Question: Calculate $\lim \sup x_{n}$ for $x_{n}=(-1)^{n}\left(\frac{n+5}{n}\right)$
We need to find the supremum of the subsequences.
Let's try an substitute natural numbers for " n " to get an idea of what the elements of $x_{n}$ look like:

$$
x_{n}=\left\{\frac{-6}{1}, \frac{7}{2}, \frac{-8}{3}, \frac{9}{4}, \frac{-10}{5}, \frac{11}{6}, \frac{-12}{7}, \frac{13}{8} \ldots\right\}
$$

Now let's look at subsequences of $x_{n}$ :

$$
\begin{aligned}
& x_{1}=\left\{\frac{-6}{1}, \frac{7}{2}, \frac{-8}{3}, \frac{9}{4}, \frac{-10}{5}, \frac{11}{6}, \frac{-12}{7}, \frac{13}{8} \cdots\right\} \rightarrow \inf \left(x_{1}\right)=\frac{7}{2} \\
& x_{2}=\left\{\frac{7}{2}, \frac{-8}{3}, \frac{9}{4}, \frac{-10}{5}, \frac{11}{6}, \frac{-12}{7}, \frac{13}{8} \ldots\right\} \rightarrow \inf \left(x_{2}\right)=\frac{7}{2} \\
& x_{3}=\left\{\frac{-8}{3}, \frac{9}{4}, \frac{-10}{5}, \frac{11}{6}, \frac{-12}{7}, \frac{13}{8} \cdots\right\} \rightarrow \inf \left(x_{3}\right)=\frac{9}{4} \\
& x_{4}=\left\{\frac{9}{4}, \frac{-10}{5}, \frac{11}{6}, \frac{-12}{7}, \frac{13}{8} \ldots\right\} \rightarrow \inf \left(x_{4}\right)=\frac{9}{4}
\end{aligned}
$$

$$
\vdots
$$

Now taking the limits of all those supremums, we get: $\lim \sup \left\{\frac{7}{2}, \frac{7}{2}, \frac{9}{4}, \frac{11}{6}, \ldots\right\}=1$.
Thus the final answer is 1.
If you want to convince yourself further, try and make a plot of the sequence in $R$.

## Question: Find $\lim \inf \boldsymbol{A}_{\boldsymbol{n}}$ where:

$$
A_{n}=\left\{\begin{array}{l}
0 \leq x<1 \quad n \text { is odd } \\
1 \leq x \leq 2 \quad n \text { is even }
\end{array}\right.
$$

Recall that $\liminf A_{n}=\bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_{n}$
Let's start off by writing out some of the subsets:

$$
\begin{aligned}
& A_{1}=[0,1) \\
& A_{2}=[1,2] \\
& A_{3}=[0,1)
\end{aligned}
$$

$$
\vdots
$$

Now let's take intersections of different combinations of subsets:

$$
\begin{aligned}
& A_{1} \cap A_{2} \cap A_{3} \cap \ldots \rightarrow \emptyset \\
& A_{2} \cap A_{3} \cap A_{4} \cap \ldots \rightarrow \emptyset \\
& A_{3} \cap A_{4} \cap A_{5} \cap \ldots \rightarrow \emptyset \\
& \vdots
\end{aligned}
$$

And the union of all the above intersections: $\{\emptyset, \emptyset, \emptyset, \ldots\}=\emptyset$
Thus the final answer is: $\emptyset$

