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Abstract  16 

Neuroimaging often involves acquiring high-resolution anatomical images along with other low-17 
resolution image modalities, like diffusion and functional magnetic resonance imaging. Performing 18 
gray matter statistics with low-resolution image modalities is a challenge due to registration artifacts 19 
and partial volume effects. Gray matter surface based spatial statistics (GS-BSS) has been shown to 20 
provide higher sensitivity using gray matter surfaces compared to that of skeletonization approach of 21 
gray matter based spatial statistics which is adapted from tract based spatial statistics in diffusion 22 
studies. In this study, we improve upon GS-BSS incorporating neurite orientation dispersion and 23 
density imaging (NODDI) based search (denoted N-GSBSS) by 1) enhancing metrics mapping from 24 
native space, 2) incorporating maximum orientation dispersion index (ODI) search along surface 25 
normal, and 3) proposing applicability to other modalities, such as functional MRI (fMRI). We 26 
evaluated the performance of N-GSBSS against three baseline pipelines: volume-based registration, 27 
FreeSurfer’s surface registration and ciftify pipeline for fMRI and simulation studies. First, qualitative 28 
mean ODI results are shown for N-GSBSS with and without NODDI based search in comparision with 29 
ciftify pipeline. Second, we conducted one-sample t-tests on working memory activations in fMRI to 30 
show that the proposed method can aid in the analysis of low resolution fMRI data. Finally we 31 
performed a sensitivity test in a simulation study by varying percentage change of intensity values 32 
within a region of interest in gray matter probability maps. N-GSBSS showed higher sensitivity in the 33 
simulation test compared to the other methods capturing difference between the groups starting at 10 34 
percent change in the intensity values. The computational time of N-GSBSS is 68 times faster than that 35 
of traditional surface-based or 86 times faster than that of ciftify pipeline analysis. 36 
 37 
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1. Introduction 40 

Gray matter (GM) in the cerebral cortex is key to many sensory, cognitive, and motor functions of the 41 
brain. Detecting cortical alterations with neuropathologic conditions could provide potential 42 
biomarkers to facilitate early diagnosis and assessment of disease severity. In recent years, the 43 
development of neuroimaging techniques, such as high-resolution magnetic resonance imaging (MRI), 44 
functional magnetic resonance imaging (fMRI), diffusion weighted magnetic resonance imaging 45 
(dMRI), positron emission tomography (PET) or single photon emission computed tomography 46 
(SPECT), have promoted the identification of structural and functional characteristics of the 47 
developing brain and underlying mental disorders [1-7]. An increasing number of studies have shown 48 
structural and functional gray matter changes in clinical applications - e.g., amyotrophic lateral 49 
sclerosis [8], schizophrenia and bipolar disorder [9, 10], age related effects [11], attention deficit 50 
hyperactivity disorder [12], and Alzheimer’s disease [13]. While T1 images can be acquired at high 51 
resolution (e.g., 1 mm isototropic), clinical imaging in other modalities (such as dMRI and fMRI) are 52 
constrained by imaging and physiological factors leading to lower resolution (2-3 mm isotropic). As 53 
the cortex is about 1.6 – 4.5 mm thick [14-16] within the gray matter tissue region between white and 54 
pial surfaces, significant challenges arise with cross subject analysis involving registration artifacts and 55 
partial volume effects [17]. The individual cortical anatomy may not be sufficiently aligned after non-56 
rigid volumetric registration since it is quite challenging to incorporate spatial coherence in the 57 
volumetric images (see Fig 1-a). In particular, volumetric smoothing potentially introduces partial 58 
volume effects since the cortical structure is thinner, as seen in Fig 1-b. This issue was successfully 59 
addressed in WM using tract based spatial statistics (TBSS) [18], which has proven to be a popular 60 
technique for performing voxel-wise statistical analysis with improved sensitivity and interpretability 61 
of analysis of multi-subject diffusion imaging studies in white matter (WM) [19-23]. Gray matter 62 
based spatial statistics (GBSS) adapted the TBSS framework for GM using neurite orientation 63 
dispersion and density imaging (NODDI) [11] to perform voxel-wise statistical analysis on GM 64 
microstructure in diffusion studies. GBSS employs skeletonized cortical ribbon to capture diffusion 65 
metrics along its trajectories. However, this approach could yield low sensitivity to the cross sectional 66 
differences around the cortical sulci since GM skeletonization is extracted only along highly 67 
overlapping regions. To overcome this issue, we proposed an alternate approach known as gray matter 68 
surface based spatial statistics (GS-BSS) [24] that employs a cortical surface to increase the number of 69 
highly probable GM vertices that closely follow the cortex (Fig 1b).  70 
 71 

 72 
In volumetric neuroimaging analyses, spatial smoothing is generally performed to improve image 73 
alignment and statistical sensitivity, at the cost of specificity of the underlying region of interest [25]. 74 
As the GM of heatlhy adult subjects is typically < 5 mm thick, spatial smoothing needs to be carefully 75 
performed to retain the sensitivity and specificity of the underlying changes [26, 27]. Surface-based 76 

Fig 1: (a) Non-rigid image registration of GM probability maps of three subjects. Each color box 
highlights the corresponding region of interest. Right column shows detailed differences in cortical 
folding patterns across the subjects. (b) Skeletonized GM (red) and cortical central surface (yellow) 
are overlaid on T1 image. GM central surface closely follows the cortical structure compared to that 
of skeletonized GM approach. Two examples are highlighted in blue and green boxes where GM 
cortical surface closely follows the cortical structure compared to the volumetric based GM 
skeletonization approach. Darker regions on T1 indicate GM and lighter regions represent WM. 
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approaches have been proposed with improved sensitivity in cortical morphometry [25, 28-33] over 77 
volumetric neuroimaging in both fMRI and cortical features of interest. There is wide agreement that 78 
the surface-based morphometric (SBM) analyses [34-36] have theoretical and empirical advantages 79 
over traditional voxel-based morphometry (VBM) approaches for addressing the problem of inference 80 
in group studies. However, substantial inter-subject variation in the shapes of local features (e.g., mean 81 
curvature) still hampers accurate cortical surface registration.   82 
 83 
A majority of studies focus on volume- or surface-based analysis on a particular modality [11, 37, 38]. 84 
Few studies [32, 38-40] have incorporated multi-modalities into a single integrated pipeline of surface-85 
based analyses. The desire to better understand structural-functional relationships drives the need for 86 
robust analysis frameworks. The Human Connectome Project (HCP) minimal preprocessing pipeline 87 
[38] is one such approach that integrates multimodal data for cross subject analysis. It is built upon the 88 
FreeSurfer  software tool (https://surfer.nmr.mgh.harvard.edu) for surface generation and alignment to 89 
standard space in addition to defining Connectivity Informatics Technology Initiative (CIFTI) format 90 
and grayordinate system that incorporates cortical and subcortical information. In a recent study, 91 
multimodal surface matching (MSM) [41] registration is incorporated into a pipeline that uses 92 
multimodal registration features containing myelin maps (Glasser and Van Essen, 2011), resting-state 93 
networks (RSNs) and visuotopic features to drive alignment to a group template. In the HCP approach 94 
[38], the data acquisition protocol is customized and often requires newly developed preprocessing 95 
methods unlike conventional data acquisition schemes.  96 
 97 
There is huge amount of clinical data that is already acquired from healthy individuals and also in 98 
different clinical populations that is not acquired as per the HCP proposed standards. Having tools that 99 
could provide HCP-style analyses to leverage the existing data to the extent possible will be beneficial 100 
for clinical research. The ciftify pipeline [42] bridges the gap for making HCP-style analysis 101 
applicable to non-HCP (i.e., legacy) datasets by adapting the key modules from HCP pipeline into 102 
existing structural workflows. For functional/diffusion MRI data, the alignment with anatomical T1 103 
plays an important role to map volume data onto the surface. Thus, preprocessing choices need to be 104 
made to maximize the data quality given its limitations in legacy datasets. The ciftify pipeline takes the 105 
preprocessed data from other modalities and converts it into needed grayordinate format for further 106 
analysis.  107 
 108 
In this paper, we propose N-GSBSS for carrying out localized statistical testing of neuroimaging data 109 
across multiple modalities in GM. Unlike the skeletonization approach in GBSS, cortical surfaces 110 
reconstructed from high resolution T1 images are employed to facilitate cross-subject analysis. This 111 
method provides a bridge between volume and surface registration approaches to achieve cross-subject 112 
correspondence of low resolution image data. This method is an extension of our previous work, GS-113 
BSS [24]. While conceptually similar, improvements are made in registration methodology that allow 114 
mapping of the metrics of interest in subject space. The key idea in this method is to incorporate 115 
normal search from the cortical surface to get metrics from highly probable GM voxels using the 116 
orientation dispersion index (ODI) from the NODDI model. ODI is higher in GM compared to that of 117 
WM [43], thus searching for higher ODI could help to locate underlying highly probable GM. Toward 118 
this end, we show an application to statistical analysis of fMRI data. To test the sensitivity of the 119 
approach, a simulation study is performed by varying region of interest (ROI) size and percentage 120 
change of intensity values within the ROI. It is presented as a full end-to-end pipeline to perform such 121 
spatial statistics in group analysis. We evaluated the performance of N-GSBSS against three baseline 122 
pipelines: volume-based registration (VBR), FreeSurfer’s surface registration (SBR) and ciftify 123 
pipeline for fMRI and simulation studies. The source code for N-GSBSS is made available at 124 
https://github.com/MASILab/N-GSBSS/. The computational time of N-GSBSS is 68 times faster than 125 
that of traditional SBR or 86 times faster than the ciftify pipeline method [42]. 126 
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 127 

2. Methods 128 

2.1. Background           129 

GS-BSS method was proposed to perform voxel-based statistical analysis of diffusion microstructure 130 
features acquired at low resolution on GM surfaces using high-resolution T1 images.  Structural images 131 
are segmented and normalized to MNI template space using diffeomorphic anatomical registration using 132 
exponentiated lie algebra (DARTEL) method [44]. Diffusion metrics of interest are co-registered to 133 
structural T1 and transformed to MNI template space using forward deformation. GM surfaces are 134 
deformed to MNI template space using inverse transformation obtained from the registration step. 135 
Correspondence between cortical surfaces is obtained with diffeomorphic spectral matching DSM [45] 136 
and the mapping is applied to the deformed diffusion microstructure data in MNI template space to 137 
project onto the target surface for group analysis. GS-BSS is shown to yield better performance compared 138 
to that of VBM or the skeletonization approach of GBSS, which is based on alignment invariant skeleton 139 
projection. However, there are some methodological limitations that could impact the sensitivity of such 140 
analysis. First, the possibility of having any misalignment between diffusion microstructure and structural 141 
images after co-registration, could impact the sensitivity of the analysis to be performed on highly 142 
probable GM region. Second, the diffusion metrics of interest are projected onto the GM cortical surface 143 
in MNI template space that could allow the prospect of including distortions caused in the data from the 144 
volume registration step. Finally while the GM surfaces are used for achieving cortical correspondence, 145 
all the data is mapped back into voxel-space before performing statistical analysis.   146 
In this paper, the goal is to improve spatial statistics in GM by projecting all the metrics of interest from 147 
each modality onto a single target cortical surface and carry out vertex based statistical analysis. Current 148 
work addressed the limitations of GS-BSS and provided improvement in the following areas, 149 

• To overcome possible alignment issues from co-registration step and improve intra-subject 150 
correspondence, cortical search is proposed that can further improve the sensitivity of the method. 151 

• To minimize distortions and keep the data as close to the raw images that are acquired as 152 
possible, metrics of interest are mapped onto the cortical surface in subject space unlike the GS-153 
BSS method where the metrics of interest are mapped from the volume image in MNI space onto 154 
the deformed cortical surface in MNI template space.  155 

• To perform spatial statistics on vertices, unlike the voxel based spatial statistics that is performed 156 
in GS-BSS.  157 

• To show applicability of the method in additional modalities like fMRI.  158 

2.2. Subjects and neuroimaging data acquisition 159 

Neuroimaging data were collected on 30 healthy subjects (average age = 31.94 (male, n=18) / 35.83 160 
(female, n=12)) who participated in an on-going study of brain connectivity in neuropsychiatric disorders. 161 
The Vanderbilt University Institutional Review Board approved the study and all participants provided 162 
written informed consent prior to enrolling in the study. Neuroimaging data were acquired on a 3T 163 
scanner (Achieva, Philips Medical Systems, Best, The Netherlands) equipped with a 32-channel head coil 164 
located at the Vanderbilt University Institute of Imaging Sciences. The following neuroimaging data were 165 
acquired on each subject: 1) a T1-weighted 3D-TFE anatomical scan (1 mm isotropic resolution, 166 
TE=2ms, TR=8.95 ms and TI=643 ms), 2) up to 6 functional EPI scans (3 mm resolution during which 167 
subjects completed an event related spatial working memory task (described below), and 3) a diffusion-168 
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weighted imaging scan protocol (2.5 mm isotropic resolution, with a matrix of 96 x 96, 50 slices, 169 
TR=2.65s, TE=101ms, Gmax = 37.5 mT/m) that included two diffusion shells with b-values of 1000 170 
s/mm2 (24 directions) and 2000 s/mm2 (60 directions). Two subjects are excluded from the diffusion 171 
processing due to motion-related quality issues in diffusion MRI acquisition. HARDI from one subject is 172 
marked unusable due to zipper artifact in B0. Second subject is excluded based on quality checking 173 
measures due to subject movement (15 mm movement). Cardiac and respiratory gating were not used. 174 

2.3. Preprocessing 175 

2.3.1. T1 anatomical data processing 176 
Each structural scan was segmented into GM, WM, and cerebrospinal fluid (CSF) tissue classes using the 177 
VBM8 toolbox (http://dbm.neuro.uni-jena.de/vbm/) from SPM12 (http://www.fil.ion.ucl.ac.uk/spm). 178 
Additionally, each voxel of the images was automatically labeled using multi-atlas segmentation [46] 179 
according to the BrainCOLOR protocol [47] into 132 brain regions and 1 background that was used as a 180 
preprocessing step for MaCRUISE . The white, central and pial cortical surfaces were reconstructed by 181 
MaCRUISE [48] using the topology-preserving geometric deformable surface model. The central surfaces 182 
were used in further surface-based processing including registration and mapping volume data onto the 183 
surfaces.  184 

2.3.2. Diffusion data processing  185 
Diffusion-weighted images (DWI) were preprocessed using EDDY [49] tool from FMRIB Software 186 
Library FSL [50] for eddy current correction and subject motion correction. The registration matrix of 187 
each DWI was used to measure patient movement, and the gradient table was rotated accordingly. For 188 
diffusion data processing, the data from 2 shells were combined into a single DWI file and corresponding 189 
b-values and b-vectors were concatenated accordingly. A scheme file was generated using the fsl2scheme 190 
command from Camino (http://camino.cs.ucl.ac.uk). A brain mask was created using the FSL brain 191 
extraction tool.[51] 192 
For NODDI processing, the DWI file, scheme file and mask (generated as described above) were passed 193 
to the AMICO package (https://github.com/daducci/AMICO/), which is a fast implementation of NODDI 194 
[43] with linear approximation. Single transformation was derived using b0 image to co-register to 195 
structural T1-weighted scan using spatial normalization from SPM12 with 12-parameter affine 196 
registration. Corresponding transformation is applied to NOODI-derived maps of intracellular volume 197 
fraction, isotropic volume fraction (Viso), and orientation dispersion index (ODI). These ODI and Viso 198 
maps from multiple subjects were used in further analysis and validation of N-GSBSS. 199 

2.3.3. Working memory fMRI processing 200 
During the functional EPI scans, subjects completed a slow event-related spatial working memory task. 201 
Briefly, on each trial, three filled circles were presented sequentially, one at a time, during a 3-second 202 
encoding phase. The encoding phase was followed by a 16 second delay period during which a fixation 203 
dot was shown. Following the delay period, a probe (open circle) was presented for 1 second and subjects 204 
had to indicate with a button press whether or not the probe matched one of the previously encoded 205 
locations. Each trial was followed by a 14 second inter-trial interval. Subjects complete 30 working 206 
memory trials and 18 control trials. The working memory and control trials were identical, except for the 207 
fact that subjects were asked not to memorize the locations during the cue period of the control trials and 208 
pressed both the yes and no button during the probe period. Different colored circles, red and grey, were 209 
used to alert subjects to working memory and control trials, respectively. Preprocessing and generation of 210 
first-level, subject-specific statistical parametric maps were performed using spatial normalization in 211 
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SPM12 [52]. Preprocessing included slice timing and motion correction, and co-registration of each 212 
subject’s functional EPI scans to their anatomical T1-weighted scans. Subject-specific, voxel-wise maps 213 
showing relative difference in the BOLD response between working memory and un-modeled baseline 214 
for cue, maintenance, and probe conditions were generated by modeling each subject’s time series data. 215 
Note, the contrast maps for cue, maintenance, and probe conditions were kept in the individual subject-216 
specific space co-registered to T1 prior to being entered into the N-GSBSS pipeline described below. 217 

2.4. N-GSBSS pipeline 218 

The steps involved in carrying out the spatial statistics starting from the preprocessed multi-modal data to 219 
transferring all the metrics of interest onto a single target surface are illustrated in this section. The data 220 
from the co-registered volume images is projected onto the GM central surface using enclosing voxel 221 
approach. Alignment issues after co-registration would introduce partial volume effects or outliers by 222 
fetching data from the voxels that may not belong to highly probable GM. In order to overcome this 223 
limitation, cortical search is implemented using ODI measure as it has been shown to be higher in GM 224 
compared to that of WM [43].  225 

2.4.1. Cortical search using NODDI maps  226 
Diffusion microstructure indices from NODDI including ODI and Viso are used in the cortical search. 227 
First ODI is masked with Viso to exclude any voxels with isotropic volume fraction of greater than 0.5 228 
indicating CSF regions. The surface normal is calculated at each vertex on the central surface. As the T1 229 
was acquired at 1 mm resolution and the cortical thickness is < 5 mm thick, we search the maximum ODI 230 
at each vertex along positive and negative normal directions (2 mm at maximum range with an interval of 231 
1 mm). We create a search map by collecting these enclosing voxels that the normal directions point out. 232 
The metrics of interest in other modalities are finally transferred onto the central surface via the search 233 
map. Fig 2(a) illustrates this approach and corresponding histogram of masked ODI is shown in Fig 2(b) 234 
before and after search. 235 

 236 

2.4.2. Cortical correspondence on the target surface 237 
Cortical surfaces are highly variable, so roughly similar surfaces would be useful for surface registration. 238 
As preprocessing volume registration can provide reasonably well-aligned surfaces, structural T1 is non-239 
linearly registered with MNI template using ANTs SyN registration method (52). Corresponding inverse 240 
deformation is applied to the surface as the first step. The vertex coordinates of the surface are converted 241 
to RAS format before applying “antsApplyTransformsToPoints” from ANTs toolbox. The deformed 242 
coordinates are converted back into original format thus transforming the surface from subject space to 243 
MNI space (#2 from Figure 3). However, as shown in Figure 1(a), the cortical anatomy is not yet well 244 
aligned across the subjects after volume deformation. Then, we refine/update the correspondence using 245 
surface registration step [45] in the same way as (24), which is expected to establish better 246 
correspondence. It provides mapping information of the cortical surface from each subject onto the target 247 
surface (#3 from Figure 3) on which spatial statistics can be performed.  248 

Fig 2: (a) ODI overlaid with cortical surface mapping based on enclosing voxels, 1 mm above, 2 mm 
above, 1 mm below and 2 mm below of central surface obtained using normal search. At each vertex, 
maximum ODI value is selected from these 5 values along the vertex normal (white arrow in zoomed 
in box) and corresponding map is used for projecting the diffusion metrics on to the cortical surface. 
(b) Histogram of ODI projected on to the cortical surface on single subject before and after ODI 
search. 
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2.4.3. Project metrics of interest on target surface 249 
As cortical anatomical properties such as cortical thickness were derived from the surface, they were 250 
already assigned to each vertex. These properties were then projected onto the target surface via the 251 
established shape correspondence from step 3. Images from different modalities are co-registered to T1 252 
anatomical images before proceeding with further analysis as shown in step 4. Cortical ODI search is 253 
performed by taking in ODI and Viso measures from the NODDI model to get the corresponding map of 254 
highly probable GM vertices for co-registered images (step 5 in Fig 3). Step 6 illustrates the first level 255 
analysis carried out on each modality to derive metrics of interest. In the volume images, the metrics of 256 
interest were mapped onto the individual GM surface (step 7 in Fig 3) from the voxel that encloses the 257 
corresponding vertex coordinate obtained from the cortical ODI search (step 5 in Fig 3). Both dMRI 258 
based NODDI metrics and fMRI based working memory contrast maps were projected via the vertex 259 
coordinates and the mapped properties were then transferred onto a common target surface (Step 8 in Fig 260 
3). Spatial statistics across the subjects are performed on the target surface by applying 2 mm smoothing 261 
kernel for cross subject analysis. We adapted the Gaussian kernel smoothing proposed by [37, 38], where 262 
each vertex was weighted based on data from the neighboring vertices and scaled by the vertex area. 263 

2.4.4. Summary highlighting enhancements 264 
A novel ODI search along surface normal for maximum ODI value is used to probe for highly probable 265 
GM regions in the co-registered image. Additionally, enhancements that are made to the earlier method 266 
[24] are the transfer of metrics of interest on to the GM cortical surface in the individual subject space 267 
instead of MNI space, to reduce the error that could occur with volume and surface deformation to the 268 
MNI template. While [24] showed the application to diffusion microarchitecture features, this work 269 
extends the applications to fMRI data, thus enabling multimodal analysis across structural and functional 270 
changes. Group analysis is performed at vertex level on the target surface.  271 
The evaluation of the approach is carried out in the following ways. 1) We compare qualitative mean 272 
ODI, a diffusion microstructure feature, for N-GSBSS with and without cortical ODI based search in 273 
comparison with ciftify pipeline. 2) We perform non-parametric permutation testing on contrast maps 274 
obtained from first level analysis of working memory tasks in fMRI. 3) We perform a simulation study in 275 
structural MRI to evaluate sensitivity and specificity of the approach.  276 

2.5. Spatial statistics 277 
Once all the properties from different modalities were projected on the target surface, GM based vertex-278 
wise spatial statistics were calculated using the Permutation Analysis of Linear Models (PALM) [53] 279 
package from the FSL software library (FMRIB; http://www.fmrib.ox.ac.uk/fsl/) which performs 280 
inference through permutation. Significant results are reported after controlling for family-wise error 281 
(FWE) with p<0.05 through threshold free cluster enhancement (TFCE).  282 

Fig 3: Flowchart of the N-GSBSS data processing for each subject. (1) The central surface is 
reconstructed via MaCRUISE (red) (2) and transformed to the MNI space (yellow) using ANTs 
volume registration. (3) These volumes are diffeomorphically registered to a single target surface. (4) 
Metrics of interest in other modalities are co-registered to corresponding anatomical T1-weighted 
image. (5) Cortical ODI search is performed using ODI and Viso from NODDI metrics to search for 
higher ODI excluding Viso within a given range (6) Data are processed for each modality (NODDI for 
diffusion microstructure and first level analysis for working memory tasks) to derive metrics of 
interest for cross-sectional analysis. (7) Metrics of interest are mapped onto the individual surface. (8) 
The mappings from shape correspondence are used to project intensity values of metrics of interest to 
the target surface (blue). (9) Vertex-wise spatial statistics on all projected data are performed on the 
target surface. 
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2.6. Baseline methods 283 

2.6.1. Volume based registration (VBR) processing  284 
Volume images of metrics of interest from other modalities were registered to MNI template by applying 285 
the non-rigid transformation obtained from anatomical T1-weighted images. A GM mask was calculated 286 
based on 0.5 thresholds on the GM probability map in each subject and 70 percent overlap across all the 287 
subjects to filter the number of voxels to retain highly probable GM voxels. Gaussian kernel smoothing of 288 
2 mm was applied before performing spatial statistics. Nonparametric permutation based testing was 289 
performed on smoothed volume data within a brain mask using FSL PALM [53] 290 
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM). Statistical results were projected onto the target surface 291 
based on the enclosing voxel approach for visualization and comparison with surface based results. 292 

2.6.2. Surface based registration (SBR) processing 293 
In order to compare the proposed approach, we used the FreeSurfer surface registration method [30] for 294 
cortical shape correspondence. Metrics of interest from volume data in subject space were projected onto 295 
the central surface using the enclosing voxel approach. These metrics were transferred to the target 296 
surface via the shape correspondence and smoothed on the target surface for cross-sectional analysis. In 297 
order to make a fair comparison with N-GSBSS results with optimal multiple comparison correction, 298 
metrics of interest from two hemispheres were considered as a single dataset before carrying out the 299 
permutation based statistical tests. 300 

2.6.3. Ciftify pipeline processing 301 
The ciftify pipeline [42] has been developed to facilitate grayordinate-based analysis in CIFTI format for 302 
legacy datasets. In preprocessing, surface reconstruction is carried out using ciftify_recon_all command 303 
that takes recon_all FreeSurfer 6.0 (https://surfer.nmr.mgh.harvard.edu) outputs and generate CIFTI file 304 
for structural measures (e.g., cortical thickness) from the surface. The distortion corrected dMRI images 305 
are registered to their own structural T1 images by FMRIB Software Library's (FSL 5.0) FLIRT [54]. 306 
First rigid alignment is performed followed by the boundary-based registration by supplying WM 307 
segmentation obtained from FreeSurfer as an input argument. For fMRI processing, preprocessed first 308 
level images are co-registered to their own structural T1 image using SPM12. Conversion tools provided 309 
in ciftify toolbox are used to put preprocessed dMRI data and fMRI data into grayordinates in CIFTI 310 
format for further analysis. To project diffusion measures from volume onto the cortical surfaces, a ribbon 311 
mapping method is used, in which the volumetric measures are collected along the GM ribbon defined by 312 
white and pial surfaces, as described in [16]. Unfortunately, there are no T2 weighted images available in 313 
our custom dataset. Thus, myelin-style volume to surface mapping is infeasible for our diffusion analysis 314 
since myelin maps are unavailable. The grayordinates are based on the low-resolution standard mesh 315 
(with ~32k vertices in each hemisphere) at 2 mm resolution with a total of ~64k cortical vertices for both 316 
hemispheres obtained with the default settings. The low-resolution standard mesh is the suggested 317 
template that is appropriate for cross-subject analysis of low-resolution data like dMRI or fMRI.   318 
Processing time comparison between N-GSBSS and SBR using FreeSurfer are reported in Table 1. We 319 
used a single thread (Intel Xeon CPU E5-2630 v4 @ 2.20GHz and 32 GB of RAM) on an Ubuntu 16.04 320 
LTS Linux Workstation.  321 
 322 
 323 
 324 
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Pipeline Processing steps details Total time 
SBR Per hemisphere: 

FSRUNTIME@ mris_sphere 1.48 hours, 1 thread 
FSRUNTIME@ mris_register 0.80 hours, 1 thread 

 

~273.6 mins 

Ciftify ReconAll (mris_sphere and mris_register) : 4.71 hours 
hrs, 1 thread 

Ciftify : 1hr 5 mins, 1 thread 

~345 mins 

N-GSBSS ANTs volume registration: ~2.12 mins, 1 thread 
DSM surface registration: ~1.49 mins, 1 thread 

~4 mins 

Table 1 Processing time comparison for SBR, ciftify and N-GSBSS based approaches. In SBR, a 325 
spherical mapping was conducted for each hemisphere followed by spherical registration. Details of 326 
time taken for each step are provided in the processing details column. 327 
 328 

2.7. Simulation study setup 329 

The spherical masks with a radius of 3, 4, and 5 mm were created in template space and transferred back 330 
to subject space via the inverse transformation from ANTs SyN [55] registration for each subject. This 331 
range was chosen since the cortex is around <5 mm thick and because capturing the ROIs with different 332 
radii could reflect the differences in accounting for partial volume effects in the GM and WM border 333 
regions. The location was chosen to contain cortical folding that is variable across multiple subjects to 334 
account for partial volume effects when performing cross subject studies.  335 
The GM probability maps for the 30 subjects were randomly divided into two groups, G1 and G2, with 15 336 
subjects in each group. The GM probability data in G2 were then modified in the subject space to 337 
simulate percentage change of intensity values in intervals of 10% in the corresponding mask regions. A 338 
total of 27 combinations (3 masks and 9 different scalings) were considered for evaluation.  339 
With 0% change, the images in G2 were the same as original images. Thus, we considered the difference 340 
between the groups as a baseline. We excluded 100% change of the region of interest in G2, which is 341 
completely reduced to zero. With 50% change, the intensity values were half of the original values in 342 
ROIs from G2 images.  343 
GM probability data from each of the 27 combinations in G2 were then processed through N-GSBSS to 344 
place all the data on the target surface for cross-sectional analysis. GM probability data were also 345 
evaluated for VBR, SBR and ciftify for comparison with the same parameter/experimental settings, 346 
including 2 mm Gaussian kernel smoothing. Non-parametric permutation tests were then performed 347 
between G1 and G2 for all combinations using FSL’s PALM [53] package with 5000 iterations.  348 
To assess the sensitivity of the approaches, we examined the ratio of maximum t-statistic (“t-stat ratio”), 349 
which was defined as the amount of scaling with respect to the baseline. To have a single metric with 350 
comparable result across all the methods, we reported the ratio with respect to baseline. Baseline is where 351 
we performed second level analysis for group differences across the 2 groups where no changes are 352 
applied to original GM probability maps.  353 

3. Results 354 

In this section, we present the results of all the N-GSBSS analysis as follows: 1) Qualitative results of 355 
mean ODI with and without search in comparison with the ciftify pipeline 2) Application in fMRI to 356 
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identify active regions in task based working memory. 3) GM simulation results in structural MRI based 357 
on varying ROI size and intensity differences. 358 
Mean ODI values across 30 subjects are shown on the target surface (Fig 4) for N-GSBSS without search, 359 
with cortical ODI search and the ciftify pipeline. With cortical ODI search, partial volume effects are 360 
addressed reflecting higher ODI across the cortex compared to that of other two approaches.  361 

 362 

3.1. Working memory fMRI results 363 

As an application of N-GSBSS in fMRI, working memory data was processed for 30 healthy subjects 364 
in cue, probe and delay tasks. We compared significant regions revealed by VBR, SBR, the ciftify 365 
pipeline and N-GSBSS methods as shown in Fig 5. For all these tasks, the overall activation pattern is 366 
comparable across different methods. As expected, the significant vertices in VBR are fewer and more 367 
scattered than the cortical surface-based approaches of SBR, ciftify and N-GSBSS. 368 

 369 
Quantitative representation of the number of significant vertices with p<0.05 for all the three tasks are 370 
shown in Fig 6. Note that N-GSBSS has a higher number of significant vertices in all the tasks than 371 
VBR, SBR and ciftify pipeline results. The ciftify pipeline results are comparable to that of N-GSBSS 372 
more than VBR or SBR approaches. Applying cortical ODI search further improved the activation 373 
percentage in N-GSBSS.  374 

 375 

Fig 4: Mean ODI across 28 healthy subjects using (a) N-GSBSS – S0 with no search (a) N-GSBSS - 
S2 including ODI search of 2 mm (c) ciftify pipeline. The ciftify results are based on the “gray 
ordinates” with 64 thousand vertices (the suggested tessellation) on both left and right hemispheres 
while the target surface template used in N-GSBSS has about 261 thousand vertices. 

Fig 5: Working memory fMRI data were processed for 28 healthy controls and results are reported 
for (a) correct cue, (b) correct delay (c) correct probe tasks with 2 mm smoothing for VBR, SBR, 
ciftify, N-GSBSS -S0 with no search and N-GSBSS-S2 with 2mm search methods. Significant p-
values after FWE correction based on non parametric randomize one sample t-test with 10000 
iterations are reported. Pfwe <0.05 are highlighted in red.  

Fig 6: Percentage activation of working memory fMRI data were processed for 28 healthy controls 
and results are reported for (a) correct cue, (b) correct delay (c) correct probe tasks with 2 mm 
smoothing for VBR, SBR, ciftify, N-GSBSS –S0 with no search and N-GSBSS –S2 with 2mm 
search methods. The number of significant vertices, with p-values < 0.05 after FWE correction 
based on nonparametric randomize one sample t-test with 10000 iterations, is divided by total 
number of vertices and the percentage is reported. 
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3.2. Simulation study in structural MRI with changes 376 

in regions of interest 377 

Here, we evaluate N-GSBSS with respect to VBR, SBR and ciftify pipeline techniques in identifying 378 
sensitivity and specificity of changes in GM voxels located in spherical ROIs of 3, 4, and 5 mm radius 379 
located in a region of the frontal cortex. Fig 7 illustrates spheres with a radius of 5 and 3 mm.  380 
 381 

 382 
Quantitative results in Fig 8 show the t-statistics ratio for varying ROI sizes of 3 mm, 4 mm, and 5 mm, 383 
and percentage change in the GM probability values from 10% to 90% in the intervals of 10%. T-stat 384 
ratio is the maximum t-statistic for each scenario with respect to the baseline to reflect how much it was 385 
scaled with induced changes in the region of interest. The baseline is chosen to be the differences between 386 
the 2 groups in the current experiment. For VBR, to capture the intensity difference between groups, the 387 
probability change must be at least 40% with 5 mm spherical ROI, 50% for 4 mm, and 60% for 3 mm 388 
ROI. SBR results showed sensitivity for 20% change with 5 mm ROI. However little difference is 389 
observed between baseline and 4 mm ROI from 40% and no difference was captured with 3 mm ROI. N-390 

GSBSS results are much more sensitive starting at 10% with 5 mm ROI, 20% with 4 mm and 30% for 3 391 
mm spherical ROI. N-GSBSS also showed higher maximum t-statistics than SBR. With higher intensity 392 
differences starting at 70%, VBR results have higher t-statistic ratio than that of N-GSBSS. In all other 393 
cases N-GSBSS has higher maximum t-statistic ratio and better sensitivity. 394 
 395 

4. Discussion  396 

Herein, we describe an approach for carrying out multi-modal spatial statistics in low resolution images 397 
by taking advantage of high resolution T1 weighted images that are acquired as part of the scan protocol. 398 
This approach favorably compares with traditional volume based analyses and with respect to the 399 
FreeSurfer surface registration approach along with the ciftify pipeline. Our approach offers an advantage 400 
over VBM by achieving improved cortical alignment in agreement with other surface-based registration 401 
techniques [25, 28-33]. Moreover, in comparison with FreeSurfer, SBR, and ciftify pipelines, the N-402 
GSBSS approach showed an improvement in sensitivity. It suggests that the initial alignment obtained by 403 
non-rigid deformation from the T1 image provides a deformed cortical shape that makes surface 404 
registration much easier. Consequently, this improves the statistical power compared to existing 405 
approaches.  406 
The key aspect of this work is the addition of NODDI based search, which ensures that metrics from 407 
low-resolution images are retrieved from highly probable GM. It is achieved by making use of the ODI 408 

Fig 7: The gray matter probability map shows the simulated effect as an overlay mask of 5 mm (red) 
and 3 mm (dark blue) spheres. 

Fig 8: Quantitative results for statistical group differences over the change in ROI size from 3 to 5 
mm and percentage change from 10 percent to 90 percent. (a) Results from VBR analysis. (b) Results 
from FreeSurfer registration analysis. (c) Results from ciftify pipeline with default gray ordinates. (d) 
Results from GSBSS based analysis. Y-axis indicates maximum t-statistic ratio with respect to 
baseline. X-axis indicates the percentage change of GM probability in G2 with respect to original GM 
probability images in G2. 
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measure from NODDI which is known to be higher in GM compared to that of WM [43]. Thus by 409 
searching for maximum ODI, alignment issues after co-registration or PVE effects from underlying 410 
voxels is addressed. The patterns of mean ODI are comparable between these methods with higher 411 
values along the gyral regions. The overall mean ODI values in ciftify approach appear to be less than 412 
that of the GSBSS approach with or without search (Figure 4). Lower values could be due to the 413 
partial volume effects arising from thinner cortex regions as acknowledged in Fukutomi et al’s paper 414 
[56] indicating the possibility of residual PVE effects in the regions of thinner cortex. When compared 415 
to mean ODI values reported in Fukutomi et al.’s paper, the results indicated in our study have higher 416 
ODI values across all the methods. Possible reason for this deviation could be due to the number of 417 
differences between the two datasets like demographics, data acquisition, and processing. Also we 418 
followed the original NODDI model which has empirical settings as mentioned below where d|| = 419 
1.7×10−3 mm2/s, to be representative of both white and gray matter on two-shell data (b=1000/2000 420 
s/mm2), while in Fukutomi et al., paper [56] d|| is calculated to be 1.1 (0.1) × 10−3 mm2/s for gray 421 
matter from an empirically chosen range and the results reported are based on three-shell data 422 
(b=1000/2000/3000 s/mm2). While the preliminary normal search proposed based on higher ODI 423 
seems to improve sensitivity for the changes occurring in pure gray matter, these results may have to 424 
be carefully reviewed if a regional variation is essential for the study of interest.  425 
As we are interested in low resolution with dMRI acquired at 2.5 mm resolution and fMRI at 3 mm 426 
resolution, we are assuming that after co-registration to T1, the underlying data is roughly aligned at 427 
voxel level. Thus we utilize the search map obtained from diffusion modality to apply to fMRI for 428 
getting the data based on enclosing voxel approach. The reported fMRI t-statistics suggest an 429 
improvement in sensitivity with N-GSBSS. While there is no ground truth for validating the 430 
implication of the higher activation, since the contrast maps are relative to that of the un-modeled 431 
baseline across 30 subjects, the activation could indicate that the proposed method could be highly 432 
sensitive to capture underlying variations that are indirectly contributing to the activations instead of 433 
capturing the false positives.  434 
The simulation study is set up to perform sensitivity or specificity check for N-GSBSS to the underlying 435 
changes in tissue microstructure. As we are interested in performing analysis in psychiatric applications 436 
including schizophrenia [57, 58] that are known to have changes in prefrontal region, the ROI is chosen 437 
from this region. The GM probability map is chosen as the parameter of interest and the intensity changes 438 
are simulated within an ROI region. Compared to the baseline methods, N-GSBSS showed superior 439 
sensitivity to the underlying changes in both intensity and the size of the ROI as shown in Fig 8. While 440 
volume-based analysis was not able to detect any significant differences between groups for at least up to 441 
50% change in the GM probability values, N-GSBSS was able to capture differences starting from 10% 442 
change with ROI size of 5 mm, 20% for 4 mm and 30% for 3 mm. The low performance of VBM could 443 
be potentially due to partial volume effects prevalent in the volume-based approach even after applying 444 
the GM mask to limit the analysis to highly probable GM regions.  445 
In the simulation study, SBR analysis showed a similar pattern as N-GSBSS. However, the sensitivity of 446 
this approach is not as high as N-GSBSS. Differences between the methods are likely due to different 447 
registration approaches since both of them used the same surface to obtain corresponding GM probability 448 
values from the volume image. The ciftify pipeline results are similar to those of SBR, which is expected 449 
since the ciftify pipeline uses FreeSurfer registration. The subtle difference between ciftify and SBR are 450 
observed likely due to the different surface reconstruction in each of these pipelines. For a fair 451 
comparison, we used the ciftify pipeline with default parameters to the extent possible. For example, the 452 
analysis results in the ciftify pipeline are based on the “gray ordinates” with 64k vertices (the suggested 453 
tessellation for cross subject analysis of low resolution data) on both left and right hemispheres. This 454 
surface tessellation differs from that of the target central surface used in SBR and N-GSBSS analysis 455 
(about 261k vertices for both hemispheres). This could have contributed to the lower sensitivity of ciftify 456 
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pipeline in this simulation study due to the limited ability to capture smaller ROI regions with less 457 
number of vertices. The higher sensitivity of N-GSBSS to capture GM probability percentage changes as 458 
low as 10% for 5 mm ROI and 40% for smaller ROI of 3 mm ROI could indicate that it is able to capture 459 
more number of highly probable vertices accurately. In future, additional validations could be performed 460 
to evaluate the performance for different resolutions and also at different ROI locations.  461 

5. Conclusion 462 

Overall significant regions captured by N-GSBSS agree with those of VBR, SBR, and ciftify pipelines 463 
across different modalities while achieving high spatial specificity. It is highly likely that the volumetric 464 
transformation already deformed cortical surfaces into similar shapes (geometry) before the surface 465 
registration, which results in better shape correspondence by reducing the local anatomical ambiguity in 466 
the surface registration. N-GSBSS possesses high flexibility that allows any registration method as well 467 
as multiple modalities. We expect that such a feature can be generally extended to various modalities in 468 
general neuroimaging studies. 469 
An operational virtual machine and source code for N-GSBSS are posted in a Docker image: 470 
(https://github.com/MASILab/N-GSBSS/).  471 
 472 
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Fig 1: (a) Non-rigid image registration of GM probability maps of three subjects. Each color box 
highlights the corresponding region of interest. Right column shows detailed differences in cortical 
folding patterns across the subjects. (b) Skeletonized GM (red) and cortical central surface (yellow) 
are overlaid on T1 image. GM central surface closely follows the cortical structure compared to that 
of skeletonized GM approach. Two examples are highlighted in blue and green boxes where GM 
cortical surface closely follows the cortical structure compared to the volumetric based GM 
skeletonization approach. Darker regions on T1 indicate GM and lighter regions represent WM. 
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Fig 2: (a) ODI overlaid with cortical surface mapping based on enclosing voxels, 1mm above, 2mm 
above, 1mm below and 2mm below of central surface obtained using normal search. At each vertex, 
maximum ODI value is selected from these 5 values along the vertex normal (white arrow in zoomed 
in box) and corresponding map is used for projecting the diffusion metrics on to the cortical surface. 
(b) Histogram of ODI projected on to the cortical surface on single subject before and after ODI 
search. 
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Fig 3: Flowchart of the N-GSBSS data processing for each subject. (1) The central surface is 
reconstructed via MaCRUISE (red) (2) and transformed to the MNI space (yellow) using ANTs 
volume registration. (3) These volumes are diffeomorphically registered to a single target surface. (4) 
Metrics of interest in other modalities are co-registered to corresponding anatomical T1-weighted 
image. (5) Cortical ODI search is performed using ODI and Viso from NODDI metrics to search for 
higher ODI excluding Viso within a given range (6) Data are processed for each modality (NODDI for 
diffusion microstructure and first level analysis for working memory tasks) to derive metrics of 
interest for cross-sectional analysis. (7) Metrics of interest are mapped onto the individual surface. (8) 
The mappings from shape correspondence are used to project intensity values of metrics of interest to 
the target surface (blue). (9) Vertex-wise spatial statistics on all projected data are performed on the 
target surface. 
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Fig 4: Mean ODI across 28 healthy subjects using (a) N-GSBSS – S0 with no search (a) N-GSBSS - 
S2 including ODI search of 2mm (c) ciftify pipeline. The ciftify results are based on the “gray 
ordinates” with 64 thousand vertices (the suggested tessellation) on both left and right hemispheres 
while the target surface template used in N-GSBSS has about 261 thousand vertices. 
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Fig 5: Working memory fMRI data were processed for 28 healthy controls and results are reported 
for (a) correct cue, (b) correct delay (c) correct probe tasks with 2 mm smoothing for VBR, SBR, 
ciftify, N-GSBSS -S0 with no search and N-GSBSS-S2 with 2mm search methods. Significant p-
values after FWE correction based on non parametric randomize one sample t-test with 10000 
iterations are reported. Pfwe <0.05 are highlighted in red.  
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Fig 6: Percentage activation of working memory fMRI data were processed for 28 healthy controls 
and results are reported for (a) correct cue, (b) correct delay (c) correct probe tasks with 2 mm 
smoothing for VBR, SBR, ciftify, N-GSBSS –S0 with no search and N-GSBSS –S2 with 2mm 
search methods. The number of significant vertices, with p-values < 0.05 after FWE correction 
based on nonparametric randomize one sample t-test with 10000 iterations, is divided by total 
number of vertices and the percentage is reported. 
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Fig 7: The gray matter probability map shows the simulated effect as an overlay mask of 5 mm (red) 
and 3 mm (dark blue) spheres. 
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Fig 8: Quantitative results for statistical group differences over the change in lesion size from 3 to 
5mm and percentage change from 10 percent to 90 percent. (a) Results from VBR analysis. (b) Results 
from FreeSurfer registration analysis. (c) Results from ciftify pipeline with default gray ordinates. (d) 
Results from GSBSS based analysis. Y-axis indicates maximum t-statistic ratio with respect to 
baseline. X-axis indicates the percentage change of GM probability in G2 with respect to original GM 
probability images in G2. 


