square is 2.

Using the proof by contradiction approach, suppose there is a rational number whose square is 2 .
Some things to think about before progressing with the problem:

1. What is the formal definition of a rational number?
2. What are some properties of rational numbers?
3. Is there any statement in the definition or properties that could potentially lead to a contradiction?

Define this rational number as $r=\frac{m}{n}$, where m is an integer and n is a natural number, and $\frac{m}{n}$ is written in lowest terms. Note: by properties of irreducible fractions $r=\frac{m}{n}$ in lowest terms implies that either either m or n is odd

Now $r^{2}=2 \Rightarrow\left(\frac{m}{n}\right)^{2}=2$
$\Rightarrow m^{2}=2 n^{2}$, this means that m^{2} is even
m must be even since any even number times itself is even (m cannot be odd because any odd number times itself is odd).
Now we have $m^{2}=2 n^{2} \Rightarrow n^{2}=\left(\frac{m}{2}\right)(m)$
Note: $\left(\frac{m}{2}\right)$ may be even or odd, but we know m is even. An even number times an even number, or an even times an odd number will always be an even number.

Thus n^{2} is even, and using the same logic as above n must also be even.
Thus m and n are both even, but by definition of irreducible fractions, either m or n must be odd.
Thus $\frac{m}{n}$ cannot be in lowest terms. \Rightarrow Contradiction!
Through proof by contradiction, we have shown that there is no rational number whose square is 2 .

