Model theory of abelian C*-algebras

Isaac Goldbring

University of California, Irvine

NCGOA Vanderbilt, May 2017

Isaac Goldbring (UCI)

Model theory of abelian C* -algebras

Vanderbilt May 2017 1 / 2

1 Dualities and ultraproducts

2 Model theory of arbitrary abelian C*-algebras

3 Model theory of projectionless abelian C*-algebras

Stone duality

Let ZDComp and Bool denote the categories of zero dimensional compact Hausdorff spaces and Boolean algebras respectively.

Stone Duality

- There is a contravariant function ZDComp \rightarrow Bool that is an anti-equivalence of categories.
- It sends X ∈ ZDComp to the Boolean algebra CL(X) of clopen subsets of X.
- The inverse map sends $\mathbb{B} \in \text{Bool}$ to the space of ultrafilters on \mathbb{B} .
- Given a continuous function $f : X \to Y$ between elements of ZDComp, the functor sends it to the Boolean algebra morphism $\tilde{f} : CL(Y) \to CL(X)$ given by $\tilde{f}(C) := f^{-1}(C)$.

Stone duality

Let ZDComp and Bool denote the categories of zero dimensional compact Hausdorff spaces and Boolean algebras respectively.

Stone Duality

- There is a contravariant function ZDComp → Bool that is an anti-equivalence of categories.
- It sends X ∈ ZDComp to the Boolean algebra CL(X) of clopen subsets of X.
- The inverse map sends $\mathbb{B} \in \text{Bool}$ to the space of ultrafilters on \mathbb{B} .
- Given a continuous function $f : X \to Y$ between elements of ZDComp, the functor sends it to the Boolean algebra morphism $\tilde{f} : CL(Y) \to CL(X)$ given by $\tilde{f}(C) := f^{-1}(C)$.

Gelfand duality

Let Comp and C^* -Alg denote the categories of compact Hausdorff spaces and (unital) C^* -algebras respectively.

Gelfand Duality

- There is a contravariant function Comp →C*-Alg that is an anti-equivalence of categories.
- It sends $X \in \text{Comp}$ to the unital C*-algebra C(X) of continuous functions on X.
- The inverse map sends A ∈C*-Alg to the space Σ(A) of maximal ideals on A.
- Given a continuous function $f : X \to Y$ between elements of ZDComp, the functor sends it to the C*-algebra morphism $\tilde{f} : C(Y) \to C(X)$ given by $\tilde{f}(h) := h \circ f$.

Gelfand duality

Let Comp and C^* -Alg denote the categories of compact Hausdorff spaces and (unital) C^* -algebras respectively.

Gelfand Duality

- There is a contravariant function Comp →C*-Alg that is an anti-equivalence of categories.
- It sends X ∈ Comp to the unital C*-algebra C(X) of continuous functions on X.
- The inverse map sends A ∈C*-Alg to the space Σ(A) of maximal ideals on A.
- Given a continuous function $f : X \to Y$ between elements of ZDComp, the functor sends it to the C*-algebra morphism $\tilde{f} : C(Y) \to C(X)$ given by $\tilde{f}(h) := h \circ f$.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition (Cheating)

We say that C(X) is real rank 0 if $X \in \text{ZDComp}$.

Let RRZ denote the category of real rank 0 abelian C*-algebras. We thus have a covariant functor RRZ \rightarrow Bool given by composing the restriction of the inverse Gelfand functor to RRZ with the Stone functor; this functor is an equivalence of categories.

More concretely: when $X \in \text{ZDComp}$, C(X) is the closed linear span of its projections and P(C(X)) is isomorphic to CL(X) as a Boolean algebra.

Let us call this functor the *forgetful functor*.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Definition (Cheating)

We say that C(X) is *real rank* 0 if $X \in \text{ZDComp}$.

Let RRZ denote the category of real rank 0 abelian C*-algebras. We thus have a covariant functor RRZ \rightarrow Bool given by composing the restriction of the inverse Gelfand functor to RRZ with the Stone functor; this functor is an equivalence of categories.

More concretely: when $X \in \text{ZDComp}$, C(X) is the closed linear span of its projections and P(C(X)) is isomorphic to CL(X) as a Boolean algebra.

Let us call this functor the *forgetful functor*.

Definition (Cheating)

We say that C(X) is *real rank* 0 if $X \in \text{ZDComp}$.

Let RRZ denote the category of real rank 0 abelian C*-algebras. We thus have a covariant functor RRZ \rightarrow Bool given by composing the restriction of the inverse Gelfand functor to RRZ with the Stone functor; this functor is an equivalence of categories.

More concretely: when $X \in \text{ZDComp}$, C(X) is the closed linear span of its projections and P(C(X)) is isomorphic to CL(X) as a Boolean algebra.

Let us call this functor the *forgetful functor*.

Definition (Cheating)

We say that C(X) is *real rank* 0 if $X \in \text{ZDComp}$.

Let RRZ denote the category of real rank 0 abelian C*-algebras. We thus have a covariant functor RRZ \rightarrow Bool given by composing the restriction of the inverse Gelfand functor to RRZ with the Stone functor; this functor is an equivalence of categories.

More concretely: when $X \in \text{ZDComp}$, C(X) is the closed linear span of its projections and P(C(X)) is isomorphic to CL(X) as a Boolean algebra.

Let us call this functor the *forgetful functor*.

A categorical perspective on ultraproducts

Lemma

Let $(A_i : i \in I)$ be a family of C^{*}-algebras or Boolean algebras and let \mathcal{U} be a nonprincipal ultrafilter on I. For $J \in \mathcal{U}$, set $A_J := \prod_{i \in J} A_i$. Then:

The family (A_J, π_{JK}) is a directed family, where $\pi_{JK} : A_J \to A_K$ is the natural projection map (for $J \supseteq K$).

There is a natural isomorphism $\prod_{\mathcal{U}} A_i \cong \varinjlim A_J$.

A categorical perspective on ultraproducts

Lemma

Let $(A_i : i \in I)$ be a family of C^{*}-algebras or Boolean algebras and let \mathcal{U} be a nonprincipal ultrafilter on I. For $J \in \mathcal{U}$, set $A_J := \prod_{i \in J} A_i$. Then:

The family (A_J, π_{JK}) is a directed family, where $\pi_{JK} : A_J \to A_K$ is the natural projection map (for $J \supseteq K$).

• There is a natural isomorphism $\prod_{\mathcal{U}} A_i \cong \varinjlim A_J$.

- Suppose that X_i is a compact Hausdorff space for $i \in I$ and that \mathcal{U} is a nonprincipal ultrafilter on I.
- Question: What is $\Sigma(\prod_{\mathcal{U}} C(X_i))$?
- Set $X_J := \prod_{i \in J} X_i = \beta(\bigoplus_{i \in J} X_i)$.
- Applying the Gelfand functor to the isomorphism $\prod_{\mathcal{U}} C(X_i) \cong \varinjlim C(X)_J$ yields $\Sigma(\prod_{\mathcal{U}} C(X_i)) \cong \varprojlim X_J$.
- This space is called the *ultracoproduct of the family* (X_i) *with respect to the ultrafilter* \mathcal{U} and is denoted $\coprod_{\mathcal{U}} X_i$.
- If $X_i = X$ for all *i*, then this is the *ultracopower of X*, denoted X^{U} .
- Another perspective: if *p* : X × I → I is projection onto the second coordinate, then X^U ≅ (βp)⁻¹(U).

- Suppose that X_i is a compact Hausdorff space for $i \in I$ and that \mathcal{U} is a nonprincipal ultrafilter on I.
- Question: What is $\Sigma(\prod_{\mathcal{U}} C(X_i))$?
- Set $X_J := \prod_{i \in J} X_i = \beta(\bigoplus_{i \in J} X_i)$.
- Applying the Gelfand functor to the isomorphism $\prod_{\mathcal{U}} C(X_i) \cong \varinjlim C(X)_J \text{ yields } \Sigma(\prod_{\mathcal{U}} C(X_i)) \cong \varprojlim X_J.$
- This space is called the *ultracoproduct of the family* (X_i) *with respect to the ultrafilter* \mathcal{U} and is denoted $\coprod_{\mathcal{U}} X_i$.
- If $X_i = X$ for all *i*, then this is the *ultracopower of X*, denoted X^{U} .
- Another perspective: if *p* : X × I → I is projection onto the second coordinate, then X^U ≅ (βp)⁻¹(U).

- Suppose that X_i is a compact Hausdorff space for $i \in I$ and that \mathcal{U} is a nonprincipal ultrafilter on I.
- Question: What is $\Sigma(\prod_{\mathcal{U}} C(X_i))$?

Set
$$X_J := \coprod_{i \in J} X_i = \beta(\oplus_{i \in J} X_i).$$

- Applying the Gelfand functor to the isomorphism $\prod_{\mathcal{U}} C(X_i) \cong \varinjlim C(X)_J \text{ yields } \Sigma(\prod_{\mathcal{U}} C(X_i)) \cong \varprojlim X_J.$
- This space is called the *ultracoproduct of the family* (X_i) *with respect to the ultrafilter* \mathcal{U} and is denoted $\coprod_{\mathcal{U}} X_i$.
- If $X_i = X$ for all *i*, then this is the *ultracopower of X*, denoted X^{U} .
- Another perspective: if *p* : X × I → I is projection onto the second coordinate, then X^U ≅ (βp)⁻¹(U).

- Suppose that X_i is a compact Hausdorff space for $i \in I$ and that \mathcal{U} is a nonprincipal ultrafilter on I.
- Question: What is $\Sigma(\prod_{\mathcal{U}} C(X_i))$?

• Set
$$X_J := \coprod_{i \in J} X_i = \beta(\oplus_{i \in J} X_i).$$

- Applying the Gelfand functor to the isomorphism $\prod_{\mathcal{U}} C(X_i) \cong \varinjlim C(X)_J$ yields $\Sigma(\prod_{\mathcal{U}} C(X_i)) \cong \varprojlim X_J$.
- This space is called the *ultracoproduct of the family* (X_i) *with respect to the ultrafilter* \mathcal{U} and is denoted $\coprod_{\mathcal{U}} X_i$.
- If $X_i = X$ for all *i*, then this is the *ultracopower of X*, denoted X^{U} .
- Another perspective: if *p* : X × I → I is projection onto the second coordinate, then X^U ≅ (βp)⁻¹(U).

- Suppose that X_i is a compact Hausdorff space for $i \in I$ and that \mathcal{U} is a nonprincipal ultrafilter on I.
- Question: What is $\Sigma(\prod_{\mathcal{U}} C(X_i))$?

• Set
$$X_J := \coprod_{i \in J} X_i = \beta(\oplus_{i \in J} X_i).$$

- Applying the Gelfand functor to the isomorphism $\prod_{\mathcal{U}} C(X_i) \cong \varinjlim C(X)_J$ yields $\Sigma(\prod_{\mathcal{U}} C(X_i)) \cong \varinjlim X_J$.
- This space is called the *ultracoproduct of the family* (X_i) *with respect to the ultrafilter* \mathcal{U} and is denoted $\coprod_{\mathcal{U}} X_i$.
- If $X_i = X$ for all *i*, then this is the *ultracopower of X*, denoted $X^{\mathcal{U}}$.
- Another perspective: if *p* : X × I → I is projection onto the second coordinate, then X^U ≅ (βp)⁻¹(U).

- Suppose that X_i is a compact Hausdorff space for $i \in I$ and that \mathcal{U} is a nonprincipal ultrafilter on I.
- Question: What is $\Sigma(\prod_{\mathcal{U}} C(X_i))$?

• Set
$$X_J := \coprod_{i \in J} X_i = \beta(\oplus_{i \in J} X_i).$$

- Applying the Gelfand functor to the isomorphism $\prod_{\mathcal{U}} C(X_i) \cong \varinjlim C(X)_J$ yields $\Sigma(\prod_{\mathcal{U}} C(X_i)) \cong \varinjlim X_J$.
- This space is called the *ultracoproduct of the family* (X_i) *with respect to the ultrafilter* \mathcal{U} and is denoted $\coprod_{\mathcal{U}} X_i$.
- If $X_i = X$ for all *i*, then this is the *ultracopower of X*, denoted X^{U} .
- Another perspective: if $p: X \times I \to I$ is projection onto the second coordinate, then $X^{\mathcal{U}} \cong (\beta p)^{-1}(\mathcal{U})$.

- Suppose that X_i is a compact Hausdorff space for $i \in I$ and that \mathcal{U} is a nonprincipal ultrafilter on I.
- Question: What is $\Sigma(\prod_{\mathcal{U}} C(X_i))$?

Set
$$X_J := \coprod_{i \in J} X_i = \beta(\oplus_{i \in J} X_i).$$

- Applying the Gelfand functor to the isomorphism $\prod_{\mathcal{U}} C(X_i) \cong \varinjlim C(X)_J$ yields $\Sigma(\prod_{\mathcal{U}} C(X_i)) \cong \varinjlim X_J$.
- This space is called the *ultracoproduct of the family* (X_i) *with respect to the ultrafilter* \mathcal{U} and is denoted $\coprod_{\mathcal{U}} X_i$.
- If $X_i = X$ for all *i*, then this is the *ultracopower of X*, denoted X^{U} .
- Another perspective: if *p* : X × I → I is projection onto the second coordinate, then X^U ≅ (βp)⁻¹(U).

Suppose that each X_i is totally disconnected.

- Since Bool is closed under ultraproducts and ultraroots, it follows from the forgetful functor that so is RRZ, whence RRZ is an axiomatizable class, say axiomatized by T_{rr0}.
- The forgetful functor sends $C(\coprod_{\mathcal{U}} X_i) \cong \prod_{\mathcal{U}} C(X_i) = \varinjlim_{\mathcal{U}} C(X)_J$ to $CL(\coprod_{\mathcal{U}} X_i) \cong \prod_{\mathcal{U}} CL(X_i) = \varinjlim_{\mathcal{U}} CL(X)_J$.
- In particular, if X and Y are totally disconnected, then

$$C(X)^{\mathcal{U}} \cong C(Y)^{\mathcal{V}} \Leftrightarrow CL(X)^{\mathcal{U}} \cong CL(Y)^{\mathcal{V}},$$

whence, by Keisler-Shelah, we have

$$C(X) \equiv C(Y) \Leftrightarrow CL(X) \equiv CL(Y).$$

A (10) > A (10) > A (10)

- Suppose that each X_i is totally disconnected.
- Since Bool is closed under ultraproducts and ultraroots, it follows from the forgetful functor that so is RRZ, whence RRZ is an axiomatizable class, say axiomatized by T_{rr0}.
- The forgetful functor sends $C(\coprod_{\mathcal{U}} X_i) \cong \prod_{\mathcal{U}} C(X_i) = \varinjlim_{\mathcal{U}} C(X)_J$ to $CL(\coprod_{\mathcal{U}} X_i) \cong \prod_{\mathcal{U}} CL(X_i) = \varinjlim_{\mathcal{U}} CL(X)_J$.
- In particular, if X and Y are totally disconnected, then

$$C(X)^{\mathcal{U}} \cong C(Y)^{\mathcal{V}} \Leftrightarrow CL(X)^{\mathcal{U}} \cong CL(Y)^{\mathcal{V}},$$

whence, by Keisler-Shelah, we have

$$C(X) \equiv C(Y) \Leftrightarrow CL(X) \equiv CL(Y).$$

- Suppose that each X_i is totally disconnected.
- Since Bool is closed under ultraproducts and ultraroots, it follows from the forgetful functor that so is RRZ, whence RRZ is an axiomatizable class, say axiomatized by T_{rr0}.
- The forgetful functor sends $C(\coprod_{\mathcal{U}} X_i) \cong \prod_{\mathcal{U}} C(X_i) = \varinjlim_{\mathcal{U}} C(X)_J$ to $CL(\coprod_{\mathcal{U}} X_i) \cong \prod_{\mathcal{U}} CL(X_i) = \varinjlim_{\mathcal{U}} CL(X)_J$.

■ In particular, if X and Y are totally disconnected, then

$$C(X)^{\mathcal{U}} \cong C(Y)^{\mathcal{V}} \Leftrightarrow CL(X)^{\mathcal{U}} \cong CL(Y)^{\mathcal{V}},$$

whence, by Keisler-Shelah, we have

$$C(X) \equiv C(Y) \Leftrightarrow CL(X) \equiv CL(Y).$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Suppose that each X_i is totally disconnected.
- Since Bool is closed under ultraproducts and ultraroots, it follows from the forgetful functor that so is RRZ, whence RRZ is an axiomatizable class, say axiomatized by T_{rr0}.
- The forgetful functor sends $C(\coprod_{\mathcal{U}} X_i) \cong \prod_{\mathcal{U}} C(X_i) = \varinjlim_{\mathcal{U}} C(X)_J$ to $CL(\coprod_{\mathcal{U}} X_i) \cong \prod_{\mathcal{U}} CL(X_i) = \varinjlim_{\mathcal{U}} CL(X)_J$.
- In particular, if X and Y are totally disconnected, then

$$C(X)^{\mathcal{U}} \cong C(Y)^{\mathcal{V}} \Leftrightarrow CL(X)^{\mathcal{U}} \cong CL(Y)^{\mathcal{V}},$$

whence, by Keisler-Shelah, we have

$$C(X) \equiv C(Y) \Leftrightarrow CL(X) \equiv CL(Y).$$

The general situation

Given a bounded distributive lattice B, one may form a topological space X_B from the maximal filters on B in the same way.

Theorem (Gurevic)

- 1 X_B is always a compact T_1 -space.
- 2 There is an elementary class of normal bounded distributive lattices such that, if B is normal, then X_B is Hausdorff.
- Conversely, if X is a compact Hausdorff space and B is a closed set base for X (closed under finite union and intersection), then B is normal and X is naturally homeomorphic to X_B.
- 4 If each B_i is a closed set base for X_i , each X_i compact Hausdorff, and $B := \prod_{\mathcal{U}} B_i$, then $\coprod_{\mathcal{U}} X_i$ is naturally homeomorphic to X_B .

The general situation

Given a bounded distributive lattice B, one may form a topological space X_B from the maximal filters on B in the same way.

Theorem (Gurevic)

- **1** X_B is always a compact T_1 -space.
- 2 There is an elementary class of normal bounded distributive lattices such that, if B is normal, then X_B is Hausdorff.
- Conversely, if X is a compact Hausdorff space and B is a closed set base for X (closed under finite union and intersection), then B is normal and X is naturally homeomorphic to X_B.
- 4 If each B_i is a closed set base for X_i , each X_i compact Hausdorff, and $B := \prod_{\mathcal{U}} B_i$, then $\coprod_{\mathcal{U}} X_i$ is naturally homeomorphic to X_B .

1 Dualities and ultraproducts

2 Model theory of arbitrary abelian C*-algebras

3 Model theory of projectionless abelian C*-algebras

Model-theoretic reminders

Let T be a (classical or continuous) L-theory.

- *T* is *model-complete* if every embedding between models is elementary.
- If T' is also an L-theory, then T' is the model companion of T if T' is model-complete and T_∀ = T'_∀.
- If $M \subseteq N$ are *L*-structures, then *M* is *existentially closed (e.c.)* in *N* if there is an embedding $N \hookrightarrow M^{\mathcal{U}}$ that is the identity on *M*.
- $M \models T$ is an *existentially closed model of T* if *M* is e.c. in *N* whenever $M \subseteq N \models T$.
- T has a model companion if and only if the class of e.c. models of T is elementary, in which case this elementary theory is the model companion of T.
- The model companion of *T* has QE (and is called the *model* completion of *T*) if and only if *T*[∀] has the *amalgamation* property.

Model theory of T_{bool}

Let T_{bool} denote the (classical) theory of boolean algebras.

Theorem

- 1 *T*_{bool} has a model completion, namely the theory of atomless Boolean algebras.
- 2 This model completion is ℵ₀-categorical with unique countable model CL(2^N).

Corollary

 T_{rr0} is $\forall \exists$ -axiomatizable.

Proof.

 T_{bool} is $\forall \exists$ -axiomatizable (as it is model-complete), so closed under limits of chains. Applying the forgetful functor, so is T_{rr0} .

Isaac Goldbring (UCI)

Model theory of abelian C* -algebras

Vanderbilt May 2017 12 / 27

Model theory of T_{bool}

Let T_{bool} denote the (classical) theory of boolean algebras.

Theorem

- 1 *T*_{bool} has a model completion, namely the theory of atomless Boolean algebras.
- 2 This model completion is ℵ₀-categorical with unique countable model CL(2^N).

Corollary

 T_{rr0} is $\forall \exists$ -axiomatizable.

Proof.

 T_{bool} is $\forall \exists$ -axiomatizable (as it is model-complete), so closed under limits of chains. Applying the forgetful functor, so is T_{rr0} .

Isaac Goldbring (UCI)

Model theory of abelian C* -algebras

Vanderbilt May 2017 12 / 27

Model theory of T_{bool}

Let T_{bool} denote the (classical) theory of boolean algebras.

Theorem

- 1 *T*_{bool} has a model completion, namely the theory of atomless Boolean algebras.
- 2 This model completion is ℵ₀-categorical with unique countable model CL(2^ℕ).

Corollary

 T_{rr0} is $\forall \exists$ -axiomatizable.

Proof.

 T_{bool} is $\forall\exists$ -axiomatizable (as it is model-complete), so closed under limits of chains. Applying the forgetful functor, so is T_{rr0} .

Isaac Goldbring (UCI)

Model theory of abelian C*-algebras

Vanderbilt May 2017 12 / 27

$\operatorname{Th}(C(2^{\mathbb{N}}))$

Theorem

Th($C(2^{\mathbb{N}})$) is \aleph_0 -categorical and is the model completion of T_{ab} .

Proof.

- If $C(X) \equiv C(2^{\mathbb{N}})$, then C(X) has real rank 0, so $CL(X) \equiv CL(2^{\mathbb{N}})$, whence $CL(X) \cong CL(2^{\mathbb{N}})$ and thus $C(X) \cong C(2^{\mathbb{N}})$.
- Since real rank 0 is $\forall \exists$ -axiomatizable and $(T_{ab})_{\forall} = Th_{\forall}(C(2^{\mathbb{N}}))$, we have that e.c. models of T_{ab} are real rank 0. Thus, if C(X) is an e.c. model of T_{comp} , then CL(X) is an e.c. model of T_{bool} , whence $CL(X) \equiv CL(2^{\mathbb{N}})$ and thus $C(X) \equiv C(2^{\mathbb{N}})$. The converse is similar, so $Th(C(2^{\mathbb{N}}))$ is the model companion of T_{ab} .

Since T_{ab} has the amalgamation property (fiber products), Th($C(2^{\mathbb{N}})$) has QE and is the model completion of T_{ab} .

$\mathsf{Th}(\mathcal{C}(2^{\mathbb{N}}))$

Theorem

Th($C(2^{\mathbb{N}})$) is \aleph_0 -categorical and is the model completion of T_{ab} .

Proof.

- If $C(X) \equiv C(2^{\mathbb{N}})$, then C(X) has real rank 0, so $CL(X) \equiv CL(2^{\mathbb{N}})$, whence $CL(X) \cong CL(2^{\mathbb{N}})$ and thus $C(X) \cong C(2^{\mathbb{N}})$.
- Since real rank 0 is $\forall \exists$ -axiomatizable and $(T_{ab})_{\forall} = \text{Th}_{\forall}(C(2^{\mathbb{N}}))$, we have that e.c. models of T_{ab} are real rank 0. Thus, if C(X) is an e.c. model of T_{comp} , then CL(X) is an e.c. model of T_{bool} , whence $CL(X) \equiv CL(2^{\mathbb{N}})$ and thus $C(X) \equiv C(2^{\mathbb{N}})$. The converse is similar, so $\text{Th}(C(2^{\mathbb{N}}))$ is the model companion of T_{ab} .

Since T_{ab} has the amalgamation property (fiber products), Th($C(2^{\mathbb{N}})$) has QE and is the model completion of T_{ab} .

$\mathsf{Th}(\mathcal{C}(2^{\mathbb{N}}))$

Theorem

Th($C(2^{\mathbb{N}})$) is \aleph_0 -categorical and is the model completion of T_{ab} .

Proof.

- If $C(X) \equiv C(2^{\mathbb{N}})$, then C(X) has real rank 0, so $CL(X) \equiv CL(2^{\mathbb{N}})$, whence $CL(X) \cong CL(2^{\mathbb{N}})$ and thus $C(X) \cong C(2^{\mathbb{N}})$.
- Since real rank 0 is $\forall \exists$ -axiomatizable and $(T_{ab})_{\forall} = Th_{\forall}(C(2^{\mathbb{N}}))$, we have that e.c. models of T_{ab} are real rank 0. Thus, if C(X) is an e.c. model of T_{comp} , then CL(X) is an e.c. model of T_{bool} , whence $CL(X) \equiv CL(2^{\mathbb{N}})$ and thus $C(X) \equiv C(2^{\mathbb{N}})$. The converse is similar, so $Th(C(2^{\mathbb{N}}))$ is the model companion of T_{ab} .
- Since T_{ab} has the amalgamation property (fiber products), Th($C(2^{\mathbb{N}})$) has QE and is the model completion of T_{ab} .

1 Dualities and ultraproducts

2 Model theory of arbitrary abelian C*-algebras

3 Model theory of projectionless abelian C*-algebras

Projectionless abelian C*-algebras and continua

Exercise

C(X) is projectionless if and only if X is connected.

Recall that a *continuum* is a connected, compact Hausdorff space. So the Gelfand functor sends the subcategory of projectionless abelian C^* -algebras onto the category of continua.

Lemma

The class of projectionless abelian C*-algebras forms a universally axiomatizable class.

Proof.

Immediate from the semantic test. Or here is the projectionless axiom:

$$\sup_{|f||=1} \min(2||1 - ff^*|| \div 1, 1 \div 4||ff^* - (ff^*)^2|| = 0.$$

Projectionless abelian C*-algebras and continua

Exercise

C(X) is projectionless if and only if X is connected.

Recall that a *continuum* is a connected, compact Hausdorff space. So the Gelfand functor sends the subcategory of projectionless abelian C^* -algebras onto the category of continua.

Lemma

The class of projectionless abelian C*-algebras forms a universally axiomatizable class.

Proof.

Immediate from the semantic test. Or here is the projectionless axiom:

$$\sup_{f\|=1} \min(2\|1 - ff^*\| \div 1, 1 \div 4\|ff^* - (ff^*)^2\| = 0.$$

Projectionless abelian C*-algebras and continua

Exercise

C(X) is projectionless if and only if X is connected.

Recall that a *continuum* is a connected, compact Hausdorff space. So the Gelfand functor sends the subcategory of projectionless abelian C^* -algebras onto the category of continua.

Lemma

The class of projectionless abelian C*-algebras forms a universally axiomatizable class.

Proof.

Immediate from the semantic test. Or here is the projectionless axiom:

$$\sup_{f\|=1} \min(2\|1 - ff^*\| - 1, 1 - 4\|ff^* - (ff^*)^2\| = 0.$$

A unique universal theory of continua

Let T_{cont} denote the theory axiomatizing C(X) for X a *nondegenerate* continuum (an $\forall \exists$ -theory).

Theorem (K.P. Hart)

If C(X), $C(Y) \models T_{cont}$, then $Th_{\forall}(C(X)) = Th_{\forall}(C(Y))$.

The proof proceeds by constructing a function $C \to B^{\mathcal{U}}$, where *B* and *C* are lattice bases of closed sets for *X* and *Y* respectively, that satisfies a criteria that ensures that there is a continuous surjection $X^{\mathcal{U}} = X_{B^{\mathcal{U}}} \to X_C = Y$.

Bankston's work on co-existentially closed continua

- Bankston, in a series of papers, has studied the model theory of continua in a dual form, sometimes relying on the first-order theory of lattice bases.
- He thus prefixes usual model theoretic jargon with "co-". For example, he talks about *co-existentially closed continua*. Here is a sample result:

Theorem (Bankston)

Co-existentially closed continua are hereditarily indecomposable.

Proof.

In our terminology, he proves that there is an $\forall \exists$ -theory $T \supseteq T_{cont}$ such that $C(X) \models T$ if and only if X is hereditarily indecomposable. Now use a result of Bellamy: every metrizable continuum is a surjective image of a metrizable hereditarily indecomposable continuum.

17/27

Bankston's work on co-existentially closed continua

- Bankston, in a series of papers, has studied the model theory of continua in a dual form, sometimes relying on the first-order theory of lattice bases.
- He thus prefixes usual model theoretic jargon with "co-". For example, he talks about *co-existentially closed continua*. Here is a sample result:

Theorem (Bankston)

Co-existentially closed continua are hereditarily indecomposable.

Proof.

In our terminology, he proves that there is an $\forall \exists$ -theory $T \supseteq T_{cont}$ such that $C(X) \models T$ if and only if X is hereditarily indecomposable. Now use a result of Bellamy: every metrizable continuum is a surjective image of a metrizable hereditarily indecomposable continuum.

17/27

Bankston's work on co-existentially closed continua

- Bankston, in a series of papers, has studied the model theory of continua in a dual form, sometimes relying on the first-order theory of lattice bases.
- He thus prefixes usual model theoretic jargon with "co-". For example, he talks about *co-existentially closed continua*. Here is a sample result:

Theorem (Bankston)

Co-existentially closed continua are hereditarily indecomposable.

Proof.

In our terminology, he proves that there is an $\forall \exists$ -theory $T \supseteq T_{cont}$ such that $C(X) \models T$ if and only if X is hereditarily indecomposable. Now use a result of Bellamy: every metrizable continuum is a surjective image of a metrizable hereditarily indecomposable continuum.

The pseudo-arc

Definition

A continuum X is *chainable* if, given any open cover \mathcal{V} of X, there is an open cover (U_1, \ldots, U_m) of X such that:

- each U_i is contained in an element of \mathcal{V} , and
- $U_i \cap U_j \neq \emptyset$ if and only if $|i j| \le 1$.

Theorem (Bing)

There is a unique (up to homeomorphism) continuum that is both hereditarily indecomposable and chainable. This continuum is called the pseudo-arc, denoted \mathbb{P} .

Question (Bankston)

Is \mathbb{P} a co-existentially closed continuum? I.e. is $C(\mathbb{P})$ an e.c. model of T_{cont} ?

Isaac Goldbring (UCI)

The pseudo-arc

Definition

A continuum X is *chainable* if, given any open cover \mathcal{V} of X, there is an open cover (U_1, \ldots, U_m) of X such that:

- each U_i is contained in an element of \mathcal{V} , and
- $U_i \cap U_j \neq \emptyset$ if and only if $|i j| \le 1$.

Theorem (Bing)

There is a unique (up to homeomorphism) continuum that is both hereditarily indecomposable and chainable. This continuum is called the pseudo-arc, denoted \mathbb{P} .

Question (Bankston)

Is \mathbb{P} a co-existentially closed continuum? I.e. is $C(\mathbb{P})$ an e.c. model of

Isaac Goldbring (UCI)

The pseudo-arc

Definition

A continuum X is *chainable* if, given any open cover \mathcal{V} of X, there is an open cover (U_1, \ldots, U_m) of X such that:

- each U_i is contained in an element of \mathcal{V} , and
- $U_i \cap U_j \neq \emptyset$ if and only if $|i j| \le 1$.

Theorem (Bing)

There is a unique (up to homeomorphism) continuum that is both hereditarily indecomposable and chainable. This continuum is called the pseudo-arc, denoted \mathbb{P} .

Question (Bankston)

Is \mathbb{P} a co-existentially closed continuum? I.e. is $C(\mathbb{P})$ an e.c. model of \mathcal{T}_{cont} ?

Isaac Goldbring (UCI)

Infinitary axiomatizability of chainability

Theorem (Eagle-G.-Vignati)

The class of models C(X) of T_{cont} such that X is chainable is uniformly definable by a sequence of universal types.

This means that there is a family $(\varphi_{k,m}(\vec{x}_k))$ of existential formulae, where $|\vec{x}_k| = k$, such that, given $C(X) \models T_{\text{cont}}$, we have that X is chainable if and only if $C(X) \models \sup_{\vec{x}_k} \inf_{m} \varphi_{k,m}(\vec{x}_k) = 0$ for all k.

We could also say that chainability is a sup \bigvee inf-property of continua.

The pseudo-arc is a co-existentially closed continuum

Corollary (Eagle-G.-Vignati)

There is an e.c. model C(X) of T_{cont} such that X is chainable. Consequently, $X \cong \mathbb{P}$.

Proof.

By the previous theorem and the Hart result, one can use Robinson forcing to obtain an e.c. model of T_{cont} that is chainable.

The pseudo-arc is descriptive set-theoretically generic (the subset of subcontinua of $[0, 1]^{\mathbb{N}}$ homeomorphic to \mathbb{P} is dense G_{δ}). This result shows that \mathbb{P} is also model-theoretically generic (namely generic for Robinson forcing).

The pseudo-arc is a co-existentially closed continuum

Corollary (Eagle-G.-Vignati)

There is an e.c. model C(X) of T_{cont} such that X is chainable. Consequently, $X \cong \mathbb{P}$.

Proof.

By the previous theorem and the Hart result, one can use Robinson forcing to obtain an e.c. model of T_{cont} that is chainable.

The pseudo-arc is descriptive set-theoretically generic (the subset of subcontinua of $[0, 1]^{\mathbb{N}}$ homeomorphic to \mathbb{P} is dense G_{δ}). This result shows that \mathbb{P} is also model-theoretically generic (namely generic for Robinson forcing).

・ロト ・ 四ト ・ ヨト ・ ヨト

T_{cont} does not have the amalgamation property

Observation (Hoehn)

 T_{cont} does not have the amalgamation property.

Proof.

- Let $f, g: [0, 1] \rightarrow \mathbb{S}^1$ be given by $f(x) = e^{2x\pi i}$ and $g(y) = e^{2(y+1)\pi i}$.
- Suppose *W* is compact and $r, s : W \to [0, 1]$ are such that $f \circ r = g = \circ s$.
- Let $A = r^{-1}([0, \frac{1}{2}]) \cap s^{-1}([\frac{1}{2}, 1])$ and $B = r^{-1}([\frac{1}{2}, 1]) \cap s^{-1}([0, \frac{1}{2}])$.
- Suppose that $w \in A \cap B$. Then $r(w) = s(w) = \frac{1}{2}$, so $f(r(w)) = e^{\pi i} \neq e^{2\pi i} = g(s(w))$, a contradiction.
- It follows that $A \cap B = \emptyset$, so W is disconnected.

Failure of quantifier elimination

Corollary

If X is a nondegenerate continuum, then C(X) does not have quantifier elimination.

Proof.

Since there is a unique universal theory of nondegenerate continua, if C(X) had QE, then Th(C(X)) would be the model completion of T_{cont} , whence T_{cont} would have the amalgamation property.

It was known that if X is compact and C(X) has QE, then either $X \cong 2^{\mathbb{N}}$ or X is connected. Thus:

Corollary

 $C(2^{\mathbb{N}})$ is the only abelian C*-algebra with QE.

3

(日)

Failure of quantifier elimination

Corollary

If X is a nondegenerate continuum, then C(X) does not have quantifier elimination.

Proof.

Since there is a unique universal theory of nondegenerate continua, if C(X) had QE, then Th(C(X)) would be the model completion of T_{cont} , whence T_{cont} would have the amalgamation property.

It was known that if X is compact and C(X) has QE, then either $X \cong 2^{\mathbb{N}}$ or X is connected. Thus:

Corollary

 $C(2^{\mathbb{N}})$ is the only abelian C^* -algebra with QE.

Isaac Goldbring (UCI)

3

・ロト ・四ト ・ヨト ・ヨト

Is there a model companion?

Theorem

 $C(\mathbb{P})$ is the only possible model of T_{cont} that is model complete. If this is indeed the case, then $Th(C(\mathbb{P}))$ is the model companion of T_{cont} .

Proof.

If C(X) is model-complete, then Th(C(X)) is the model-companion of T_{cont} . But $C(\mathbb{P})$ is an e.c. model of T_{cont} , so $C(\mathbb{P}) \models \text{Th}(C(X))$.

< ロ > < 同 > < 回 > < 回 >

Further observations about $C(\mathbb{P})$

Theorem (G.-last week, so grain of salt please)

- **1** $C(\mathbb{P})$ is an enforceable model of T_{cont} , that is, it is the only model of T_{cont} that can be produced by Robinson forcing.
- **2** $C(\mathbb{P})$ has every sup \bigvee inf-property of continua.
- 3 $C(\mathbb{P})$ is the prime model of its theory.

Remark

A consequence of (1) is that \mathbb{P} is a continuous image of every co-e.c. continuum. This follows from a result of Bellamy: \mathbb{P} is a continuos image of every hereditarily indecomposable continuum. Can one give a model-theoretic proof of this more general result?

A digression on \mathcal{R}

Let \mathcal{R} denote the unique separable hyperfinite II₁-factor. The *Connes Embedding Problem* (CEP) asks whether or not every II₁-factor is $\mathcal{R}^{\mathcal{U}}$ -embeddable.

Theorem (G.)

- **1** \mathcal{R} is an enforceable model of $\mathsf{Th}_{\forall}(\mathcal{R})$.
- 2 *R* possess every every sup ∨ inf-property of embeddable II₁-factors.
- 3 CEP is equivalent to the statement that R possess every every sup ∨ inf-property of II₁-factors.

Corollary

Many properties of II_1 -factors are not sup \bigvee inf-axiomatizable, e.g. property (T), proper fundamental group, non-(Γ)...

Model companions in operator algebras: a summary

Summary

The following classes do not have a model companion:

- Tracial von Neumann algebras (G.-Hart-Sinclair)
- C*-algebras (Eagle-Farah-Kirchberg-Vignati)
- Operator systems (G.-Lupini)
- Operator spaces (Lupini)

The existence of a model companion is unknown for the following classes:

- Projectionless abelian C*-algebras
- Projectionless C*-algebras
- Stably finite C*-algebras

< ロ > < 同 > < 回 > < 回 >

References

- PAUL BANKSTON, http://www.mscs.mu.edu/ paulb/.
- CHRISTOPHER EAGLE, ISAAC GOLDBRING, AND ALESSANDRO VIGNATI, The pseudo-arc is a co-existentially closed continuum, Topology and its applications, Volume 207 (2016), pp 1-9.
- ISAAC GOLDBRING, More model theory of the pseudo-arc, Work in progress.
- YURI GUREVICH, On ultracoproducts of compact Hausdorff spaces, Journal of symbolic logic, Volume 53 (1988), pp. 294-300.

.