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Abstract  Item banks are often created in large-scale research and testing settings 
in the social sciences to predict individuals’ latent trait scores. A common proce-
dure is to fit multiple candidate item response theory (IRT) models to a calibration 
sample and select a single best-fitting IRT model. The parameter estimates from this 
model are then used to obtain trait scores for subsequent respondents. However, this 
model selection procedure ignores model uncertainty stemming from the fact that 
the model ranking in the calibration phase is subject to sampling variability. Conse-
quently, the standard errors of trait scores obtained from subsequent respondents do 
not reflect such uncertainty. Ignoring such sources of uncertainty contributes to the 
current replication crisis in the social sciences. In this article, we propose and dem-
onstrate an alternative procedure to account for model uncertainty in this context—
model averaging of IRT trait scores and their standard errors. We outline the general 
procedure step-by-step and provide software to aid researchers in implementation, 
both for large-scale research settings with item banks and for smaller research set-
tings involving IRT scoring. We then demonstrate the procedure with a simulated 
item-banking illustration, comparing model selection and model averaging within 
sample in terms of predictive coverage. We conclude by discussing ways that model 
averaging and IRT scoring can be used and investigated in future research.
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1  Introduction

Item banks are often created in large-scale research and testing settings in the 
social sciences to predict individuals’ latent trait scores (e.g., mathematics ability 
scores or health expectancy scores), often in conjunction with computer adaptive 
testing (CAT; Edelen et al. 2014; Meijer and Nering 1999). A common procedure 
is to fit multiple candidate item response theory (IRT) models to a calibration 
sample and select a single IRT model by some criterion, such as Bayesian Infor-
mation Criterion (BIC; Schwarz 1978; see Cohen and Cho 2017 for reviews). 
From this best-fitting model, item parameter estimates for each item in the bank 
are obtained. For subsequent respondents (which can be thought of as composing 
a validation sample), item parameter estimates are treated as known and used to 
generate person scores and their standard errors.

Recent advances in item banking have involved accounting for one source of 
uncertainty—sampling variability in item parameter estimates from the calibra-
tion phase (e.g., Sinharay et  al. 2003). However, another source of uncertainty 
has been ignored—model uncertainty. This uncertainty stems from the fact that 
the model ranking in the calibration phase is subject to sampling variability (even 
the “best-fitting” model can vary across samples, Lubke et al. 2017; Preacher and 
Merkle 2012; Sterba and Rights 2017). Conventional standard errors of person 
scores obtained from the validation phase do not reflect model uncertainty. Fur-
thermore, ignoring model uncertainty in such a manner is a contributing factor to 
the current replication crisis in the social sciences (Lubke and Campbell 2016).

An increasingly employed approach to account for model uncertainty is model 
averaging (MA; Burnham and Anderson 2002). In MA, predictions in the valida-
tion sample are computed using a weighted average of quantities taken from all 
models considered during calibration, with the most plausible models given the 
most weight. In a variety of contexts from linear regression to structural equation 
modeling, when there is greater model uncertainty, MA has yielded predicted 
outcomes (ŷ’s) with better predictive coverage than model selection (MS) (Hoet-
ing et al. 1999; Kaplan 2016; Kaplan and Lee 2016). Under little model uncer-
tainty, MS and MA perform similarly.

MA has not been used to compute predicted IRT person scores (𝜃̂’s) in an item-
banking context. Our purpose in this short note is to (a) introduce and describe 
MA for IRT person score predictions, where it has not before been applied, (b) 
provide new software for its implementation, and (c) show the predictive cover-
age of MA and MS person scores using a simulated item-banking illustration. 
Predictive coverage is particularly important for person scores in CAT, because 
a common stopping criterion is the width of the person score prediction interval 
(Bjorner et al. 2007). When such an interval is less accurate, the assessment may 
end at an inappropriate time.

Before continuing, we wish to make note of several caveats. First, we will 
focus on averaging person scores specifically in item-banking contexts. This 
allows us to demonstrate predictive coverage in a validation sample, similar to 
demonstrations done with other types of model averaging (Hoeting et  al. 1999; 
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Kaplan 2016; Kaplan and Lee 2016). However, as we explain further in the dis-
cussion section, the general averaging procedure we will describe here can also 
be used in smaller research settings without item banks or validation samples. 
Second, we note that large research companies often might not select IRT mod-
els and their items based on fit indices (and instead for political or philosophical 
reasons, for instance). Selecting a model in such a way still in essence ignores 
the potential uncertainty of scores had a different model (that might be similarly 
plausible) been chosen, but nonetheless, the specific procedures discussed in 
the current paper will pertain to the use of fit indices in the applications of IRT 
models (e.g., Anderson 1973; Baker and Kim 2004; Bock and Aitkin 1981; de 
Ayala 2009). Finally, among the goals of the current paper we just mentioned, 
we do not include a thorough investigation of the conditions wherein MA and 
MS approaches with IRT person scores perform most differently, nor the extent 
to which MA would perform better than MS. Such an investigation is outside the 
scope of this short note, but is an important future direction.

2 � Model averaging of person scores

We focus on frequentist MA (Hjort and Claeskens 2003), though extensions to Bayes-
ian MA are possible (Hoeting et al. 1999). Suppose that the researcher has K compet-
ing models. In item-banking applications, K will typically consist of a small number 
of commonly applied IRT models, though our approach could be implemented with 
a larger set of models. In the calibration sample, we fit these K candidate models and 
obtain model-specific item parameter estimates and selection criterion values (e.g., 
BIC). In the validation sample, we obtain model-specific person scores from all K 
models by fixing the item parameter estimates to those obtained in the calibration sam-
ple for that model. To ensure scale comparability of person scores across models, we 
rescale scores within model to have the same mean (here, 0) and variance (here, 1) 
across models:

where 𝜃̂r
kj

 is the person score for model k (k = 1,…,K) and person j (j = 1,…,J). An r 

superscript indicates “rescaled.” We rescale person-score standard errors 
proportionally:

(1)𝜃̂r
kj
=

𝜃̂
kj
− Ej(𝜃̂kj)

√
varj(𝜃̂kj)

,

(2)SE(𝜃̂r
kj
) =

SE(𝜃̂
kj
)

√
varj(𝜃̂kj)

.
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Next, we compute model-specific weights (measures of plausibility ranging from 
0 to 1). We use BIC weights (Burnham and Anderson 2002), though other weighting 
approaches could be employed. The K BIC values from the calibration sample are 
used to compute K model-specific weights. The kth model’s weight is

The K weights sum to 1.1 Using the K sets of person scores from the validation sam-
ple and K weights from the calibration sample, we calculate model-averaged person 
scores as

and their standard errors as

In contrast, when using MS, we would simply select the best-fitting model (e.g., 
the one with the lowest BIC) and use the person score and standard error from this 
model alone. This is equivalent to applying our MA approach and giving the best-
fitting model a weight of 1 and all others a weight of 0. Thus, when a single model 
is heavily favored over all other models, such that the MA weight (Eq. 3) for this 
model is essentially 1, MA and MS will yield the same results. When no single 
model is heavily favored, the weights will be distributed across the models and MA 
and MS results will differ (as we demonstrate in our upcoming simulated example). 
Note that, whether using MA or MS, the number of items is the same.

3 � Software implementation

To aid researchers in implementing MA for person scores, we developed an R func-
tion, modelavgIRT, that reads in  and rescales J × K 𝜃̂kj and SE(𝜃̂kj) from the vali-
dation sample and K information criterion values from the calibration sample and 
outputs J 𝜃̂

⋅j and SE(𝜃̂
⋅j) . This function is provided in the appendix. In cases wherein 

there is no validation sample (e.g., small research settings involving IRT scoring), 

(3)wk =

exp
�
−

1

2
BICk

�

∑K

k=1
exp

�
−

1

2
BICk

� .

(4)𝜃̂r
⋅j
=

K∑

k=1

wk𝜃̂
r
kj

(5)SE(𝜃̂r
⋅j
) =

K∑

k=1

wk

√
SE(𝜃̂r

kj
)2 + (𝜃̂r

kj
− 𝜃̂r

⋅j
)2.

1  When computing Eq. 3, software might round all K values summed in the denominator to 0, yielding 
an undefined solution. The software we provide in the Appendix accounts for this by using an equivalent 
mathematical reformulation that is not susceptible to this issue.
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researchers can use the same procedure by simply inputting the J × K 𝜃̂kj and SE(𝜃̂kj) 
for their entire sample. Note that, although R functions exist for MA in linear regres-
sion, they are inapplicable here because they are not designed to average person-
specific quantities across IRT models.

4 � Illustration

We next provide an illustrative comparison of person score predictive coverage using 
MS and MA in a simulated item-banking context. We use simulated data because 
we are assessing coverage regarding latent ability levels, which are unknown with 
empirical data. The generating model is a three-parameter logistic (3-PL) bifactor 
model with a small guessing parameter and two weak secondary dimensions with 
ten items each. More specifically, in the generating model, the probability of item 
response “1” is given by

Here, yji is the item response (0 or 1) for person j and item i. θj is the person score 
for person j (primary dimension) that is generated from a standard normal distribu-
tion and it is the person score of substantive interest in our illustration. θjd is the per-
son score for person j (secondary dimension). Each item loads onto one of the two 
secondary dimensions, d = 1 or 2. The first ten items load on d = 1 and next ten load 
on d = 2. The person scores for the two secondary dimensions are not of substantive 
interest in our illustration. βi is the item location for item i. It is generated from a 
standard normal distribution. αi is the (primary dimension) item discrimination for 
item i. It is generated from a log-normal distribution with μ = 0.08 and σ = 0.3. αid is 
the (secondary dimension) item discrimination for item i and the secondary dimen-
sion d. It is generated as 0.378 for all items, which induces an explained common 
variance (ECV, Reise et al. 2013) for the primary dimension equal to 0.90, imply-
ing very weak secondary dimensions. Finally, ci is the pseudo-guessing parameter 
(lower asymptote) for item i. It is generated as 0.1 (for all items).

As typical of practice, we suppose that substantive interest lies in person scores 
for the primary dimension only (Reise 2012). To reflect realistic practice, none of 
our K = 4 fitted models are completely correct (Preacher and Merkle 2012), though 
all are commonly fit in practice: 1-PL (k = 1), 2-PL (k = 2), 3-PL (k = 3), and 2-PL-
bifactor with two secondary dimensions (k = 4). We use 1000-person calibration and 
validation samples. In the calibration sample, K models were fit using mirt (Chalm-
ers 2012); model weights were w1 = 0.441, w2 = 0.559, w3 < 0.001, and w4 < 0.001 
for 1-PL, 2-PL, 3-PL, and 2-PL-bifactor with two secondary dimensions, respec-
tively. In the validation sample, we obtained model-specific person scores (for the 
primary dimension) through expected a posteriori (EAP) scoring by fixing item 

(6)P(yji = 1|�j, �jd) = ci +
1 − ci

1 + exp[−(�i�j + �id�jd − �i)]
.
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parameter estimates to those obtained in calibration (Bock and Aitkin 1981). MA 
person scores and standard errors in the validation sample were obtained using ear-
lier-described procedures. MS person scores and standard errors in the validation 
sample were obtained from the best-fitting 2-PL (having the lowest BIC in the cali-
bration sample) and were similarly rescaled, as shown in Eqs. 1 and 2.

Person-specific 90% prediction intervals in the validation sample are computed as 
𝜃̂r
⋅j
± 1.645 × SE(𝜃̂r

⋅j
) for MA and 𝜃̂r

k�j
± 1.645 × SE(𝜃̂r

k�j
) for MS, where k′ denotes the 

best-fitting model. Here, predictive coverage is defined as the percentage of persons 
in the single validation sample whose true ability, θj

r, falls within their prediction 
interval. However, nominal coverage is defined on average across repeated samples, 
so coverage in a single validation sample would not be expected to match the nomi-
nal rate exactly, even if on average across samples coverage is nominal. Hence, here 
we are most interested in the within-sample comparison of coverage from MA and 
MS. Predictive coverage was 85.6% for MS and 87.2% for MA. Lower coverage for 
MS over MA can be due to the former ignoring model uncertainty (Kaplan 2016). 
Mirroring previous research in other modeling contexts, MA’s coverage was mod-
estly closer to nominal. With even greater model uncertainty, benefits of MA over 
MS can be more pronounced.

5 � Discussion

In this paper, we demonstrated how person scores computed with item banks can 
account for model uncertainty using MA and we provided user-friendly software 
for implementation. Employing model-averaged person scores with model-averaged 
standard errors in health and educational applications involving item banks can help 
prevent model uncertainty from contributing to the current replication crisis in these 
fields (Lubke and Campbell 2016).

Because of our restricted focus in this short note, there are several limitations that 
serve as future directions. First, we focused on assessing model-level fit via infor-
mation criteria, but in practice, researchers might also assess item-level fit (Ames 
and Penfield 2015); for instance, one might remove items with low discrimination. 
In this context, one can still use either MS or MA, but the process would need to 
be adapted to account for the removal of items. Second, mirroring work done in 
other MA contexts, we focused on assessing predictive coverage for MS vs. MA, 
noting that a predominant issue with MS is that standard errors do not reflect model 
uncertainty and thus can be too small, yielding coverage that is too low. Nonethe-
less, in practice, researchers would also be interested in the point estimates of the 
scores themselves. In our example, though MA provided better coverage than MS, 
the point estimates of the person scores were highly correlated (0.99). Future work 
can determine whether or not MA and MS point estimates of scores are typically 
similar. We suspect, for instance, that in CAT settings wherein person score interval 
length is a stopping criterion, MS scores and MA scores would likely be more dis-
similar, given that, with MS, the assessment would end too soon (i.e., before the 
desired level of precision). More broadly speaking, as a final future direction, future 
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work should determine (a) the conditions wherein MA and MS would be most dis-
similar in terms of either interval and/or point prediction and (b) the extent to which 
MA performs better than MS under varying degrees of model uncertainty. Here, we 
presented an illustrative simulation with a single set of generating conditions; these 
can be expanded in the future to include a variety of such conditions.
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Appendix: modelavgIRT R function

modelavgIRT R function description

This function reads in person scores (e.g., EAP scores) and their standard errors 
from the validation sample, and information criteria values (BIC, AIC) from the 
calibration sample from each of a set of candidate IRT models and outputs model-
averaged person scores and standard errors (see manuscript equations 4 and 5).

modelavgIRT R function input

personscores	� A data set consisting of person scores obtained from each candi-
date model in the validation sample, with rows denoting person and 
columns denoting model

personSEs	� A data set consisting of person score standard errors obtained from 
each candidate model in the validation sample, with rows denoting 
person and columns denoting model

selectionindex	� List of information criteria values (BIC, AIC) for each model, in 
the order of the columns of personscores and personSEs

rescale	� Logical; if set to TRUE (default), prior to averaging, each models’ 
person scores will be rescaled to have mean of 0 and a variance of 
1 and standard errors will be rescaled proportionally

modelavgIRT R function Code

modelavgIRT <- function(personscores,personSEs,selectionindex,rescale=TRUE) {
##rescale personscores to have mean 0 and var 1
#rescale personSEs proportionally
if(rescale==TRUE){
for(i in seq(ncol(personscores))){
personscores[,i] <- (personscores[,i] - mean(personscores[,i]))/

sd(personscores[,i])
personSEs[,i] <- personSEs[,i]/sd(personscores[,i])
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}
}
##compute weights
weights <- c(rep(NA,length(selectionindex)))
for(i in seq(length(selectionindex))){
weights[i] <- sum(exp(-
.5*selectionindex[1:length(selectionindex)]+.5*selectionindex[i]))^(-1)
}
##compute averaged person scores
avg.personscore <- matrix(NA,nrow(personscores),1)
for(i in seq(nrow(personscores))){
avg.personscore[i,] <- sum(weights*personscores[i,])
}
##compute averaged person SEs
avg.personSE <- matrix(NA,nrow(personSEs),1)
for(i in seq(nrow(personSEs))){
avg.personSE[i,] <- sum(weights*sqrt(personSEs[i,]^2+(personscores[i,]-
avg.personscore[i,])^2))
}
output <- list(weights,avg.personscore,avg.personSE)
names(output) <- c(“weights”,”Average person score”,”Average person SE”)
return(output)
}
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