#### The (Matthew Walker) Texas Rangers III

Developing a Ventriculoperitoneal Shunt Failure Monitoring Approach for Pediatric Hydrocephalic Patients

> Oral Report #5 Wednesday, March 29

Zoha Malik, Alvin Mukalel, Cole Pickney, Sungho (John) Suh, Colin Sweeney

#### Hydrocephalus

- 1/1000 live births in the US
- Cerebrospinal fluid drains in the brain at 600-700 ml/day (0.2-0.7ml/min)
- CSF drainage from the brain is blocked
- Leads to build up of CSF:
  - Ventricles enlarge
  - Brain swells up
  - Intracranial pressure increases
    - Critical at +5mmHg or more
- Loss of vision, headaches, neurological damage or death





#### **Current Solution: Ventriculoperitoneal Shunts**

- Gold standard for 50+ years
- Shunt surgically inserted:
  - Proximally: into third ventricle
  - Distally: Into peritoneal cavity
- However...
  - 50% shunts fail within 2 years of implantation
    - Proximal failure -> DANGEROUS
    - Distal failure
- No means of detecting shunt failure:
  - Symptoms & damage before shunt replacement
  - Unnecessary replacement surgeries



#### The Need

#### The solution:

- Must <u>detect shunt failure</u> before patient develops neurological symptoms
- Must remotely communicate failure with minimal error

#### **Project Objective Statement**

- Measure the <u>differential pressure</u> between the shunt and the brain for proximal failure detection:
  - If there is no difference: there is no proximal failure
  - If there is a difference, there is proximal failure
- Remotely communicate when the shunt fails



#### **Current Iteration of Design Components**





## Strain Gauge: PDMS Window



- Pore Diameter: .85 mm
- # Pores: 24
- # Removed Pores: 4
- Drainage Surface Area:  $64.1 \text{ mm}^2$
- % Reduction of Drainage Surface Area After Modification: 16.7%

# Design CAD Rendering

#### **External View**

**Cross-Sectional View** 





Shunt tubing



## PDMS blocks formation

- We have cured PDMS at three different elastomer to curing agent mass ratios
  - 5:1
  - 10:1
  - 15:1
- Currently curing strain gauges in PDMS of the two mixes most similar to the shunt tubing
  - 10:1
  - 15:1



Wired strain gauge curing in 15:1 PDMS



## Will Covering Pores Compromise CSF Flow?



## **Testing: Strain Gauge Calibration**



## **Circuit Setup:**

- Voltage output from bridge circuit is too small • for our application ( $\mu$ V)
- INA125P instrumentation amplifier provides • gain from 4-10,000x
- Although large, this set-up can be scaled down • by self-fabricating devices





### **Arduino Implementation**



V

### Arduino NFC Setup

- Using SPI
- NFC shield uses digital in/out pins
- Write strain gauge info to NFC tag
- Read NFC tag with a phone



## **Construction and Testing Plan**

- Develop a protocol for removal of portion of shunt
  - Test cutting and PDMS blocks sealed with bonding adhesive on excess distal tubing

- Final ~3 cm of proximal tubing is portion in ventricle
  - Experiment with window placement in that 3 cm
  - Reference: window is
    7.5 mm in length, so
    many available
    positions



MR Image of Ventricles



#### Gantt Chart

#### (Dr. Matthew Walker Texas Rangers III)

