XIANG ZHANG

Ph.D. Candidate Department of Civil and Environmental Engineering Vanderbilt University, Nashville TN 37235

(615) 779-9609 xiang.zhang@vanderbilt.edu https://my.vanderbilt.edu/xiangzhang/

EDUCATION

Ph.D., Civil Engineering

2017

Vanderbilt University, Nashville, TN

Advisor: Prof. Caglar Oskay

Research topic: Reduced order modeling and multiscale investigations of high performance alloys

M.S., Civil Engineering

2015

Vanderbilt University, Nashville, TN

Advisor: Prof. Caglar Oskay

Research topic: Eigensrain-based reduced order homogenization for polycrystal plasticity

M.E., Solid Mechanics

2012

Beihang University, China Advisor: Prof. Jialing Yang

Research topic: Numerical and experimental bird-strike resistance evaluation of aerostructures

B.E., Engineering Mechanics

2009

Northeastern University, China

RESEARCH AREAS AND EXPERTISE

- Multiscale modeling of heterogeneous materials
 - Computational homogenization
 - Reduced order multiscale homogenization
- Crystal plasticity finite element modeling
- Cohesive zone model based intergranular damage modeling
- Crashworthiness analysis of aerostructures by finite element modeling and experimental testing

AWARDS & HONORS

- Finalist, 28th Annual Robert J. Melosh Medal Competition for the Best Student Paper on Finite Element Analysis. Duke University, Durham, NC, 2017.
- Travel Award, 14th U.S. National Congress on Computational Mechanics. Montreal, Canada, 2017.
- Winner, Modeling Inelasticity & Multiscale Behavior Committee Best Student Paper Competition, EMI Conference, Nashville, TN, 2016.
- Best Student Poster Award in Materials Science and Technology category, ANS Winter Meeting and Nuclear Technology Expo, Las Vegas, NV, 2016.
- Peter G. Hoadley Best Paper Award, Department of Civil and Environment Engineering, Vanderbilt University, 2016.

PROFESSIONAL EXPERIENCES

• September 2017 - present	Postdoctoral Research Associate, Vanderbilt University
• June 2013 - August 2017	Graduate Research Assistant, Vanderbilt University
• August 2012 - May 2013	Graduate Teaching Assistant, Vanderbilt University
• September 2010 - January 2012	Graduate Research Assistant, Beihang University

JOURNAL PUBLICATIONS

- 1. **X. Zhang**, C. Oskay. Sparse and scalable eigenstrain-based reduced order homogenization models for polycrystal plasticity. *Comput. Methods Appl. Mech. Engg.*, 326:241-269, 2017.
- 2. V. T. Phan, **X. Zhang**, Y. Li, C. Oskay. Microscale modeling of creep deformation and rupture in Alloy 617. *Mech. Mater.*, 114:215-227, 2017.
- 3. **X. Zhang**, C. Oskay. Eigenstrain based reduced order homogenization for polycrystalline materials. *Comput. Methods Appl. Mech. Engg.*, 297:408-436, 2015.
- 4. **X. Zhang**, C. Oskay. Polycrystal plasticity modeling of Nickel-based superalloy IN 617 subjected to cyclic loading at high temperature. *Modelling Simul. Mater. Sci. Eng.*, 24:055009, 2016.
- 5. Y. Liu, X. Zhang, A. Pilchak, B. Gockel, C. Oskay. Dislocation density informed multiscale crystal plasticity modeling for fatigue crack initiation in Ti-6242S, to be submitted.
- 6. X. Zhang, C. Oskay. A lattice-spring model for intergranual damage modeling, work in progress.
- 7. D.Y. Hu, **X. Zhang**. Full-scale crash test and FEM simulation of a crashworthy helicopter seat. *J. Aero. Power*, 27:395-400, 2012.

CONFERENCE PUBLICATIONS

- X. Zhang, C. Oskay. Eigenstrain-based Reduced Order Homogenization Models for Polycrystal Plasticity: Addressing Scalability. XIV International Conference of Computational Plasticity. Fundamentals and Applications., Barcelona, Spain, September 5-7, 2017.
- X. Zhang, V. T. Phan, C. Oskay. Microstructural Creep, Fatigue and Creep-Fatigue modeling of Nickel-based Superalloy Inconel 617 at High Temperature. Proceedings of the High Temperature Reactor Technology (HTR) Meeting 2016, Las Vegas, NV, November 7-10, 2016.

CONFERENCE PRESENTATIONS

- X. Zhang, C. Oskay. Eigenstrain-based Reduced Order Homogenization for Polycrystal Plasticity: Addressing Scalability. XIV International Conference of Computational Plasticity, Barcelona, Spain, September, 2017.
- 2. X. Zhang, C. Oskay. Sparse and Scalable Eigenstrain-based Reduced Order Models for Polycrystal Plasticity. U.S. National Congress on Computational Mechanics, Montreal, Canada, July 2017.
- 3. **X Zhang**, C. Oskay. Microscale modeling of creep and rupture of IN 617 using cohesive zone-CPFE analysis. Engineering Mechanics Institute Conference, San Diego, CA, June 2017.
- 4. **X. Zhang**, C. Oskay. Sparse and Scalable Eigenstrain-based Reduced Order Models for Polycrystal Plasticity. Engineering Mechanics Institute Conference, San Diego, CA, June 2017.
- X. Zhang, V. T. Phan, C. Oskay. Microstructural Creep, Fatigue and Creep-Fatigue Modeling of Nickel-based Superalloy IN 617 at High Temperature. ANS 8th International Topical Meeting on High Temperature Reactor Technology, Las Vegas, NV, November 2016.
- 6. X. Zhang, C. Oskay. Accelerated Reduced Order Homogenization of Polycrystal Plasticity. European Mechanics Society Colloquium, Porto, Portugal, September 2016.
- 7. **X. Zhang**, C. Oskay. Eigenstrain based Reduced Order Homogenization for Polycrystalline Materials. Engineering Mechanics Institute Conference, Nashville, TN, May 2016.
- 8. **X. Zhang**, Caglar Oskay. Fatigue and Creep-Fatigue Modeling of Alloy 617 at High Temperature. ASME International Mechanical Engineering Congress & Exposition, Houston, TX, Novmber 2015.
- 9. **Zhang X.**, Li C., Yang J.L.. Bird-Strike Simulation of a Helicopter Front Fuselage based on SPH Method. Chinese Conference of Theoretical and Applied Mechanics, Harbin, China, August 2011.

PROGRAMMING EXPERTISE