Contrapositive Example

Question: Show if $|x| \leq \frac{1}{n}$ for every positive integer n, then $\mathrm{x}=0$.

Let "A": $|x| \leq \frac{1}{n}$ for every positive integer
Let "B": x = 0
We need to show $A \Rightarrow B$, but showing this implication for every positive integer means an infinite number of cases.
So define the contrapositive: $\sim B \Rightarrow \sim A$:
$\sim \mathrm{A}$: there exists a positive integer n such that $\frac{1}{n}<|x|$
$\sim \mathrm{B}: \mathrm{x} \neq 0$
Define the contrapositive: If $x \neq 0$ then there exists a positive integer n such that $\frac{1}{n}<|x|$.
Since the contrapositive statement is equivalent to proving the original statement, let us prove the contrapositive statement. Essentially, we need to find this positive integer n that makes $\frac{1}{n}<|x|$ true.

We can answer this question using a direct proof
Let $N=\left\lceil\frac{1}{|x|}\right\rceil$
A common place to start thinking about proofs is at the end. We need to find an n, say N , such that $\frac{1}{N}<|x|$. Why not solve for N and start there? (Yielding the above equation) N needs to be an integer so take the ceiling.

Then for all $n>N$, we have $n>N \geq \frac{1}{|x|}$
Then doing some rearranging we can conclude: $\frac{1}{n}<|x|$
Thus we have shown that the contrapositive is true.
I initially wanted to solve this problem using cases but, it ends up requiring the need for the direct proof anyway. Here is how you would do it:

We do not know the exact value of x, only that it cannot be zero. Let us look at the cases of x :

1) $x>1, x<-1$

Any positive integer n would satisfy $\frac{1}{n}<|x|$, since $\frac{1}{n} \leq 1<\frac{1}{|x|}$
2) $-1 \leq x \leq 1, x \neq 0$

Due to the density of the real line, given some real number, x, we can always find a smaller rational number. To figure out what the value of the rational number should be, we need the direct proof

Something to also consider: you could potentially use induction to answer the question, without using the contrapositive since you need to show a statement is true for all $n \in N$

