Question: Show that the statement: $P_{i+1}-P_{i}=\left(\frac{q}{p}\right)^{i} P_{1}$ is true for all i. Remember from the video that P_{i} represents the probability of the droid reaching the end assuming it starts at position i. The underlined portions in the solution represents the steps needed to complete a prrof by induction.

Recall from the proof toolkit, if you need to show something is true for all natural numbers or a well-ordered set, it is probably a good idea to use proof by induction.

Define $I(n): ~ P_{i+1}-P_{i}=\left(\frac{q}{p}\right)^{i} P_{1}$
Show that the base case (using $i=1$) is true, that is, show: $P_{2}-P_{1}=\left(\frac{q}{p}\right) P_{1}$
We know: $P_{2}-P_{1}=\frac{q}{p}\left(P_{1}-P_{0}\right)$ based on the derivation from the video (Recall: $\left.P_{i+1}-P_{i}=\left(\frac{q}{p}\right)\left(P_{i}-P_{i-1}\right)\right)$
Now P_{0} represents the probability of reaching the end given that you start in position 0 , in this case, the crater. Since the crater is an absorbing state then the droid will never reach the end if it starts in the crater $\Rightarrow P_{0}=0$
$\Rightarrow P_{2}-P_{1}=\frac{q}{p} P_{1}$ Thus the base case has been proven!
Now show that: given the $k^{t h}$ case is true (i.e. $-P_{k+1}-P_{k}=\left(\frac{q}{p}\right)^{k} P_{1}$), the $k+1^{t h}$ case is true (i.e. $-P_{(k+1)+1}-P_{k+1}=$ $\left.\left(\frac{q}{p}\right)^{k} P_{1}\right)$
$P_{(k+1)+1}-P_{(k+1)}=\frac{q}{p}\left(P_{k+1}-P_{(k+1)-1}\right)$ Again we know this is true based on the derivation from the video
Notice that the left-hand side of the above equation looks like the left-hand side of the equation we want to show.
So we just need the right-hand side of the above equation to look like the right-hand side of what we want to show.
$\Rightarrow P_{(k+1)+1}-P_{(k+1)}=\left(\frac{q}{p}\right)\left(\frac{q}{p}\right)^{k} P_{1}$ (We can make this substitution because we know the $k^{t h}$ case is true.)
$\Rightarrow P_{(k+1)+1}-P_{(k+1)}=\left(\frac{q}{p}\right)^{k+1} P_{1}$
Thus we have shown: given that the $k^{t h}$ case is true, the $k+1^{\text {th }}$ is true
By induction we can conclude that the statement $I(n): P_{i+1}-P_{i}=\left(\frac{q}{p}\right)^{i} P_{1}$ is true

