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Multilevel data structures are common in the social sciences. Often, such nested data are

analysed with multilevel models (MLMs) in which heterogeneity between clusters is

modelled by continuously distributed random intercepts and/or slopes. Alternatively, the

non-parametric multilevel regression mixture model (NPMM) can accommodate the

same nested data structures through discrete latent class variation. The purpose of this

article is to delineate analytic relationships betweenNPMMandMLMparameters that are

useful for understanding the indirect interpretation of the NPMM as a non-parametric

approximation of the MLM, with relaxed distributional assumptions. We define how

seven standard and non-standard MLM specifications can be indirectly approximated by

particular NPMM specifications.We provide formulas showing how theNPMM can serve

as an approximation of the MLM in terms of intraclass correlation, random coefficient

means and (co)variances, heteroscedasticity of residuals at level 1, and heteroscedasticity

of residuals at level 2. Further, wediscuss how these relationships can be useful in practice.

The specific relationships are illustrated with simulated graphical demonstrations, and

direct and indirect interpretations of NPMM classes are contrasted. We provide an R

function to aid in implementing and visualizing an indirect interpretation ofNPMMclasses.

An empirical example is presented and future directions are discussed.

1. Introduction

Multilevel data structures are common in social science research, as when students are

nested within schools or patients are nested within clinicians. Such nested data are

typically analysedwithmultilevelmodels (MLMs, also known as hierarchical linearmodels

or mixed effects models) in which heterogeneity between clusters is modelled by

continuous, normally distributed random intercepts and/or slopes (e.g., Goldstein, 2011;

Hox, 2010; Raudenbush & Bryk, 2002).
Multilevel mixture models are also used to accommodate nested data. One type of

multilevel mixture that has been increasingly applied in practice has been termed the

non-parametric multilevel mixture model (NPMM; e.g., Asparouhov & Muth�en, 2008;
Finch & Marchant, 2013; Henry & Muth�en, 2010; Kaplan & Keller, 2011; Karakos, 2015;
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Park & Yu, 2015; Van Horn, Feng, Kim, Lamont, Feaster, & Jaki, 2016; Vermunt, 2003,

2004, 2008; Yu & Park, 2014). In this model, latent classes are extracted at multiple levels

of a hierarchical data structure (e.g., level 1 and level 2) and, unlike the conventional

MLM, there are no continuously distributed randomeffects. In this paper, we consider the
regression

1 version of the NPMM, where intercepts and slopes of covariates can vary

discretely across level-1 and level-2 classes (e.g., Vermunt, 2010; Vermunt & Magidson,

2005). Compared to the MLM, the NPMM provides the advantages of relaxed distribu-

tional assumptions (e.g., distributions of effects across clusters are not assumed normal)

and the ability to interpret classes both directly (as representing literal, discrete

subpopulations) and indirectly (e.g., as approximating an underlying continuous

distribution of effects across clusters; Titterington, Smith, & Makov, 1985). Indeed, the

NPMM is termed ‘non-parametric’ because it has often been motivated for use with an
indirect interpretation in which classes can represent a discrete approximation of

continuous distributions, such as those assumed in the MLM.

However, precisely how this NPMM non-parametrically approximates MLM param-

eters2 has not been shown mathematically. Having only a conceptual or incomplete3

understanding of the relationship between the NPMM and MLM leaves us with several

unknowns that limit our understanding of the indirect interpretation of the NPMM: (1)

What are the analytic relationships through which the parameters of the NPMM can

approximate the parameters of the MLM? (2) Which standard MLM specifications can be
approximated by which NPMM specifications? (3) Can the NPMM also indirectly

approximate non-standard MLM specifications? In contrast, model parameters from other

mixtures have been analytically related to the non-mixture-model parameters they

approximate (e.g., Bauer, 2005, 2007; Vermunt & Van Dijk, 2001), which has aided the

indirect interpretation of classes (e.g., Muth�en & Asparouhov, 2008; Pek, Sterba, Kok, &

Bauer, 2009). A recent review of psychology mixture applications noted that ‘whereas a

direct interpretation of classes is intuitive, an indirect semiparametric function of

classes is less so’ and called for methodologists to ‘provide more concrete details on an
indirect interpretation’ to facilitate its use in practice (Sterba, Baldasaro, & Bauer, 2012,

pp. 593, 625).

Understanding the relationship between the NPMM and MLM (i.e., the indirect

interpretation of the NPMM) would be useful to applied researchers for several reasons.

First, understanding this relationship can aid both multilevel modelling and mixture

modelling researchers in developing competing explanations of their data-generating

mechanisms. This can be particularly useful in mixture applications given that many

applied researchers currently only consider a direct interpretation of classes –whichmay
be ‘seductive’ in its simplicity, yet risks reifying classes as literal subpopulations (Bauer,

1Note thatMuth�en andAsparouhov (2009) address a different kind ofmultilevel regressionmixture that involves
both random effects and classes, requires numerical integration, and is most often used for directly interpreting
classes. They do not discuss theNPMM.TheNPMM involves only classes, does not require numerical integration,
and is often used for indirectly interpreting classes.
2When the normality assumptions of the MLM hold, the NPMM non-parametrically approximates MLM
parameters, including the first moment(s) and second central moment(s) of the random effect(s) distribution.
When these normality assumptions do not hold, theNPMMhas the flexibility to not onlymore accurately recover
lower-order moments of the random effects distribution (e.g., Asparouhov & Muth�en, 2008; Brame, Nagin, &
Wasserman, 2006), but also recover its higher-ordermoments. As a shorthand, throughout this paperwe refer to
the NPMM as non-parametrically approximating ‘MLM parameters’ when referring to its discrete approximation
of such lower-order moments, regardless of whether MLM assumptions are upheld or not.
3 Certain relationships have been delineated for simpler mixtures with classes exclusively at level 2 (Vermunt &
Van Dijk, 2001), as described in detail later.
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2007; Sampson & Laub, 2005). Second, understanding this relationship would illuminate

how the NPMM can be used as a preliminary, exploratory tool for multilevel modelling

researchers. It will be shown that fitting our general NPMM automatically and flexibly

approximates a number of non-standard MLM specifications that would not typically be
considered by applied researchers fitting MLMs, yet could diagnostically suggest novel

future directions for multilevel model-building. Third, understanding this link can help

synthesize or evenmeta-analyse results across alreadypublished studies that have used the

MLM and/or NPMMwith similar dependent variables and covariates.Without the linkages

established in this paper, there would be no way to formally compare empirical results

across methods, as is often desired (e.g., Bergman, 2015; Sterba & Bauer, 2014).

The purpose of this paper is to fill this gap by enumerating the relationships between

the NPMM and MLM useful for indirectly interpreting the NPMM and, moreover, to
highlight the practical importance of understanding these relationships. In doing so, we

hope to facilitate the use of the NPMM as a non-parametric approximation of the MLM in

practice. We first consider a series of NPMMs of increasing complexity. For each, we (a)

define the corresponding MLM and (b) provide formulas underlying how parameters of

eachMLMare indirectly approximated.Webegin by relating nullNPMMparameters to the

intraclass correlation (ICC) from a random-intercept-only MLM; subsequently, we discuss

these relationships for MLM fixed effects, MLM random slope variances, and also non-

standard features not previously known to be approximated by theNPMM – namely,MLM
heteroscedastic residual variances at level 1 and level 2. To ground these analytic

developments, we contrast direct and indirect interpretations of latent classes, employ

simulated graphical illustrations, and provide an empirical example involving predicting

mathematics achievement for students nested within schools. In our discussion

(Section 8), we consider additional novel uses for the indirect interpretation of the

NPMM. Mplus (Muth�en &Muth�en, 1998–2015) syntax to implement the NPMM and an R

function to implement indirect approximation calculations are provided in our

Appendix S1.
Regarding our scope, note that subsequent research can use our analytic formulas to

investigate via simulation the degree of correspondence between MLM parameters and

their NPMM approximations under different design conditions. Though we provide a

single-sample empirical illustration, a full-scale simulation, as has been done for other

mixtures (e.g., Brame et al., 2006;Muth�en&Asparouhov, 2008; Sterba&Bauer, 2014),4 is

beyond our scope here.

Before continuing, it is important to note theways inwhich our analytic developments

build on and differ from those provided for other non-parametric mixtures with classes
only at level 2 (Vermunt & VanDijk, 2001). First, the additional presence of level-1 classes

in the NPMM not only changes computational aspects of these analytic relationships (see

Sections 2 and 3), but also introduces new features (see Sections 4 and 5). Second,

previous work has not related the variety of possible NPMM specifications each to

particular MLMs, nor focused on approximating the ICC. Third, we show steps to derive

each indirect approximation formula. This will allow our analytic approach to be

generalized to non-parametric versions of othermultilevelmixtures (e.g.,multilevel latent

class analysis) and to be used to clarify indirect relationships in other contexts.

4 In general, the NPMM would be expected to achieve a closer approximation of first moments and second
centralmoments ofMLM’s randomeffects distributionwith greater numbers of classes. Also note that theNPMM
can fit aspects of the data that MLM cannot (i.e., higher-order moments). See, for example, Bauer and Curran
(2003).
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2. Relationship of the NPMM to the random-intercept-only MLM and ICC

To begin, we consider a null NPMM. In this model, there are no covariates; rather, the
distribution of the outcome variable, yij, is allowed to differ across latent classes at level 1

and level 2. Let i denote a level-1 unit, or observation within cluster (i = 1, . . ., Nj), and j

denote a level-2 unit or cluster (j = 1, . . ., J ). Latent class membership at level 1 and level

2 is denoted cij and dj, respectively, with particular level-1 classes denoted by k (k = 1,

. . ., K) and level-2 classes by h (h = 1, . . ., H).5 For instance, suppose we were analysing

scores on a mathematics achievement test for students (level-1 units) nested within

schools (level-2 units). For the distribution of maths scores, we may specify a model with

multiple school-level latent classes (e.g., level-2 classes of schools with primarily high-
achieving students vs. level-2 classes of schools with primarily low-achieving students)

and, within each school-level class, multiple student-level latent classes (e.g., level-1

classes of high-achieving students vs. low-achieving students). More formally, this null

NPMM is specified in equation (1) in Table 16 as yijjcij ¼ k;dj ¼ h ¼ ckh
0 þ eij. In

equation (1), the outcome variable yij, where cij = k and dj = h, is modelled by a kh

class-combination intercept, ckh0 , and residual, eij. The latter is assumed normally

distributed with class-combination-specific7 variance hkh, that is, eij ~ N(0, hkh). Thus,
the ckh0 and hkh parameters are specific to a particular combination of level-1 class and
level-2 class.

There are three types of probabilities important to the NPMM. The marginal

probability of level-2 class membership, pðhj ¼ dÞ ¼ pdh, represents the probability of a

randomly selected observation belonging to level-2 class h. It ismodelled by amultinomial

regression, pðdj ¼ hÞ ¼ pdh ¼ expð-hÞ=PH
h¼1 expð-hÞ; with multinomial intercept ϖh

fixed at 0 in class H for identification. Additionally, the conditional probability of level-1

class membership given level-2 class membership, pðcij ¼ kjhj ¼ dÞ ¼ pkjh;represents
the probability of belonging to level-1 class k for a randomly selected observation

within level-2 class h. It is modelled by another multinomial regression,

pðcij ¼ kjdj ¼ hÞ ¼ pkjh ¼ expðxk þ dkhÞ=PK
k¼1 expðxk þ dkhÞ; with multinomial inter-

cept xk and slope (k on h) dkh. For identification, xK = dKh = dkH = 0. Finally, the kh

class-combination probability pkh represents the joint probability of a randomly selected

observation belonging to level-1 classk and level-2 classh.This is computed as theproduct

of pdh and pk|h.
Under a direct interpretation of equation (1), one could consider intercept and

residual variance differences between classes to represent substantively meaningful

differences between distinct subpopulations. For example, average maths achieve-

ment scores may differ across distinct school-level (i.e., level-2) classes, and we may

be particularly interested in examining membership in kh class combinations such as

a high-achieving student-level (i.e., level-1) class within a low-performing school-level

class, or a low-achieving student-level class within a high-performing school-level

class.

5 Though selecting K and H is not our focus, we revisit this topic later in the context of an empirical example.
6 Equations (1)–(14) are contained in Table 1, and equations (15) and (16) in Table 2.
7 In empirical research, it is common for some or all class-combination residual variances to be constrained equal
across class combination, that is hkh = h, for estimation stability (for discussion, see McLachlan & Peel, 2000).
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An indirect interpretation of equation (1), however, could consider this NPMM a

discrete approximation of a corresponding MLM. For example, rather than the school-

level and student-level latent classes representing distinct subpopulations, they may be

approximating continuous distributions of deviations in maths scores at each level. To

illustrate, we begin by defining the corresponding MLM in equation (2), the random-

intercept-only (null) MLM. Specifically, in equation (2) we have yij = c00 + u0j + eij,

where outcome yij ismodelled by amean intercept, c00, cluster-specific deviation,u0j ~ N

(0, s00), and level-1 residual, eij ~ N(0, r2). In contrast to the NPMM, all variance (within-

cluster and between-cluster) is modelled by continuously distributed residuals, rather

than through discrete latent class variation.

Researchers fitting MLMs typically use this null MLM exclusively to calculate and

interpret the ICC (e.g., Snijders & Bosker, 2012), which involves partitioning outcome

variance into within-cluster (r2) and between-cluster (s00) components. Specifically, the

ICC is the proportion of variance that is between clusters:

ICC ¼ s00
s00 þ r2

: ð17Þ

Because the ICC is typically the only quantity of interpretive interest from the nullMLM, to

mathematically relate the null NPMM and null MLM – thus aiding in an indirect

interpretation of NPMM – we first will focus on how the ICC would be computed from

NPMM parameters.

Table 2. Matrix specification of corresponding general NPMM (equation 15) and MLM (equa-

tion 16)

MLM general specification NPMM general specification

yij ¼ x0
ijcþw0

ijuj þ v0
ijeij

uj ~ N(0, T) (16)

eij ~ N(0, Σ)

where:

xij vector of 1 and all L1 or L2 covariates

with fixed components

c vector of corresponding fixed components

vij vector of 1 and L1 or L2 covariates

affecting L1 residuals

eij vector of L1 random effects modelling

L1 heteroscedasticity

Σ covariance matrix of eij
wij vector of 1 and all covariates with

random components

uj vector of corresponding L2 random effects

T covariance matrix of uj

Φ submatrix of T containing covariances

of random effects modelling L2

heteroscedasticity (see equation 37)

wj submatrix of wij containing 1 and L2

covariates affecting L2 residuals (see

equation 37)

yijjcij ¼k;dj ¼h ¼ z0ijc
kh þ eij

eij �Nð0; hkhÞ (15)

p(dj = h) = pdh

p(cij = k | dj = h) = pk|h

where:

zij vector containing 1 and all L1 and L2

covariates

ckh vector of coefficients for
class combination kh

hkh residual variance
for class combination kh

p•h and pk|h: see Table 1

Notes. L1 = level-1; L2 = level-2.
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Preliminarily, it is important to considerwhyonewouldwant to compute the ICC from

NPMM parameters. In an MLM context, researchers typically compute the ICC using

equation (17) to determine if their degree of nesting is great enough to necessitate fitting

MLMs and, if so, report their non-trivial ICC as a rationale for using the MLM. In an NPMM
context, no suchdependencymeasure currently exists that uses parameters of a fitted null

NPMM model, and consequently there is often no rationale given for the necessity of

fitting multilevel data with an NPMM as opposed to, say, fitting a single-level latent class

regression model (see Park & Yu, 2015). Having such a measure of ICC for the NPMM

would allow researchers to understand the degree of nesting in a familiar correlation

metric, without having to fit a second model (i.e., a null MLM).

In MLMs, calculation of the ICC is straightforward. In NPMMs, however, there is no

explicit (i.e., directly estimated) within-cluster or between-cluster variance component.
Therefore, we must first partition variance analytically in the NPMM to obtain these

quantities, and then use them in constructing the implied ICC. Because all clusters vary

discretely in theNPMM (i.e., by level-2 class), partitioning variance intowithin-cluster and

between-cluster components amounts to partitioning variance into within level-2 class

and between level-2 class components, respectively. Fig 1 illustrates the concept of

partitioning within-cluster and between-cluster variance in a null NPMM. In this figure,

both panels depict a mixture of four kh class-combination densities generated from a null

NPMM with two level-1 classes (K = 2) and two level-2 classes (H = 2).
As shown in Fig 1a, to examine within-cluster variance, we examine how

parameters vary by level-1 class k within level-2 class h. Specifically, in Fig 1a, each

vertical line represents a kh class-combination intercept, ckh0 . Comparing the two

leftmost vertical lines (denoted c110 and c210 , respectively), we can see that there is

class-combination intercept variance within level-2 class 1 (i.e., the intercepts c110 and

c210 , both belonging to h = 1, differ). Assessing within level-2 class variance in class-

combination intercepts (and/or residuals) parallels assessing within-cluster variance in

MLM. Though ckh0 is specific to class combination kh, we can marginalize across k

within h (denoted Ek|h( ) where E represents expectation). We thus obtain marginal

level-2 class parameters, denoted with a dh superscript: Ekjhðckh0 Þ ¼ c·h0 . To examine

between-cluster variance, we examine how marginal level-2 class parameters vary by

h, that is, between level-2 classes, as shown in Fig 1b. There, each vertical line

represents a marginal level-2 class intercept, c·h0 . Comparing the two vertical lines

(denoted c·10 and c·20 ), we can see how there is marginal level-2 class intercept variance

between level-2 classes. Assessing this between level-2 class variance in marginal level-

2 class intercepts parallels assessing between-cluster variance in MLMs.
With this background, we proceed to first calculate within level-2 class variance from

the null NPMM. Because we are relating it to r2 in the MLM, it’s termed an implied r2,

denoted r2
NP. Specifically, we take the variance of the intercepts and residuals from

equation (1) across level-1 classes within each level-2 class, denoted vark|h( ), and pool

across level-2 classes, denoted Eh ( ), to obtain an overall variance,

r2
NP ¼ Eh½varkjhðckh0 þ eijÞ�

¼ Eh½Ekjh½ðckh0 � c·h0 Þ2 þ hkh��: ð18Þ

The population expression in equation (18) can be converted to a sample estimate by

replacing expectations with weighted sums and replacing parameters with correspond-

ing estimates:
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r̂2
NP ¼

XH
h¼1

p̂·h
XK
k¼1

p̂kjhððĉkh0 � ĉ·h0 Þ2 þ ĥkhÞ

¼
XH
h¼1

XK
k¼1

p̂khððĉkh0 � ĉ·h0 Þ2 þ ĥkhÞ:
ð19Þ

We now calculate the between level-2 class variance from the null NPMM, which we
term the implied s00, denoted s00(NP). To do so, we take the variance of marginal level-2

class intercepts between level-2 classes,

s00ðNPÞ ¼ varhðEkjh½ckh0 �Þ ¼ varhðc·h0 Þ ¼ Eh½ðc·h0 Þ2� � Eh½c·h0 �2: ð20Þ

This population expression also can be converted to a sample estimate,

Figure 1. Conceptualizing within-cluster and between-cluster variance in the null NPMM

(equation 1) through weighted within and between level-2 class intercept differences. (a)

Comparing class-combination intercepts within level-2 class to assess within-cluster variance. (b)

Comparing marginal level-2 class intercepts between level-2 classes to assess between-cluster

variance.Notes. These plots show the kernel density of data generated (in SAS 9.4; SAS Institute Inc.,

Cary, NC, USA) from the null NPMM in equation (1). There are two level-1 classes (K = 2) and two

level-2 classes (H = 2), making four kh class combinations. Each plot is a mixture of four normal

densities; each density corresponds to a kh class combination. In (a), each vertical line represents a

class-combination intercept, ckh0 . In (b), each vertical line represents a marginal level-2 class

intercept, c·h0 . By comparing these two plots, we can see conceptually how class-combination

parameters (here intercepts, but in other contexts also/instead level-1 class probabilities) can vary

within level-2 classes (by level-1 class). We can also see how marginal level-2 class parameters can

vary between level-2 classes. Comparing parameters across level-1 classes within level-2 class

parallels assessing within-cluster variance in a fitted MLM; comparing parameters between level-2

classes parallels assessing between-cluster variance in a fitted MLM.
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ŝ00ðNPÞ ¼ varh
XK
k¼1

p̂kjhĉkh0

 !
¼
XH
h¼1

p̂·hðĉ·h0 Þ2 �
XH
h¼1

p̂·hĉ·h0

 !2

: ð21Þ

Using r2
NP and s00(NP) from the NPMM, we then compute the implied ICC:8

ICCNP ¼ s00ðNPÞ
s00ðNPÞ þ r2

NP

: ð22Þ

With these implied variance components now enumerated for the NPMM, we can

better understand how NPMM parameters relate to the degree of nesting, that is, the
magnitude of the ICC if an MLM were fitted. This can aid researchers in indirectly

interpreting classes from a null NPMM. Specifically, examining equation (20), we see that

greater spread ofmarginal level-2 class intercepts inNPMM implies larger between-cluster

variance in a fitted MLM (increasing ICC). In other words, with more level-2 class

separation, there ismore distinction between clusters and, thus, greater effects of nesting.

This is illustrated by comparing Fig 2a,b. Furthermore, examining equation (18), we see

that smaller kh class-combination residual variance in NPMM implies smaller within-

cluster variance in a fittedMLM (increasing ICC). This is illustrated by comparing Fig 2a,c.
Also, from equation (18)we see that less spread of intercepts across level-1 classes within

level-2 class in theNPMM implies smallerwithin-cluster variance inMLM (increasing ICC).

This indicates less distinction across level-1 classes within level-2 class and, thus, less

overall variability within clusters. This pattern is illustrated by comparing Fig 2a,d.9

In sum, in addition to directly interpreting kh class-combination parameter differences

in the null NPMM, researchers can better understand how the NPMM accounts for

nestedness by indirectly interpreting these parameters in relation to the familiar ICC from

the MLM. That is, it is now possible for researchers to simultaneously consider two
options: that nesting is driven by some continuous distribution of intercepts across

clusters, or that nesting is driven by patterns of discrete class differences. We will revisit

both in the empirical example in Section 7.

3. Relationship of NPMM to random slope MLM

Suppose now that a researcher is interested in fitting a more complex NPMM, involving a

single level-1 covariate, xij, whose effect on yij is allowed to differ across level-2 classes, as

in equation (5).10 In equation (5), c·h1 denotes the level-2 class h slope of xij; this slope

does not vary across kwithin h. In equation (5), the intercept ckh0 is again allowed to differ

across all kh class combinations.

8Note that each term in equation (22) is a variance and is thus bounded by 0. The implied ICC is thus also
bounded by 0.
9 In the Fig 2 demonstration, between level-2 class differences are driven by intercepts that vary freely across
class combination. For simplicity, generating kh class-combination probabilities are equal. Alternatively, even if
parameters (e.g., intercepts) were equal across h for all k (i.e., c110 ¼ c120 and c210 ¼ c220 ), between level-2 class
differences could still be driven by level-1 class proportions varying by level-2 class. Similar ICCpatterns could be
found.
10 Covariates can also/instead predict classmembership (e.g., Muth�en&Asparouhov, 2009; Vermunt, 2003), but
we do not include this here because our focus is on non-parametricmultilevelmixture regressionmodels, where
covariates predict outcomes within class.
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From a direct interpretation of classes, the marginal level-2 class slopes (c·h1 ) could be

interpreted as substantivelymeaningful slopes corresponding to different subpopulations

of clusters. For example, suppose the number of hours students spend studying at home

(xij) has a strong effect onmaths achievement in one school-level class but aweak effect in
another school-level class, perhaps because these school-level classes differ in how

effectively course material is taught in the classroom.

Alternatively, we can indirectly interpret these slopes as approximating an underlying

continuous distribution of slopes across clusters. We delineate the indirect interpretation

by first defining the MLM corresponding to the NPMM in equation (5) – namely, the

random slope MLM in equation (6). In equation (6), there are normally distributed

randomeffects at level-2 for the intercept,u0j ~ N(0, s00), and slopeof xij,u1j ~ N(0, s11),
which are allowed to covary (s01). This yields a 2 9 2covariancematrix of randomeffects,
T. There is also a fixed component for the slope, denoted c10, and intercept, denoted c00.
Let c denote the vector of fixed effects. Here, c0 = [c00 c10]. Next, to aid in an indirect

interpretation, we compute the implied c and implied T from equation (5) NPMM

parameters.

To approximate c using NPMM parameters, we first define ckh as the vector of all

coefficients in the NPMM and take its expectation across k and h:

cNP ¼ Eh½Ekjh½ckh�� ¼ c··: ð23Þ

The corresponding sample estimate of equation (23) is

ĉNP ¼
XH
h¼1

XK
k¼1

p̂khĉkh ¼ ĉ··: ð24Þ

To approximate T using NPMM parameters, we first define c•h as a vector of marginal

level-2 class coefficients in theNPMMwith implied random effects. Here, c·h
0 ¼ ½c·h0 c·h1 �.

Because the intercept (ckh0 ) is allowed to differ across all kh in equation (5), the marginal

level-2 class h intercept, c·h0 , is obtained as Ekjh½ckh0 � ¼ c·h0 . Because the slope of xij differs
only across h in equation (5), the marginal level-2 class h slope c·h1 is directly estimated.11

We can then take the variance of c•h across level-2 classes to obtain the implied T,
approximated using NPMM parameters:

TNP ¼ varhðc·hÞ ¼ Eh½c·hc·h0 � � Eh½c·h�Eh½c·h0 �: ð25Þ

Expanding this expression for our example yields a 2 9 2 implied T consisting of the
implied intercept variance (as in equation 20), implied slope variance, and implied

intercept–slope covariance:

TNP ¼ Eh½ðc·h0 Þ2� � Eh½c·h0 �2
Eh½c·h0 c·h1 � � Eh½c·h0 �Eh½c·h1 � Eh½ðc·h1 Þ2� � Eh½c·h1 �2
� �

: ð26Þ

The matrix expression in equation (25) would apply generally, that is, to any number of

level-1 covariates whose effects in c•h differ across level-2 classes. The corresponding

sample estimate of equation (25) is

11 If the slope of xij does vary across kh, it would be computed as c·h1 ¼ Ekjh½ckh1 �, as done later.
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(a) versus (b): Increased marginal level-2 class intercept
separation in NPMM increases ICC in fitted MLM
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Figure 2. Relationship between NPMM parameters and the ICC from a fitted MLM: generating

model = null NPMM (equation 1) and fitted model = null MLM (equation 2). (a) versus (b)

Increasedmarginal level-2 class intercept separation inNPMM increases ICC infittedMLM. (a) versus

(c) Decreased class-combination residual variance in NPMM increases ICC in fitted MLM. (a) versus

(d) Decreased class-combination intercept separation within level-2 classes in NPMM increases ICC

in fitted MLM. Notes. Plots show kernel densities of data generated from a K = 2 (level-1 classes),

H = 2 (level-2 classes) null NPMM and fitted with a random-intercept-only MLM. For illustrations in

Figures 2–5, data were generated in SAS 9.4 andMLM estimates were computed using Proc MIXED.

Note that the same pattern of results would hold with smaller ICC values; the conditions here were

chosen for clarity of graphical illustration.
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T̂NP ¼ varhðĉ·hÞ ¼
XH
h¼1

p̂·hĉ·hĉ·h
0 �

XH
h¼1

p̂·hĉ·h
 ! XH

h¼1

p̂·hĉ·h
0

 !
: ð27Þ

Akey result fromequations (25) to (27) is that the implied randomeffect variance from

the NPMM will be non-zero only when there is variance in the marginal level-2 class

parameters. This is illustrated in Fig 3a. On the other hand, if the marginal level-2 class

parameters are equal, the implied random effect variancewill be zero. This is illustrated in

Fig 3b.

In the context of fitting an NPMM, if marginal level-2 class parameters are explicitly
constrained equal, this yields an approximation of a fixed slope, as shown in

equations (3) and (4). In the discussion in Section 8, we consider the potential for

utilizing this knowledge in significance testing of implied random effect variances using

NPMM parameters.

4. Relationship of NPMM to MLM with heteroscedasticity of residuals at

level 1

Suppose now that a researcher is interested infitting anNPMMwhere the effect of a level-1

covariate, xij, is allowed to vary by level-1 classwithin level-2 class, as in equation (7). That
is, in the equation (7) NPMM, the slope of xij is allowed to vary not only across h (as in

equation 5), but also across k within each h. The slope of xij in class combination kh is

denoted ckh1 .

From a direct interpretation standpoint, we could consider xij slope variation by

level-1 class within level-2 class to be substantively meaningful. For instance, within

the school-level class where the number of hours spent studying (xij) strongly

affects maths achievement, the effect of studying may still vary across student-level

classes (perhaps because student-level classes differ in ability levels and test
anxiety).

Alternatively, we could consider an indirect interpretation for this xij slope

variation within level-2 class. However, no previous sources have addressed precisely

what this slope variation in the NPMM would be approximating in MLM. Here we

show that, under an indirect interpretation, slope variation within level-2 class in the

NPMM approximates heteroscedastic level-1 residual variance in MLM, in which

MLM residuals (eij) depend linearly on xij. To explain this, we start by defining the

MLM corresponding to the NPMM in equation (7). This corresponding MLM is
provided in equation (8), where eij = e0ij + e1ij xij (e.g., Goldstein, 2011; Snijders &

Berkhof, 2007). This non-standard MLM specification is conceptually equivalent to

having a random effect of xij at level 1, meaning that the effect of xij varies across

level-1 units (unlike a conventional random effect that varies across clusters).

The equation (8) MLM12 where residuals depend linearly on xij yields the

following quadratic residual variance expression (Goldstein, 2011; Snijders & Bosker,

2012):

12Note that residuals can also depend linearly on a covariate in single-level contexts. Thus, the approximation
outlined in this section is also relevant for relating single-level regressionmixture models to conventional single-
level regression models with residual heteroscedasticity.
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r2
ij ¼ varijðe0ij þ e1ijxijÞ ¼ r2

0 þ x2ijr
2
1 þ 2xijr0;1: ð28Þ

Variances r2
0 and r2

1 and covariance r0,1 are defined in equation (8). For

instance, this MLM allowing for level-1 heteroscedasticity can be useful when

within-cluster variability in maths achievement is expected to be smaller for
students who spend moderate hours studying, but larger for students who spend many

or few hours studying. Within cluster, achievement can be highly variable for students

who study intensively (some perform well whereas others perform poorly due to test

anxiety) or study infrequently (some perform poorly whereas others performwell due to

high ability). Taken together, equation (28) clarifies that the residual variance in the

equation (8) MLM is heteroscedastic: r2
ij is specific to the xij score for observation i in

cluster j.

To further clarify how the equation (7) NPMM indirectly approximates the MLM’s
level-1 heteroscedasticity in equation (28), we compute the corresponding quadratic

variance expression with NPMM parameters. Specifically, we take the variance of

yijjcij ¼ k;dj ¼ h across level-1 classes within level-2 class, conditional on xij, and pool across

level-2 classes:
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(b)
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Figure 3. Relationship between NPMM parameters and the random slope from a fitted MLM. (a)

Implied random slope and (b) implied fixed slope. Notes. Both plots show predicted scores

(ŷijjxij;uj) in a fitted MLM. Each line represents the regression line for a single cluster. Data were

generated from aK = 4,H = 4NPMMwith a single cluster-mean-centred level-1 covariate. Analyses

in (a) are of data generated from an NPMMwith varying marginal level-2 class slopes of xij, whereas

analyses in (b) are of data generated from anNPMMwith constantmarginal level-2 class slopes of xij.

As such, the data for (a) are consistent with a random slope in a fitted MLM and the data for (b) are

consistent with a fixed slope in a fitted MLM.
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r2
ijðNPÞ ¼ Eh½varkjhðckh0 þ ckh1 xij þ eijÞ�

¼ Eh½Ekjh½ðckh0 � c·h0 Þ2 þ x2ijðckh1 � c·h1 Þ2 þ 2xijðckh0 � c ·h0 Þðckh1 � c ·h1 Þ þ hkh��:
ð29Þ

The sample estimate of equation (29) is

r̂2
ijðNPÞ ¼

XH
h¼1

XK
k¼1

p̂khððĉkh0 � ĉ ·h0 Þ2 þ x2ijðĉkh1 � ĉ ·h1 Þ2 þ 2xijðĉkh0 � ĉ ·h0 Þðĉkh1 � ĉ ·h1 Þ þ ĥkhÞ:

ð30Þ
Comparing equation (29) to (28), the expectation of ðckh0 � c ·h0 Þ2 þ hkh approximates

r2
0, the expectation of ðckh1 � c ·h1 Þ2 approximates r2

1, and the expectation of

ðckh0 � c ·h0 Þðckh1 � c ·h1 Þ approximates r0,1.

More generally, with q covariates affecting level-1 residuals, the MLM level-1 residual

variance in equation (28) is expressed as

r2
ij ¼ v0

ijRvij ð31Þ

where the vector vij contains 1 and q covariates affecting level-1 residuals and Σ is a

(q + 1) 9 (q + 1) covariance matrix of level-1 random effects used in modelling r2
ij. The

corresponding expression implied by the NPMM generalizes to

r2
ijðNPÞ ¼ Eh½varkjhðv0

ijt
kh þ eijÞ�

¼ v0
ij

�
Eh½Ekjh½ðtkh � t·hÞðtkh � t·hÞ0 þ ahkha0���vij

¼ v0
ijRNPvij;

ð32Þ

where a ¼ vij

�
v0
ijvij

��1
and υkh is the (q + 1)91 subvector of ckh containing coefficients

for vij. In the sample, this yields

r̂2
ijðNPÞ ¼ v0

ij

XH
h¼1

XK
k¼1

p̂khððt̂kh � t̂·hÞðt̂kh � t̂·hÞ0 þ aĥkha0Þ
 !

vij

¼ v0
ijR̂NPvij:

ð33Þ

From equations (29) and (30), a key result is evident: if there is no slope variation

across level-1 class within level-2 class (e.g., ckh1 ¼ c·h1 for all h, as in equation 5), the

linear and quadratic terms drop out. All that remains is a constant, implied
homoscedastic residual variance, given by equation (19). This point is illustrated in

Fig 4b in which, under these conditions, the variance of residuals êij from a fitted MLM

is shown to be homoscedastic – constant across xij. Fig 4a depicts the alternative

situation: when level-1 class slopes vary within level-2 class (ckh1 6¼ c·h1 for some h and

k) the variance of residuals êij from a fitted MLM is heteroscedastic – greater at the

extremes of xij.

In sum, in NPMM, slope differences by level-1 class within level-2 class afford not

only a direct interpretation, but also an indirect interpretation in terms of accommo-
dating level-1 heteroscedasticity in MLM. Given that the latter MLM specification is
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underused, unfamiliar (Goldstein, 2011; Snijders & Bosker, 2012) and, moreover,

unavailable in some MLM software, an indirect interpretation of NPMM can be used to

highlight or investigate level-1 heteroscedasticity.

5. Relationship of NPMM to MLM with heteroscedasticity of residuals at

level-2

Nowsuppose a researcher is interested in fitting amore complexNPMM that also includes

a level-2 covariate, wj, such as student–teacher ratio. If we fit the NPMM in equation (9)

where the slope ofwjdoes not vary across level-2or level-1 classes (c··2 ), the corresponding
MLM is defined as having a fixed slope ofwj, as shown in equation (10). Suppose instead
we fit the NPMM in equation (11) where the slope of wj (i.e., c·h2 ) varies across level-2

classes.

From a direct interpretation standpoint, one could consider variance in the marginal

level-2 class slope ofwjbetween level-2 classes in equation (11) to represent substantively
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Figure 4. Relationship between NPMM parameters and heteroscedasticity of residuals at level-1

in MLM. (a) Level-1 heteroscedasticity in fitted MLM and (b) Level-1 homoscedasticity in fitted

MLM. Notes. Both plots show estimated level-1 residuals from a fitted MLM, êij, plotted by xij.

Data were generated from a K = 4, H = 4 NPMM with a single group-mean-centred level-1

covariate. Analyses in (a) are of data generated from an NPMM with varying slopes across level-

1 class within level-2 class, while analyses in (b) are of data generated from an NPMM with

constant slopes across level-1 class within level-2 class. As such, the data for (a) are consistent

with level-1 heteroscedasticity in a fitted MLM and the data for (b) are consistent with level-1

homoscedasticity in a fitted MLM.
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meaningful slope differences between cluster-level subpopulations. For example,

perhaps the effect of student-teacher ratio (wj) on maths achievement is stronger for

some school-level classes (e.g., thosewithmore focus on class participation) compared to

other school-level classes.
If we instead desired an indirect interpretation of equation (11), previous sources

have not addressed what the wj slope variation across level-2 class in the NPMM

would be approximating in the MLM. Under an indirect interpretation, wj slope

variation across level-2 classes in the NPMM approximates heteroscedastic level-2

residual variance in the MLM, where MLM intercept residuals, u0j, depend linearly

on wj. To illustrate this, we first define the MLM corresponding to the NPMM in

equation (11). This non-standard MLM is provided in equation (12), where

u0j = u2j + u3j wj (see Goldstein, 2011; Snijders & Berkhof, 2007). Modelling level-2
heteroscedasticity in this way in the MLM essentially adds a random effect, u3j, for a

level-2 covariate at level 2, only u3j is not interpreted as a conventional random effect,

but as a means to model heteroscedasticity. The equation (12) MLM yields the

following quadratic variance expression for intercept residuals (e.g., Goldstein, 2011;

Snijders & Bosker, 2012):

s00j ¼ varðu2j þ u3jwjÞ ¼ s22 þw2
j s33 þ 2wjs32: ð34Þ

The variances s22 and s33 and covariance s32 were defined in equation (12). Such an

expression can be useful when, for example, larger intercept residual variance is

anticipated for more extreme student–teacher ratios. This heteroscedastic intercept

variance, s00j, is specific to cluster j because it depends on the value of wj.

To further illustrate this indirect interpretation of the equation (11) NPMM, we

compute the quadratic variance expression corresponding to equation (34) that is

implied by NPMM parameters, as shown in the following equation, which computes the
variance of the sum of the marginal level-2 class intercept and slope of conditional onwj:

s00jðNPÞ ¼ varhðc·h0 þ c·h2 wjÞ
¼ Eh½ðc·h0 � c··0 Þ2 þw2

j ðc·h2 � c··2 Þ2 þ 2wjðc·h0 � c··0 Þðc·h2 � c··2 Þ�:
ð35Þ

Comparing equation (35) to (34), the expectation of ðc·h0 � c··0 Þ2 approximates the

variance s22, the expectation of ðc·h2 � c··2 Þ2 approximates the variance s33, and the

expectation of ðc·h0 � c··0 Þðc·h2 � c··2 Þ approximates the covariance s32. The sample

counterpart to equation (35) is:

ŝ00jðNPÞ ¼
XH
h¼1

p̂·hððĉ·h0 � ĉ··0 Þ2 þw2
j ðĉ·h2 � ĉ··2 Þ2 þ 2wjðĉ·h0 � ĉ··0 Þðĉ·h2 � ĉ··2 ÞÞ: ð36Þ

We now consider a more general expression with p level-2 covariates affecting

intercept residuals. The equation (34) MLM expression generalizes to

s00j ¼ w0
jUwj; ð37Þ

where the vectorwj contains 1 and p level-2 covariates affecting intercept residuals andΦ
is a (p + 1) 9 (p + 1) covariance matrix, a submatrix of T, used in modelling the
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heteroscedastic intercept variance, s00j. The corresponding expression implied by the

NPMM generalizes to

s00jðNPÞ ¼ varhðw0
ja
·hÞ

¼ w0
jEh½ða·h � a··Þða·h � a··Þ0�wj

¼ w0
jUNPwj;

ð38Þ

wherea·h is a (p + 1) 9 1 subvector of c•h containingmarginal level-2 coefficients forwj.

In the sample this yields

ŝ00jðNPÞ ¼ w0
j

XH
h¼1

p̂·hðâ·h � â··Þðâ·h � â··Þ0
 !

wj

¼ w0
jÛNPwj:

ð39Þ

From equations (35) and (36) a key result is evident: if there is nomarginal level-2 class

slope variation for level-2 covariates in NPMM (e.g., c·h2 ¼ c··2 for all h, as in equation 9),

the linear and quadratic terms drop out. This leaves the implied homoscedastic intercept

variance expression given by equation (20). This point is illustrated in Fig 5b in which,
under these conditions, the variance of level-2 intercept residuals in a fitted MLM, û0j,

remains constant acrosswj (i.e., homoscedastic). Fig 5a illustrates the opposite situation:

provided c·h2 6¼ c··2 for some h, there is implied heteroscedasticity of level-2 intercept

residuals in a fitted MLM. Thus, an indirect interpretation of NPMM offers the ability to

explore and accommodateMLM level-2 intercept heteroscedasticity – another underused
and unfamiliar MLM specification (Snijders & Bosker, 2012).

6. Relationship of NPMM to general matrix formulation of MLM

In previous sections, we demonstrated specific relationships between particular NPMM

and MLM specifications in isolation. In this section, we integrate these results to (a)

describe a general NPMM expression, (b) define its counterpart MLM, and (c) summarize

how this general NPMM indirectly accommodates any number of covariates and any

combination of implied fixed or random effects and implied homoscedasticity or

heteroscedasticity of level-1 and/or level-2 residuals in MLM.

The general NPMM specification is given in equation (15) in Table 2. Here,

intercepts and both level-1 and level-2 covariate slopes are allowed to freely vary

across all kh class combinations. This general NPMM in equation (15) corresponds

with the MLM specification in equation (16) when vij contains all covariates (i.e.,

vij = zij) and wj contains all level-2 covariates. Specifically, the general equation (15)

NPMM indirectly approximates the following in the corresponding MLM: random
intercept, random slopes for all level-1 covariates (because their c•h vary across h),

level-1 heteroscedasticity for all covariates (because their ckh vary across k within h),

and level-2 heteroscedasticity for all level-2 covariates (because their c•h vary across h).

To summarize how the MLM parameters in equation (16) are indirectly approximated

with general NPMM parameters: c is indirectly approximated by equation (24), T by

equation (27), Σ by equation (33), and Φ by equation (39). An R function for

computing elements of each matrix is provided in our Appendix S1 to aid in indirect

interpretation of the NPMM.
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7. Empirical example

We now present an empirical application implementing the indirect interpretation of

NPMM and, further, demonstrate how this interpretation can provide additional utility

beyond simply implementing either anMLMor a direct interpretation of theNPMM.Using

a data set of students nested within schools from the Trends in International Mathematics

and Science Study (TIMSS;Mullis, Martin, Gonzalez, &Chrostowski, 2004), we investigate
effects of mathematics confidence (MATHCONF, cluster-mean-centred level-1 xij) and

percentage of students receiving free/reduced lunch (PERLUNCH, level-2 wj) on

mathematics exam scores involving data/probability (MATH) for eighth graders.

Confidence should be positively associated withmaths achievement (Pajares &Miller,

1994) as it is thought to enable students to better demonstrate their knowledge. School-

level socioeconomic deprivation should be negatively associatedwithmaths achievement

(Bradley&Corwyn,2002)as it is aproxy fordisadvantages that impede learning (for further

discussion, see Lubinski, 2009). Level-1 residual heteroscedasticity by confidence could
arise if students with high or low confidence levels have more performance variability
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(b)
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Figure 5. Relationship between NPMMparameters and heteroscedasticity of intercept residuals at

level 2 inMLM. (a) Level-2 heteroscedasticity in fittedMLMand (b) Level-2 homoscedasticity in fitted

MLM.Notes.Both plots show estimated level-2 intercept residuals in a fittedMLM, û0j, plotted by the

level-2 covariatewj. Data were generated from an NPMM. Analyses in (a) are of data generated from

anNPMMwith varyingmarginal level-2 class slopes, while analyses in (b) are of data generated from

an NPMM with constant marginal level-2 class slopes. As such, the data for (a) are consistent with

level-2 heteroscedasticity in a fitted MLM and the data for (b) are consistent with level-2

homoscedasticity in a fittedMLM. *Generating models included a single level-2 covariate,wj, which

is slightly different than equations (9) and (11), which also include xij.
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within cluster (perhaps because some optimistic students misjudge their ability and

underprepare whereas some pessimistic students overprepare). Hence, our illustrative

fittedMLMconsists of a random intercept, fixed slopeofMATHCONF, fixed component of

the slope of PERLUNCH, and residual heteroscedasticity at level 1 by MATHCONF and at
level 2byPERLUNCH.OurcorrespondingNPMMismost similar toequation (11)with two

additional constraints for parsimony: class-combination residual variances equal and

conditional probabilities of k given h equal across h, which also ensures an approximated

fixed slopeofMATHCONF.Using twoversionsof theBayesian information criterion (BIC1

with N = J (see Luko�cien _e, Varriale, & Vermunt, 2010) and BIC2 with N = number of

individuals),wecompared thefitofallKandH ranging from2to6 for thisNPMM.BothBICs

preferred K = 2, H = 4 (BIC1 = 78535.37, BIC2 = 78600.44).

7.1. Results

A researcher intending to fit MLMs may first report the ICC obtained from the null MLM

(dICC ¼ :286) to verify that clustering needs to be accounted for; slightly over a quarter of
the total variance in performance is attributable to between-school differences. A

researcher fitting NPMMs no longer needs to resort to also fitting a null MLM to quantify

the degree of nesting, since (utilizing Section 2 equations) they can nowcompute the ICC

from null NPMM parameters with K = 2, H = 4 (dICCNP ¼ :272). Note that the
approximation of the ICC could depend on factors such as sample size. For instance, if

sample size is small and adding classes leads to convergenceproblems even before the BIC

stops improving, the approximation of the ICC may not be as good as for a larger sample

size. Explicitly investigating such quality of approximation with differing numbers of

classes in NPMM is noted as a future direction in the discussion in Section 8.

MLM results from the full model indicated significant (p < .05) fixed effects of

MATHCONF and PERLUNCH in predictingmaths achievement, significant level-1 residual

heteroscedasticity, and non-significant level-2 residual heteroscedasticity. MLM results
correspond to each horizontal black line in Figs 6 and 7. Figs 6 and 7 also show theNPMM

approximation of eachMLMparameter, formodels of varyingK andH (recall that the best

BIC was K = 2, H = 4). Fig 7b shows how NPMM estimates can be interpreted as

indirectly approximating the MLM’s level-1 heteroscedastic residual variance, which

depends on levels of MATHCONF (more extreme values indicating higher residual

variance thanmoremoderate values). Alternatively, from a direct interpretation, here this

implied heteroscedasticity reflects the fact that within each school-level class,

MATHCONF positively predicts MATH in some student-level classes (e.g., k = 1, where
c1h1 ¼ 39:628) but negatively predicts MATH in other student-level classes (e.g., k = 2;

where c2h1 ¼ �15:097). In the latter case,where k = 2, certain studentsmay be adversely

affected by overconfidence.

Consideration of the indirect interpretation of the NPMM offers us several practical

benefits in this empirical setting. If we had purely considered a direct interpretation of the

NPMM, results would suggest a typologically based intervention strategy, such as

interveningwith tutoring inmaths and/or perceptionof skills for low-confidence students

in k = 1 but high-confidence students in k = 2. The indirect interpretation forces
researchers to consider the possibility that the observed student-level latent class slope

differences are, instead, simply indicative of residual heteroscedasticity at level 1 and

encourages researchers to design follow-up studies that would distinguish between these

two generation processes (e.g., by investigating whether distinct etiological processes

underlie k = 1 vs. k = 2). If we had purely considered a conventional homoscedastic

MLM (as would be most typical of applied practice), we would have overlooked the
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presence of level-1 heteroscedasticity and perhaps considered an oversimplified

intervention strategy only targeting low-confidence students for maths tutoring. Using

an indirectly interpreted NPMM as a preliminary exploratory tool in this context could

spur further MLM model-building to account for level-l heteroscedasticity.

Although outside the scope of the current paper, note that Fig 6 shows that

increasing H beyond best BIC can continue to improve the correspondence in level-2

variance components for the MLM (e.g., s22) and the NPMM approximations, as also

found for other mixtures (Sterba et al., 2012). Whereas fewer classes may aid in a
parsimonious, substantive explanation of classes under direct interpretation, future

research can investigate whether more NPMM classes continue to be useful for

indirect approximation.

8. Discussion

Multilevel mixtures are increasingly used in analysing nested data. We focused on one

such model, the non-parametric multilevel regression mixture model. Although the

NPMM has been motivated for use in indirect interpretation of classes, the analytic

relationships between alternative specifications of NPMMs and MLMs had not been

enumerated. The current paper filled this gap by delineating how NPMM parameters

relate to, and can be used to approximate, the (a) ICC in MLMs, (b) implied random

coefficient means and (co)variances in MLMs, and (c) implied heteroscedasticity of

(a)

(b)

Figure 6. Empirical example results for implied fixed effects and implied level-2 heteroscedastic

residual variance from the NPMM. (a) NPMM implied fixed effect estimates, plotted across level-2

class H by level-1 class K. (b) NPMM implied heteroscedastic intercept variance component

estimates (see equation 34), plotted acrossH byK.Note.Best BIC iswhereK = 2,H = 4. Horizontal

line = MLM estimate.
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residuals at level 1 and level 2 in MLMs. Level-1 and level-2 residual heteroscedasticity

is currently underinvestigated in MLMs (Goldstein, 2011; Korendijk, Maas, Moerbeek,

& Van der Heijden, 2008; Snijders & Berkhof, 2007). We showed how the NPMM

offers a novel approach to exploring and modelling phenomena that would

manifest as heteroscedasticity in the MLM. Even if researchers are primarily

interested in directly interpreting NPMM classes, the indirect interpretation can be

(a)

(b)

Figure 7. Empirical example results for implied level-1 heteroscedastic residual variance. (a)

NPMM implied heteroscedastic level-1 residual variance component estimates (see equation 28),

plotted across level-1 class K by level-2 class H. (b) NPMM implied heteroscedastic level-1 residual

variance estimate, plotted across xij (math confidence) by K (for H = 2). Note. Best BIC is where

K = 2, H = 4. Horizontal line = MLM estimate.

Table 3. Modifying the general NPMM (equation 15) with constraints to mirror corresponding

MLM specifications

MLM specification

Corresponding constraint on

the general NPMM in

equation (15)

Fixed intercept All marginal level-2 class

intercepts held equal

c·10 ¼ . . . ¼ c·H0

Fixed slope All marginal level-2 class

slopes of level-1 covariates

held equal

c·1p ¼ . . . ¼ c·Hp

Homoscedasticity

of residuals at level 1

All level-1 slopes held

equal within all level-2 classes

c11p ¼ . . . ¼ cK1
p ; . . .; c1Hp ¼ . . . ¼ cKHp

Homoscedasticity

of residuals at level 2

All marginal level-2 class

slopes of level-2 covariates

held equal

c ·1p ¼ . . . ¼ c·Hp
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considered simultaneously and contrasted with substantively driven explanations of

classes. Next, we provide a practical summary of fitting special cases of NPMM using

model constraints. We then address extensions, software, limitations, and future

directions.

8.1. Constrained special cases of the general NPMM

In previous sections, we used a build-up approach to describe increasingly complex

NPMM specifications, from Tables 1 and 2. More parsimonious special case mixture

models can also be obtained by placing certain constraints on the general NPMM in

equation (15). These constraints are described in Table 3, alongside a listing of the

corresponding MLM specifications, to aid indirect interpretation of the NPMM. The
NPMM can also be constrained to yield other types of mixture models: a single-level

regression mixture when H = 1 and K > 1 (e.g., DeSarbo & Cron, 1988; Wedel &

DeSarbo, 1994) and a non-parametric random coefficient mixture whenK = 1 andH > 1

(e.g., Vermunt & Van Dijk, 2001).

8.2. Software syntax and tools

The Appendix S1 provides Mplus syntax for the general NPMM. It also provides an R
function, npmmApproximation, that reads in Mplus results with any number of xij andwj

and outputs approximation calculations for equations (24), (27), (33), and (39) (implied

fixed effects, random effect (co)variances, and level-1 residual variance components) for a

givenNPMM, or a range of NPMMswith differentK andH. Plots similar to Figs 6 and 7 can

be automatically generated.

8.3. When would using an MLM be preferred to fitting an NPMM?
It is important to consider when an MLM would be preferred to an indirectly interpreted

NPMM. First, pragmatically, an MLM may be preferred with modest sample sizes.

Because the MLM is fully parametric, there tend to be fewer parameters to be estimated

in an MLM, as compared to its counterpart NPMM, in each row of Table 1. Second,

NPMM may also be less useful when a researcher is confident that the distributional

assumptions of the MLM are upheld (e.g., normality of random effects and correct

specification of the random effects distribution); in this case the relaxed distributional

assumptions of NPMM may be less appealing. Lastly, researchers are presently unable to
use an indirectly interpreted NPMMs for multilevel designs in which indirect

approximations of MLM parameters have not yet been analytically developed. For

instance, in the current paper, we did not address the approximation of MLM parameters

in cross-classified, multiple-membership, dynamic group membership, or partial nesting

designs (e.g., Cafri, Hedeker, & Aarons, 2015; Goldstein, 2011; Sterba, 2016). Future

work can derive such approximations to facilitate the use of indirectly interpreted

NPMMs for more complex multilevel specifications.

8.4. When would using an NPMM as a non-parametric approximation be preferred to

fitting an MLM?

Conversely, it is important to consider when an indirectly interpreted NPMM would be

preferred to the more widely used MLM. First, the NPMM can potentially give a more
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accurate representation of random effect variances when the random effects are

markedly non-normal in the population – thus violating distributional assumptions of

the MLM (Asparouhov & Muth�en, 2008; Brame et al., 2006; Wall, Guo, & Amemiya,

2012). Second, the NPMM can be advantageous in terms of estimability and
computation time when yij is discrete, and particularly when between-cluster

variability is anticipated in many slopes (Vermunt, 2004, 2008, 2010). In this situation,

numerical integration is required for fitting an MLM, with one dimension of integration

needed per random effect. Such integration is not necessary for fitting an NPMM.

Third, the NPMM would be preferred for researchers explicitly interested in

considering not only an indirect but also a direct interpretation of classes, since there

are no classes in MLM. Fourth, as mentioned previously, since the NPMM can

approximate non-standard MLM specifications (i.e., heteroscedasticity at level 1 and
level 2), it might be preferred at an exploratory phase of modelling when researchers

have no a priori hypotheses regarding residual variance structure. Fitting an NPMM

may provide justification for exploring residual heteroscedasticity. Note that if, instead,

residual heteroscedasticity is anticipated a priori, it could be parametrically modelled

and tested within an MLM framework using some MLM software packages (e.g.,

MLwiN) but not others (e.g., lme4 in R). Finally, as explained in the next subsection,

NPMM provides an alternative for testing the significance of implied random effect

variances that can avoid limitations of approaches commonly implemented in MLM
software (e.g., z-tests).

8.5. Extension: Testing random effect variances implied by the NPMM

The significance of indirectly approximated random effects, ICC, and heteroscedastic-

ity could be tested using the NPMM by comparing models with and without particular

sets of constraints (using Wald or likelihood ratio tests [LRTs]). Here, it is particularly

intriguing to discuss this approach for testing implied random effect variances using an
NPMM, given the methodological difficulties arising when testing the null hypothesis

that a random effect variance equals 0 using an MLM. Specifically, using the MLM, this

null hypothesis lies on a boundary of the parameter space (0), violating regularity

conditions of conventional LRTs.13 Although alternative testing procedures exist – for

example, adjusted alpha-levels (Fitzmaurice, Laird, & Ware, 2004), unconstrained

variance estimation (Dijkstra, 1992), or modified reference distributions (Stoel, Garre,

Dolan, & van den Wittenboer, 2006) – they have additional drawbacks in generality or

availability (Savalei & Kolenikov, 2008). Using the NPMM, however, we could test the
significance of implied random effect variances using conventional LRT or Wald tests

because 0 does not lie on the boundary of the parameter space. Testing the implied

intercept variance in the NPMM involves testing H0 : c·10 ¼ . . . ¼ c·H0 , where

df = H � 1 (i.e., testing the equality of H marginal level-2 class intercepts). Testing

an implied slope variance in the NPMM involves testing H0 : c·1p ¼ . . . ¼ c·Hp where

df = H � 1. We avoid the boundary issue because each pairwise difference in these

coefficients theoretically could be any value. To illustrate, we tested random slope

variances for the two generated data sets from Fig 3, using Wald tests. As expected, the
test of H0 : c·11 ¼ . . . ¼ c·H1 was significant for Fig 3a (v23 = 13665.76; p < .0001) and

non-significant for Fig 3b (v23 = 0.35; p = .95). Syntax for these tests is in the

13 The asymptotic distribution of the LRT statistic is instead amixture of chi-square distributions (Shapiro, 1985).
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Appendix S1. Future research can further investigate the utility of such testing

procedures.

8.6. Future directions

Several limitations can be noted which serve as future directions. First, future research

could relate to other variations of the NPMM and MLM. For example, cross-level

interactions could be included in both the general MLM and NPMM expressions

(equations 16 and 15). Second, although we distinguished theoretically between direct

and indirect interpretations, it is difficult in practice to determine which function classes

are serving (especially undermodelmisspecification). Future simulations can address this

issue, as has been done for other mixtures (Lubke & Neale, 2006, 2008). Regardless, it is
nowmore feasible for researchers to understand and consider both interpretations of the

NPMM. Throughout this paper, we have discussed the possibility of considering both

simultaneously, as has been suggested in other contexts (Nagin, 2005).

Third, it is important to consider that there are ways to non-parametrically

approximate continua during the model estimation phase (using non-parametric

maximum likelihood estimation [NPMLE]; Skrondal & Rabe-Hesketh, 2004) rather than

during the model specification phase, as in the NPMM. The quality of the indirect

approximation afforded by both NPMLE and the NPMM depends to some degree on the
number of components (i.e., the number of points of support in NPMLE or number of

latent classes inNPMM), though this number is obtained differently in each approach. The

quality of the indirect approximation by NPMLE should be investigated and compared

with the indirect application of the NPMM in futurework. Note, however, that our NPMM

approach has the advantage of also affording a direct interpretation of classes, which can

be substantively compelling.

8.7. Conclusions

With our analytic approach, researchers can understand and visualize how the NPMM

serves as a non-parametric approximation of the MLM. Researchers are now better able to

consider two possibilities: that classes in NPMM represent distinct subpopulations or that

classes can approximate underlying continuous distributions of effects, such as those

modelled in the MLM.
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