Direct Proof Example

Question: Show $a+b=|a-b| \Rightarrow a b=0$
Start with what is given:

$$
\begin{aligned}
& a+b=|a-b| \\
& \Rightarrow(a+b)^{2}=(|a-b|)^{2}=(a-b)^{2}\left(\text { since }|a|^{2}=a^{2}\right) \\
& \Rightarrow(a+b)^{2}=(a-b)^{2} \\
& \Rightarrow a^{2}+2 a b+b^{2}=a^{2}-2 a b+b^{2} \\
& \Rightarrow a b=0
\end{aligned}
$$

Note: This is an example of an algebraic proof, only algebraic properties are required to solve this problem.
Note: You could also answer this question using cases:
Case 1: " $a \geq b$ " : $a+b=a-b \Rightarrow b=0 \Rightarrow a b=0$
Case 2: " $a<b$ ": $a+b=b-a \Rightarrow a=0 \Rightarrow a b=0$
Since we have shown $a+b=|a-b| \Rightarrow a b=0$ is true for all a, b we can conclude the $a+b=|a-b| \Rightarrow a b=0$ is true.

