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Dualities and ultraproducts

Stone duality

Let ZDComp and Bool denote the categories of zero dimensional
compact Hausdorff spaces and Boolean algebras respectively.

Stone Duality

There is a contravariant function ZDComp→ Bool that is an
anti-equivalence of categories.
It sends X ∈ ZDComp to the Boolean algebra CL(X ) of clopen
subsets of X .
The inverse map sends B ∈ Bool to the space of ultrafilters on B.
Given a continuous function f : X → Y between elements of
ZDComp, the functor sends it to the Boolean algebra morphism
f̃ : CL(Y )→ CL(X ) given by f̃ (C) := f−1(C).
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Dualities and ultraproducts

Gelfand duality

Let Comp and C∗-Alg denote the categories of compact Hausdorff
spaces and (unital) C∗-algebras respectively.

Gelfand Duality

There is a contravariant function Comp→C∗-Alg that is an
anti-equivalence of categories.
It sends X ∈ Comp to the unital C∗-algebra C(X ) of continuous
functions on X .
The inverse map sends A ∈C∗-Alg to the space Σ(A) of maximal
ideals on A.
Given a continuous function f : X → Y between elements of
ZDComp, the functor sends it to the C∗-algebra morphism
f̃ : C(Y )→ C(X ) given by f̃ (h) := h ◦ f .
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Dualities and ultraproducts

Real rank 0 abelian C∗-algebras

Definition (Cheating)

We say that C(X ) is real rank 0 if X ∈ ZDComp.

Let RRZ denote the category of real rank 0 abelian C∗-algebras. We
thus have a covariant functor RRZ→ Bool given by composing the
restriction of the inverse Gelfand functor to RRZ with the Stone functor;
this functor is an equivalence of categories.

More concretely: when X ∈ ZDComp, C(X ) is the closed linear span
of its projections and P(C(X )) is isomorphic to CL(X ) as a Boolean
algebra.

Let us call this functor the forgetful functor.
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Dualities and ultraproducts

A categorical perspective on ultraproducts

Lemma

Let (Ai : i ∈ I) be a family of C∗-algebras or Boolean algebras and let
U be a nonprincipal ultrafilter on I. For J ∈ U , set AJ :=

∏
i∈J Ai . Then:

The family (AJ , πJK ) is a directed family, where πJK : AJ → AK is
the natural projection map (for J ⊇ K ).
There is a natural isomorphism

∏
U Ai
∼= lim−→AJ .
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Dualities and ultraproducts

Ultracoproducts of compact spaces

Suppose that Xi is a compact Hausdorff space for i ∈ I and that U
is a nonprincipal ultrafilter on I.
Question: What is Σ(

∏
U C(Xi))?

Set XJ :=
∐

i∈J Xi = β(⊕i∈JXi).
Applying the Gelfand functor to the isomorphism∏
U C(Xi) ∼= lim−→C(X )J yields Σ(

∏
U C(Xi)) ∼= lim←−XJ .

This space is called the ultracoproduct of the family (Xi) with
respect to the ultrafilter U and is denoted

∐
U Xi .

If Xi = X for all i , then this is the ultracopower of X , denoted XU .
Another perspective: if p : X × I → I is projection onto the second
coordinate, then XU ∼= (βp)−1(U).
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Dualities and ultraproducts

Ultraproducts of real rank 0 abelian C∗-algebras

Suppose that each Xi is totally disconnected.
Since Bool is closed under ultraproducts and ultraroots, it follows
from the forgetful functor that so is RRZ, whence RRZ is an
axiomatizable class, say axiomatized by Trr0.
The forgetful functor sends C(

∐
U Xi) ∼=

∏
U C(Xi) = lim−→C(X )J to

CL(
∐
U Xi) ∼=

∏
U CL(Xi) = lim−→CL(X )J .

In particular, if X and Y are totally disconnected, then

C(X )U ∼= C(Y )V ⇔ CL(X )U ∼= CL(Y )V ,

whence, by Keisler-Shelah, we have

C(X ) ≡ C(Y )⇔ CL(X ) ≡ CL(Y ).
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Dualities and ultraproducts

The general situation

Given a bounded distributive lattice B, one may form a topological
space XB from the maximal filters on B in the same way.

Theorem (Gurevic)

1 XB is always a compact T1-space.
2 There is an elementary class of normal bounded distributive

lattices such that, if B is normal, then XB is Hausdorff.
3 Conversely, if X is a compact Hausdorff space and B is a closed

set base for X (closed under finite union and intersection), then B
is normal and X is naturally homeomorphic to XB.

4 If each Bi is a closed set base for Xi , each Xi compact Hausdorff,
and B :=

∏
U Bi , then

∐
U Xi is naturally homeomorphic to XB.
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Model theory of arbitrary abelian C∗-algebras

1 Dualities and ultraproducts

2 Model theory of arbitrary abelian C∗-algebras

3 Model theory of projectionless abelian C∗-algebras
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Model theory of arbitrary abelian C∗-algebras

Model-theoretic reminders

Let T be a (classical or continuous) L-theory.

T is model-complete if every embedding between models is
elementary.
If T ′ is also an L-theory, then T ′ is the model companion of T if T ′

is model-complete and T∀ = T ′∀.
If M ⊆ N are L-structures, then M is existentially closed (e.c.) in N
if there is an embedding N ↪→ MU that is the identity on M.
M |= T is an existentially closed model of T if M is e.c. in N
whenever M ⊆ N |= T .
T has a model companion if and only if the class of e.c. models of
T is elementary, in which case this elementary theory is the model
companion of T .
The model companion of T has QE (and is called the model
completion of T ) if and only if T∀ has the amalgamation property.
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Model theory of arbitrary abelian C∗-algebras

Model theory of Tbool

Let Tbool denote the (classical) theory of boolean algebras.

Theorem

1 Tbool has a model completion, namely the theory of atomless
Boolean algebras.

2 This model completion is ℵ0-categorical with unique countable
model CL(2N).

Corollary

Trr0 is ∀∃-axiomatizable.

Proof.

Tbool is ∀∃-axiomatizable (as it is model-complete), so closed under
limits of chains. Applying the forgetful functor, so is Trr0.
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Model theory of arbitrary abelian C∗-algebras

Th(C(2N))

Theorem

Th(C(2N)) is ℵ0-categorical and is the model completion of Tab.

Proof.

If C(X ) ≡ C(2N), then C(X ) has real rank 0, so CL(X ) ≡ CL(2N),
whence CL(X ) ∼= CL(2N) and thus C(X ) ∼= C(2N).
Since real rank 0 is ∀∃-axiomatizable and (Tab)∀ = Th∀(C(2N)),
we have that e.c. models of Tab are real rank 0. Thus, if C(X ) is
an e.c. model of Tcomp, then CL(X ) is an e.c. model of Tbool,
whence CL(X ) ≡ CL(2N) and thus C(X ) ≡ C(2N). The converse
is similar, so Th(C(2N)) is the model companion of Tab.
Since Tab has the amalgamation property (fiber products),
Th(C(2N)) has QE and is the model completion of Tab.
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Model theory of projectionless abelian C∗-algebras

1 Dualities and ultraproducts

2 Model theory of arbitrary abelian C∗-algebras

3 Model theory of projectionless abelian C∗-algebras
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Model theory of projectionless abelian C∗-algebras

Projectionless abelian C∗-algebras and continua

Exercise

C(X ) is projectionless if and only if X is connected.

Recall that a continuum is a connected, compact Hausdorff space. So
the Gelfand functor sends the subcategory of projectionless abelian
C∗-algebras onto the category of continua.

Lemma

The class of projectionless abelian C∗-algebras forms a universally
axiomatizable class.

Proof.

Immediate from the semantic test. Or here is the projectionless axiom:

sup
‖f‖=1

min(2‖1− ff ∗‖ −. 1,1−. 4‖ff ∗ − (ff ∗)2‖ = 0.
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Model theory of projectionless abelian C∗-algebras

A unique universal theory of continua

Let Tcont denote the theory axiomatizing C(X ) for X a nondegenerate
continuum (an ∀∃-theory).

Theorem (K.P. Hart)

If C(X ),C(Y ) |= Tcont, then Th∀(C(X )) = Th∀(C(Y )).

The proof proceeds by constructing a function C → BU , where B and
C are lattice bases of closed sets for X and Y respectively, that
satisfies a criteria that ensures that there is a continuous surjection
XU = XBU → XC = Y .
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Model theory of projectionless abelian C∗-algebras

Bankston’s work on co-existentially closed continua

Bankston, in a series of papers, has studied the model theory of
continua in a dual form, sometimes relying on the first-order
theory of lattice bases.
He thus prefixes usual model theoretic jargon with "co-". For
example, he talks about co-existentially closed continua. Here is a
sample result:

Theorem (Bankston)

Co-existentially closed continua are hereditarily indecomposable.

Proof.

In our terminology, he proves that there is an ∀∃-theory T ⊇ Tcont such
that C(X ) |= T if and only if X is hereditarily indecomposable. Now use
a result of Bellamy: every metrizable continuum is a surjective image
of a metrizable hereditarily indecomposable continuum.
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The pseudo-arc

Definition

A continuum X is chainable if, given any open cover V of X , there is an
open cover (U1, . . . ,Um) of X such that:

each Ui is contained in an element of V, and
Ui ∩ Uj 6= ∅ if and only if |i − j | ≤ 1.

Theorem (Bing)

There is a unique (up to homeomorphism) continuum that is both
hereditarily indecomposable and chainable. This continuum is called
the pseudo-arc, denoted P.

Question (Bankston)

Is P a co-existentially closed continuum? I.e. is C(P) an e.c. model of
Tcont?
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Infinitary axiomatizability of chainability

Theorem (Eagle-G.-Vignati)

The class of models C(X ) of Tcont such that X is chainable is uniformly
definable by a sequence of universal types.

This means that there is a family (ϕk ,m(~xk )) of existential formulae,
where |~xk | = k , such that, given C(X ) |= Tcont, we have that X is
chainable if and only if C(X ) |= sup~xk

infm ϕk ,m(~xk ) = 0 for all k .

We could also say that chainability is a sup
∨

inf-property of continua.
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The pseudo-arc is a co-existentially closed continuum

Corollary (Eagle-G.-Vignati)

There is an e.c. model C(X ) of Tcont such that X is chainable.
Consequently, X ∼= P.

Proof.

By the previous theorem and the Hart result, one can use Robinson
forcing to obtain an e.c. model of Tcont that is chainable.

The pseudo-arc is descriptive set-theoretically generic (the subset of
subcontinua of [0,1]N homeomorphic to P is dense Gδ). This result
shows that P is is also model-theoretically generic (namely generic for
Robinson forcing).
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Tcont does not have the amalgamation property

Observation (Hoehn)

Tcont does not have the amalgamation property.

Proof.

Let f ,g : [0,1]→ S1 be given by f (x) = e2xπi and g(y) = e2(y+1)πi .
Suppose W is compact and r , s : W → [0,1] are such that
f ◦ r = g = ◦s.
Let A = r−1([0, 1

2 ]) ∩ s−1([1
2 ,1]) and B = r−1([1

2 ,1]) ∩ s−1([0, 1
2 ]).

Suppose that w ∈ A ∩ B. Then r(w) = s(w) = 1
2 , so

f (r(w)) = eπi 6= e2πi = g(s(w)), a contradiction.
It follows that A ∩ B = ∅, so W is disconnected.
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Failure of quantifier elimination

Corollary

If X is a nondegenerate continuum, then C(X ) does not have quantifier
elimination.

Proof.

Since there is a unique universal theory of nondegenerate continua, if
C(X ) had QE, then Th(C(X )) would be the model completion of Tcont,
whence Tcont would have the amalgamation property.

It was known that if X is compact and C(X ) has QE, then either
X ∼= 2N or X is connected. Thus:

Corollary

C(2N) is the only abelian C∗-algebra with QE.
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Is there a model companion?

Theorem

C(P) is the only possible model of Tcont that is model complete. If this
is indeed the case, then Th(C(P)) is the model companion of Tcont.

Proof.

If C(X ) is model-complete, then Th(C(X )) is the model-companion of
Tcont. But C(P) is an e.c. model of Tcont, so C(P) |= Th(C(X )).
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Further observations about C(P)

Theorem (G.-last week, so grain of salt please)

1 C(P) is an enforceable model of Tcont, that is, it is the only model
of Tcont that can be produced by Robinson forcing.

2 C(P) has every sup
∨

inf-property of continua.
3 C(P) is the prime model of its theory.

Remark

A consequence of (1) is that P is a continuous image of every co-e.c.
continuum. This follows from a result of Bellamy: P is a continuos
image of every hereditarily indecomposable continuum. Can one give
a model-theoretic proof of this more general result?
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A digression on R
Let R denote the unique separable hyperfinite II1-factor. The Connes
Embedding Problem (CEP) asks whether or not every II1-factor is
RU -embeddable.

Theorem (G.)

1 R is an enforceable model of Th∀(R).
2 R possess every every sup

∨
inf-property of embeddable

II1-factors.
3 CEP is equivalent to the statement that R possess every every

sup
∨

inf-property of II1-factors.

Corollary

Many properties of II1-factors are not sup
∨

inf-axiomatizable, e.g.
property (T), proper fundamental group, non-(Γ)...
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Model companions in operator algebras: a summary

Summary

The following classes do not have a model companion:
Tracial von Neumann algebras (G.-Hart-Sinclair)
C∗-algebras (Eagle-Farah-Kirchberg-Vignati)
Operator systems (G.-Lupini)
Operator spaces (Lupini)

The existence of a model companion is unknown for the following
classes:

Projectionless abelian C∗-algebras
Projectionless C∗-algebras
Stably finite C∗-algebras
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