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ABSTRACT  

The choice of surface template plays an important role in cross-sectional subject analyses involving cortical brain 
surfaces because there is a tendency toward registration bias given variations in inter-individual and inter-group 
sulcal and gyral patterns. In order to account for the bias and spatial smoothing, we propose a feature-based 
unbiased average template surface. In contrast to prior approaches, we factor in the sample population covariance 
and assign weights based on feature information to minimize the influence of covariance in the sampled population. 
The mean surface is computed by applying the weights obtained from an inverse covariance matrix, which 
guarantees that multiple representations from similar groups (e.g., involving imaging, demographic, diagnosis 
information) are down-weighted to yield an unbiased mean in feature space. Results are validated by applying this 
approach in two different applications. For evaluation, the proposed unbiased weighted surface mean is compared 
with un-weighted means both qualitatively and quantitatively (mean squared error and absolute relative distance of 
both the means with baseline). In first application, we validated the stability of the proposed optimal mean on a 
scan-rescan reproducibility dataset by incrementally adding duplicate subjects. In the second application, we used 
clinical research data to evaluate the difference between the weighted and unweighted mean when different number 
of subjects were included in control versus schizophrenia groups. In both cases, the proposed method achieved 
greater stability that indicated reduced impacts of sampling bias. The weighted mean is built based on covariance 
information in feature space as opposed to spatial location, thus making this a generic approach to be applicable to 
any feature of interest. 
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1. INTRODUCTION  
The cerebral cortex is the outermost layer of neural gray matter critical for many brain functions including memory, 
attention, cognition, language and consciousness[1]. Features that characterize the cortex (including sulcal curves, 
gyral curves, sulcal depth, curvature and cortical thickness) are important in neuroimaging studies involving these 
regions [2-4]. Cortical surfaces are widely used for such analysis as they preserve topology [3-9]. In order to study 
group differences in these regions between control and clinical samples, it is common to align all the cortical 
surfaces to a common space [10-13]. In this context, representative template space-based approaches have been 
proposed to studying local individual differences in cortical morphometric measurement due to their ability to 
represent data involving cortical patterns and other model-based voxel wise parameters mapped onto a common 
surface in both normal and clinical populations [14, 15]. Prior work has addressed the importance of template 
surface selection from the perspective of pairwise registration [6, 7, 16]. In a template based registration approach, 
each surface is mapped to a common template surface in coordinate space by regularizing based on feature 
information. However, surface-based analyses employing a predefined template might yield undesirable results if 
the selected template surface is substantially different from the population or if it is biased towards a particular set 
of surfaces [17]. Template-based registration is dependent on the a priori template specification thus constraining 
the underlying data to be biased to the selected template. Methods have addressed the issue of dissimilarity between 
template surface and surfaces of population under consideration by organizing the population of cortical surfaces 
into pairs with high shape similarity to achieve a higher accuracy by only corresponding such similar pairs [16], 



 
 

 
 

while others factored in the pattern of folding across the entire cortical surface in considering the inter-subject 
average [11].  

However, these approaches are still prone to bias towards the majority representation of the underlying population 
that could pose a problem in cross subject analysis. We propose to address the above limitations using an a priori 
covariance matrix approach that de-weights subjects with similar features instead of treating all observations as 
independent instances. This approach uses inverse covariance weighting under the assumption that there is one 
latent feature of interest from the representative group. An optimal weighted mean is then reconstructed on the basis 
of that assumption. Features considered in this approach are mean curvature and sulcal depth. Mean curvature 
captures the mean amount of change with respect to surface normal [8]. Sulcal depth measures the closest distance 
between a cortical surface and its cerebral hull [13]. In this paper we present an approach for constructing an 
unbiased mean of cortical surfaces in feature space that is representative of the underlying population while not 
being biased to multiple representations of the same feature from multiple surfaces by using a priori based 
covariance information. To simplify the analysis, we use the correlation matrix between scans as an approximation 
of the true covariance. 

This framework is flexible and scalable for selecting the target template space, involving cross-sectional subject 
analysis, or performing template-based registration. The proposed technique can be factored into group-wise 
registration [2] to include deweighting based on population information. 

2. METHODS 
2.1 Data Acquisition  

We considered the Kirby dataset [18] that was acquired with scan-rescan imaging sessions on 21 control volunteers. 
The acquisition protocol includes T1 MPRAGE employing a gradient echo read out with a short TE value 
(TR/TE/TI=6.7/3.1/842ms) with 240 X 204 X 256 mm FOV and 1 X 1 X 1.2 mm3 resolution acquired in sagittal 
plane. No fat saturation was employed and the total scan time was 5 min and 56 s. We also included a second 
dataset with 10 control subjects and 10 individuals with schizophrenia for analysis. The scan protocol for this 
project included T1 MPRAGE (256 X 256 mm FOV, 1 X 1 X 1 mm, TE=2ms, TR=8.95 ms and TI=643 ms) 
acquired on a 3T scanner (Achieva, Philips Medical Systems, Best, The Netherlands) with a 32-channel head coil.  

2.2 Preprocessing 

T1 images are bias corrected using N4 bias correction [19] to account for spatial inhomogeneity. Individual T1 
images are then segmented using multi-atlas segmentation [20] that segments the images into 133 BrainColor labels 
with 132 brain regions and a background[21]. After segmentation, the GM surfaces are derived using multi-atlas 
segmentation to surface method proposed as Multi-atlas Cortical Reconstruction Using Implicit Surface Evolution 
(MaCRUISE) [22] where inner, central and outer cortical surfaces are reconstructed by using the topology-
preserving geometric deformable surface model. These central surfaces are used in further cortical surface based 
analysis. 

2.3 Feature based template space selection approach 

Cortical surfaces are initially aligned to MNI space (http://www.mni.mcgill.ca/) using affine transformation 
acquired from T1 image using trilinear interpolation. For each T1, gray matter (GM) central surface is reconstructed 
via an MaCRUISE pipeline and then mapped onto a unit sphere of a standard icosahedron subdivision with 163,842 
vertices [12]. Features are generated on central surface after applying 3 smoothing iterations to reduce local noise 
influences. We compute weighted and un-weighted mean from these features. The weights are represented as the 
approximated covariance matrix as shown in Figure 1. 

Again our goal is to build an unbiased mean of surface in feature space. So the idea is to deweight multiple 
representations of similar data while capturing maximum variance in the population. From this perspective, an a 
priori covariance matrix is built based on the population information (e.g., demographics, patient status, cortical 
shapes). For example, in reproducibility analysis scan and rescan entries are provided with the same correspondence 
in the off diagonal elements. Similarly for psychosis population, subjects belonging to same group are assigned to 
have correspondence based on setting the off diagonal elements to have the same weighting as the diagonal 
elements for that group in building the approximated covariance matrix. By taking inverse covariance weighting 
approach, elements belonging to same group are de-weighted to make it a single representation for underlying 
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population. We compute the mean feature based template using the weights obtained in the previous step. This 
weighted mean of the surfaces in feature space is then compared with to un-weighted mean based on a vertex wise 
relative distance metric with respect to baseline for evaluation.  

 

 

The idea behind the bias compensation is illustrated in a toy example in Figure 2. Here we have six points in 2-D 
space where three of them belong to one group. If we do not consider this information then the un-weighted average 
(red *) is biased towards the single group containing three points.  

By factoring in the information about underlying data in a similarity matrix Σ 𝑋  as indicated below, we can 
compute a weighted average, by down-weighting three points in the same group to be a single representation thus 
yielding unbiased mean (green o).  

Σ 𝑋 =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 1 1 0
0 0 1 1 1 0
0 0 1 1 1 0
0 0 0 0 0 1

  

 
Figure 1. After preprocessing: a) A spherical representation is generated based on central surface. b) Features are 

computed and resampled along with central surface into 163,842 vertices via icosahedron subdivision. c) The 
covariance matrix is constructed. d) The weighted mean of features is computed based on weights from covariance 

matrix. e) The unweighted mean is computed f) Qualitative and quantitative analysis are performed based on 
weighted and un-weighted mean information. 



 
 

 
 

By taking the pseudo inverse also called the Moore-Penrose inverse of above a similarity matrix Σ 𝑋   and taking 
the sum of the elements we can compute weights associated with each point which are then used in computing 
vertex wise weighted average as below,  

𝑋! =  !!!!
!
!!!

!!!
!!!

        (1) 

A similar approach can be adapted when computing the average in feature space for template space selection in 
pairwise registration or group wise registration. Thus, one can address explicit bias towards multiple representations 
of similar data in the underlying population.  

2.4 Quantitative Analysis 

The results are validated on a reproducibility dataset using scan-rescan protocols. In order to quantitatively evaluate 
the proposed unbiased template, we used cortical surface features (mean curvature and sulcal depth) that are 
commonly used in surface registration approaches. We used two different distance metrics for this quantitative 
evaluation: 1) Mean square error (MSE) (L2 norm) of the weighted and un-weighted average with respect to 
baseline data as described for each scenario as described in eq (2) below where Xi is the baseline data and Yi is the 
corresponding average at each vertex i. 2) Relative distance of weighted average WMDi and relative distance of un-
weighted average as MDi in ith iteration from the group averages HCmean and SZmean with equal number of subjects in 
each group. Vertex-wise differences of the feature measurements are captured based on the relative distance 
measure with respect to baseline for evaluation. 

𝑀𝑆𝐸 = 𝑌! − 𝑋! !!
!!!         (2) 

𝑀𝐷! =
!"# !!!!"!"#$ !!"# !!!!"!"#$

!"# !"!"#$!!"!"#$
      (3) 

𝑊𝑀𝐷! =
!"# !"!!!"!"#$ !!"# !"!!!"!"#$

!"# !"!"#$!!"!"#$
      (4) 

 
Figure 2. This figure shows a comparison between un-weighted average versus a weighted average for a toy 
example on the 2D plane. The equal weighting is given to off diagonal elements belonging to similar group 
(yellow dashed oval) as illustatrated in the correlation matrix presented in lower left hand corner. 



 
 

 
 

3. RESULTS 
In the Kirby dataset, rescan data is given the same weighting as corresponding scan data in the off-diagonal 
elements. Inverse covariance weighting from this approximated matrix is taken which is used to compute the 
weighted average. In order to test the reproducibility of the approach, we have taken 21 subjects with scan data as 
baseline and computed both weighted and un-weighted mean. As seen in Figure 3(a) the means of the sulcal depth 
feature obtained with both these approaches are the same when no rescan data is added and 21 subjects are 
considered to be independent of each other. Then, we added rescan data of one subject giving it equal weighting as 
its scan data in the approximated covariance matrix. We repeated the addition iteratively for 20 times and captured 
the weighted and un-weighted means at each iteration. Figure 3(b) and (c) present the qualitative results at 10 and 

20 iterations. Figure 3(d) shows the sulcal depth feature information on the sphere for the rescan subject that was 
used in these iterations. With each iteration of adding rescan data, un-weighted mean comes closer to the vertex 
wise feature information of the corresponding subject making it biased towards that subject. However, the weighted 
mean remains unchanged irrespective of the number of items as it de-weights additional duplicate scans based on 
approximated covariance information. Quantitative values of mean squared error distance of each of the mean to the 
rescanned subject feature information are presented in Figure 3(e). 

In the second application, we used two groups with a control and schizophrenia population. The diagnosis is 
considered as the prior information in this dataset. For this analysis mean curvature is employed as an evaluation 
metric and approximated covariance matrix is built based on the diagnosis information. Weights are calculated 
based on the inverse covariance weighting and corresponding covariance based mean is computed.  

Weighted and unweighted means of mean curvature feature for different number of subjects in each group are 
shown in the qualitative plot (Figure 4). For the same number of subjects in each group, it can be seen that weighted 
and unweighted means are equal. The weighted mean shows less variance compared to the unweighted mean while 
increasing/decreasing the number of subjects in each group 

To compare the effect of varying number of subjects in each group and evaluate bias information, 10 subjects from 
each group are considered. Mean curvature feature based mean for 10 control subjects HCmean and similarly mean 
for 10 schizophrenic subjects SZmean are calculated. As we increase the number of subjects in each group, the un-

 
Figure 3: Iterative rescan data example of sulcal depth feature from Kirby dataset. Row 1 is un-weighted mean 
and row 2 is weighted mean from (a) to (c) with each scenario containing (a) 21 subjects with no rescan data, (b) 
21 subjects with 10 repeats of rescan from one of the subject, and (c) 21 subjects with 20 repeats of rescan from 
one of the subjects. The inlay (d) shows the sulcal depth of subject whose rescan is added iteratively. Plot (e) 
presents the mean squared distance to rescan subject from un-weighted mean (blue) and weighted mean (green). 

 



 
 

 
 

weighted mean becomes biased towards the group with higher number of subjects compared to other as shown in 
Figure 4. The plot shows the difference in vertex-wise absolute distance of un-weighted and weighted mean with 
respect to HCmean and SZmean. By adding more control subjects, the un-weighted mean becomes closer to HCmean as 
opposed to SZmean and vice versa. For the equal number of subjects from each group (HC=5 and SZ=5) the relative 
distance to both the means from corresponding group averages HCmean and SZmean are equal as highlighted in red 
box. However, as the number of subjects in one group increases compared to other un-weighted mean is biased 
towards that group which is also reflected with lower mean square error in Figure 5(d) and (e). Green lines in the 
plot indicate L2 norm distance of weighted mean from HCmean and SZmean. Blue lines show L2 norm of un-weighted 
mean from the mean of each group. 

4.  DISCUSSION 
In both the applications, the effect of bias towards the underlying dataset is shown when considering the un-

weighted mean, while the weighted mean is stable when capturing the details of the representative features. While 
we have presented the effect of incorporating covariance in computing the feature based unbiased average for 
template based pairwise registration, this approach is also adaptable to group wise registration methods [6] where 
no prior template is needed. In these methods group-wise cortical correspondence is achieved by making use of 
various cortical features while preserving the topology. As the result still has the possibility of having bias towards 
the representation of majority of the population, incorporating covariance information at the stage of feature 
averaging could aid in reducing such bias.  

5. CONCLUSION 
We have presented feature based unbiased average template surface approach using an a priori covariance matrix. 
The proposed approach is compared with a typical un-weighted mean by applying to two different applications one 
with scan/rescan data and another with clinical data with two groups. In both the cases, weighted average is shown 
to be more stable and less biased when measured in terms of relative distance from group mean or mean squared 
error. Incorporating covariance based approach at template selection level or when considering the mean of features 
in group registration methods could potentially minimize the bias. Much work remains to effectively estimate 
appropriate covariance structures either from study designs or in a data-driven manner. 

 
Figure 4. Mean curvature qualitative plot of un-weighted mean and weighted mean with different number of 

subjects in control and schizophrenia populations. Feature data in each scenario included (a) 6 controls and 18 
schizophrenic patients, (b) 18 controls and 18 schizophrenic patients, and (c) 18 controls and 6 schizophrenic 

patients. Both un-weighted and weighted mean are similar with equal number of subjects in each group. However, 
the un-weighted mean had higher variance across the sampling strategies. The ovals emphasize qualitative areas of 

difference. 
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Figure 5. Mean curvature quantitative plot with relative absolute distance of un-weighted mean and weighted mean 
between control and schizophrenic means. Data are normalized between -1 and 1 between patients with 
schizophrenia and controls. Feature data in each scenario from qualitative plot included (a) 5 controls and 10 
patients with schizophrenia (b) 5 controls and 5 patients with schizophrenia, and (c) 10 controls and 5 patients with 
schizophrenia. The color bar on the side indicates how close the relative distance is with respect to control mean 
(blue) and schizophrenia mean (red). The top row is from weighted mean while the lower row is from the un-
weighted mean. Mean square error of mean curvature values with respect to control and schizophrenic means with 
varying number of subjects in each group is shown below. In (d), the number of controls was fixed at 5 and the 
number of patients with schizophrenia varied from 1 to 10. In (e), the number of patients with schizophrenia was 
fixed at 5 and the number of control subjects varied from 1 to 10. When the number of subjects in each group is 
equal, then both the un-weighted and weighted means are equal as highlighted in red box.  
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