Iff Example

Let x be a real number. Let $\lceil x\rceil$ be the smallest integer greater than x (ceiling), and $\lfloor x\rfloor$ be the largest integer less than x (floor). Prove that $\lceil x\rceil=\lfloor x\rfloor$ if and only if x is an integer.

Note: the "iff" in the question, meaning that you have to prove both conditional statements:

1) if $\lceil x\rceil=\lfloor x\rfloor$ then x is an integer (forward)
2) if x is an integer then $\lceil x\rceil=\lfloor x\rfloor$ (backward)

Start with showing the forward conditional statement is true (i.e. - Show (1) is true).
By the definition of ceiling and floor, we can say: $\lceil x\rceil \geq\lfloor x\rfloor$
We know that $\lfloor x\rfloor \leq x \leq\lceil x\rceil$ for any real number. If $\lceil x\rceil=\lfloor x\rfloor$ then $x=\lfloor x\rfloor$ which is an integer.
Thus we have shown the forward conditional statement is true.
Now show the backwards conditional statement is true (i.e. - Show (2) is true).
We know that x is an integer. Thus x is the smallest integer greater than x, that is $\lceil x\rceil=x$, and x is the largest integer smaller than x, that is $\lfloor x\rfloor=x$.

Thus $\lceil x\rceil=\lfloor x\rfloor$, and we have shown the backwards conditional statement is true.
We have thus shown that $\lceil x\rceil=\lfloor x\rfloor$ iff x is an integer.
Note: Each of the conditional statements were shown to be true using a direct proof method.

