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Abstract
There have been major disputes about the appropriate game-theoretic analyses of
sports leagues. The basic sports-league model assumes a two-team league where
each team is seen as a monopolist in its product market and a passive price taker
in a duopsony talent market. For simplicity, these models assume talent supply is
either perfectly inelastic or perfectly elastic. It has been argued that perfectly inelas-
tic supply is ill suited for duopsony analysis. This article solves the problem of mul-
tiple equilibria by proposing a selection criterion that finds a unique equilibrium in a
duopsony limit game as talent supply approaches perfect inelasticity.
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It ain’t over ‘til it’s over.

Yogi Berra

Introduction

Following Fort and Quirk (1995) and Vrooman (1995) (QFV), the basic theoretical

sports-league model has generally assumed a two-team league. While a two-team
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league can be analyzed as if each team is a price taker in the market for talent, the

underlying motivation for the assumption of price-taking behavior is the existence of

many small, atomistic participants.1 Consequently, a game-theoretic analysis of two-

team leagues has seemed desirable since the critiques of Szymanski (2004) and Szy-

manski and Kesenne (SK, 2004). Szymanski (2004, p. 123) summarized the basic

problem: ‘‘competition between two teams cannot reasonably be treated as analo-

gous to perfect competition.’’2

What has made game-theoretic duopsony analyses problematic for these models

has been the use of two simplifying assumptions concerning the elasticity of overall

talent supply. In the closed market American case, the supply of talent is perfectly

inelastic, and if talent is fully employed then one team’s talent gain results in

another’s zero-sum talent loss. If this assumption was true, then there was no way

for one team to choose talent independent of the opposing team’s choice. Szymanski

and Kesenne (2004, p. 240) described the problem this way:

The choice of one team automatically constrains the other in a two-team model, and so

every possible choice of talent is a Nash equilibrium, because the other team has only

one feasible response, which is therefore ‘‘best.’’ However, this clearly makes little

sense as an economic model.

In the open-market European model, talent supply is perfectly elastic at an exogen-

ous price and one club’s talent choice has no effect on that of its opponent. But if

talent is perfectly elastic, then there is no need for a game-theoretic approach to

talent choice because the price of talent is exogenous. Despite Szymanski’s clear

identification of the potential problem of treating two-team leagues as perfectly

competitive, two-team models have generally assumed that the teams were price

takers in the market for talent.3

This article argues that the fundamental problem with the perfectly inelastic

supply case is multiple equilibria. The solution proposed in this article follows

game theory’s usual path taken in the presence of multiple equilibria by using a

criterion that chooses one solution from the many possible equilibria.4 The pro-

posed unique solution is the limit of a solution to a duopsony game with imper-

fectly inelastic talent supply as the talent supply function approaches perfect

inelasticity.

The argument begins with the specification of a conventional team revenue

model in duopsony form combined with a one-parameter specification of an inverse

supply function for total talent.5 As this one parameter continuously approaches

zero, the talent supply function varies continuously from a smooth upward slope

toward the limiting case of a ‘‘reverse-L’’ function. This limiting specification yields

an inverse supply function with a perfectly elastic segment up to a fixed amount of

talent, where it then becomes perfectly inelastic. Our proposed selection criterion is

the limit of the above-specified duopsony game as the talent supply function

approaches the ‘‘reverse-L’’ shape.6
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This approach keeps the customary assumption that the strategy space for the

teams is their talent level, rather than their talent expenditure and it allows a com-

parison of the European perfectly elastic supply and American perfectly inelastic

supply as a matter of market size. For markets ‘‘large enough’’ (explained more pre-

cisely later), equilibrium in the limiting case occurs with a full employment of a

fixed supply of talent, while for smaller markets, equilibrium occurs along the per-

fectly elastic segment of the inverse talent supply function. This allows a comparison

of the differences and similarities between the duopsony approach and the price-

taking approach. The findings are that the limiting case is consistent with qualitative

results about the relationship between relative market size and team success, and

they confirm the paradoxical effects of revenue sharing on competitive balance.7

In the end, however, the duopsony model leads to major differences in the equili-

brium price of talent compared to the price-taking model.

The plan of the article is as follows. First, a brief argument is made that the prob-

lem with the perfectly inelastic talent supply is one of multiple equilibria. This is

followed by a general formulation of a duopsony model that demonstrates the gen-

eral differences between this duopsony approach and price-taking approaches. The

model is formulated with specific functional forms for revenue and solved for exam-

ples of imperfectly elastic talent supply. This illustrates how solutions change as the

inverse supply function approaches the reverse-L shape and motivates the analytic

conclusions we draw from the limiting case. It is then shown in the limiting case how

market size affects whether or not the equilibrium is ‘‘European’’ or ‘‘American,’’

and how competitive balance is affected by revenue sharing. The article concludes

with the discovery of a previously unnoticed result that revenue sharing with revenue

functions that are homogenous of degree zero in team talent levels leads overall to

shrinking league talent levels.

Multiple Nash Equilibria

The key issue with perfectly inelastic talent is that multiple equilibria exist along

identically transposed reaction curves of the two teams. To see this issue, consider

an inverse supply function for a league where the cost of hiring more talent is con-

stant over a range of talent T*, but at T* the supply of talent becomes perfectly

inelastic (vertical). This ‘‘reverse L’’ inverse supply function is shown in Figure 1.

T is total talent, c is the cost per unit of talent, and T* is normalized to unity. For

total talent between 0 and 1, the cost of an additional unit of talent is also normalized

to 1. For T ¼ 1, one unit of talent is supplied for any c � 1. Now consider the best

responses of teams to each other’s choices of talent. Let t1 and t2 denote the choices

of talent by Team 1 and Team 2, respectively. Teams would anticipate that the wage

for talent would subsequently adjust to clear the market as follows. If t1þ t2� 1, then

c ¼ 1; and if t1 þ t2 > 1, then c ¼ þ1.8
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If the marginal revenue to a duopsonist of hiring an additional unit of talent is

greater than 1, then there are multiple equilibria associated with this inverse supply.

For example, if Team 1 hires t1 units of talent, Team 2’s best response is to hire 1� t1.

This leaves the cost of talent at the minimum for both teams. Any attempt to hire

more than (1� t1) would push the cost of talent toþ1 and hiring less than (1� t1)

leaves profits on the table. Conversely, if Team 2 hires t2 units of talent, then Team 1’s

best response is to hire (1 � t2) units by the same reasoning. This is therefore a

Nash equilibrium. Any allocation that exactly divides the unit of available talent

is of course a Nash equilibrium, and so there exists an infinity of equilibria. This

creates a problem for the analysis of this game, because theory gives no prediction

as to which of these equilibria are expected in actual situations. This requires a

‘‘refinement’’ or selection criterion that chooses one of these many possibilities.9

The Model

The exposition of the model begins with a general structural specification that notes

the general differences in solutions for the duopsony model compared to solutions

with the assumption of price-taking behavior. The revenue model of Dietl, Lang, and

Werner (2009) is then combined with a parametric specification of talent supply

elasticity that has as a limiting case segments of perfectly elastic and perfectly

inelastic talent supply. The model is then solved for a sequence of talent supply para-

meters to illustrate how solutions change as the talent supply function approaches

the limiting inverse-L shape.

Figure 1. Talent supply.
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The limiting case solution is compared to the price-taking solution, and it is

shown that the revenue-sharing paradox holds for both models. More importantly,

it is also shown that with the homogenous revenue function used here (and in many

other places), revenue sharing shrinks the size of the league in both price-taking and

duopsony models. The most striking difference is that for the equilibrium price of

talent with ‘‘large enough’’ market size, the price of talent is above the reservation

wage in the price-taking case, but equal to the reservation wage in the duopsony

case.

General Structural Specification

Revenues for team i are assumed to be a function of the expected win probability wij

for a match with team j,

Ri ¼ RiðwijÞ:

Expected win percentages are in turn determined by a contest success function

(CSF) that depends on the levels of talent of both teams:

wij ¼ wijðti; tjÞ;

where ti is the talent used by team i. This implies that team i’s revenue is a function

of talent levels of both teams:

Ri ¼ Riðti; tjÞ;

which in turn implies marginal revenue product is a function of each team’s talent

level:

MRPi ¼ MRPiðti; tjÞ; i ¼ 1; 2; i 6¼ j:

Finally, an inverse talent supply function expresses total talent T that is supplied

as a nondecreasing function of the wage c:

c ¼ wðTÞ; w0 � 0; T ¼ t1 þ t2:

The standard (price-taking) model. In the nonduopsony case, as found in virtually all

models before Madden (2011), teams are assumed to take c as fixed and exogenous.

The first-order conditions are

MRP1 t1; t2ð Þ ¼ c; MRP2 t1; t2ð Þ ¼ c: ð1Þ

These two first-order conditions then determine t1 and t2 as functions of c:

t1 ¼ t1 cð Þ; t2 ¼ t2 cð Þ: ð2Þ

If the model is open or ‘‘European,’’ then these two equations determine the equi-

librium because every other endogenous variable can then be solved recursively. If

the model is closed or ‘‘American’’ (if there is wage responsiveness of talent supply),
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then equilibrium is determined by adding up the individual demands for talent and

equating to total supply:

t1 cð Þ þ t2 cð Þ ¼ TðcÞ: ð3Þ

This determines the equilibrium wage, which can then be used to determine t1 and

t2 and all other endogenous variables.

Whether the talent market is open or closed, the assumption that firms take c as

the parametric price of talent insures that in equilibrium:

MRP1ðt1; t2Þ ¼ MRP2ðt1; t2Þ: ð4Þ

This equality of marginal revenue product between the two teams ensures that the

determination of t1/ t2 is independent of the responsiveness of total talent to its wage.

This means that expected win percentages are in turn independent of the responsive-

ness of total talent to its wage rate. Furthermore, this equality of marginal revenue

product is also the starting point in all models for the analysis of the effect of market

size on competitive balance and the effect of revenue sharing on competitive

balance.10

Duopsony. If in fact teams behave strategically with respect to the market for talent,

then the first-order conditions are:

MR1ðt1; t2Þ ¼ wðTÞ
zffl}|ffl{c

þt1w0ðTÞ; ð5:1Þ

MR2ðt1; t2Þ ¼ wðTÞ
zffl}|ffl{c

þt2w0ðTÞ: ð5:2Þ

These first-order conditions (best-response functions) jointly determine t1 and t2,

from which values of all other endogenous variables can be computed. In contrast

with the nonduopsony approaches, the price of talent is not taken as given by the

teams when they make decisions about talent levels. Instead, the effect of talent-

level choices on the wage is considered, and thus the determination of t1 and t2 is

not independent of the talent supply function. Furthermore, there is no implication

that marginal revenues will necessarily be equal. In general, any analyses of the

effects of market size or the effects of revenue sharing on competitiveness will be

more complicated (but realistic) compared to the analyses of models with price-

taking behavior. It can be shown that the simplicity of the price-taking analysis for

some issues can be maintained in the limiting case of perfectly inelastic talent

supply.

Specific Models

For the general specification of the previous section, not much can definitively be

said about the questions of interest to sports economics. With this in mind, consider
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a model with a specific inverse talent supply function that smoothly approaches the

reverse-L shape as one parameter approaches zero. A more specific revenue function

model is necessary to better illustrate the difference between duopsony and price-

taking models.

Unfortunately, even this specific model cannot be solved analytically for arbi-

trary values of the key parameter of the talent supply function. Consequently, com-

putational solutions are needed to provide a heuristic to see both the possible

differences a duopsony approach generates vis-à-vis a price-taking approach and

to the concept of the limiting solution as a selection criterion for the perfectly inelas-

tic supply-of-talent case.

A specific talent supply function. The supply of talent is specified by assuming that the

price of talent is an increasing function of the total amount of talent, specifically an

upward-sloping inverse supply function for talent. This function can parametrically

encompass at the limit a perfectly inelastic supply of talent. Let c denote the cost of

hiring a unit of talent, and let total talent be denoted as T ¼ t1 þ t2. The increasing

inverse supply function is as follows:

c Tð Þ ¼ ð1� TÞ�y; y > 0: ð6Þ

As y ! 0 in Figure 1, the inverse supply function gets closer and closer to an

inverse-L shape which is perfectly inelastic at T ¼ 1 and perfectly elastic for

T 2 ½0; 1�. This implies marginal cost function:11

MCi ¼ cðTÞ þ tic
0ðTÞ ¼ ð1� TÞ�y�1ð1� T þ ytiÞ: ð7Þ

For any nonzero value of y, this function has elasticities of talent supply that

range continuously from infinity at T ¼ 0 to zero at T ¼ 1. It is also important to

note that MC in Equation 7 lies everywhere above talent supply c(T ) in Equation 6.

Revenue function. A standard model of the demand side in sports economics has

become one in which a team owner has a revenue function that depends on the prod-

uct of own market size mi and the quality of a match qij with opponent with market

size mj:

Ri ¼ miqij; mi > 0; i; j ¼ 1; 2; i 6¼ j; ð8Þ

where quality is a quadratic function of the probability of winning wij:
12

qij ¼ wij �
1

2
w2

ij: ð9Þ

The probability of winning is determined by a CSF that depends on the amount of

talent purchased by team i and team j:
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wij ¼
ti

ti þ tj

: ð10Þ

This CSF implies that the relative probabilities of winning are identical to relative

talent levels w1/w2 ¼ t1/t2.13 The revenue function for team i in terms of ti and tj
becomes:14

Ri ¼ mi

1
2

t2
i þ titj

ti þ tj

� �2

" #
; i; j ¼ 1; 2; i 6¼ j; ð11Þ

which in turn implies the marginal revenue product for team i in terms of ti and

tj:
15

MRPi ¼
mit

2
j

ti þ tj
� �3

: ð12Þ

In a price-taking model, the two first-order conditions for each team can be inter-

preted as demand curves for talent, because each team’s choice is conditional on the

other team’s choice. But because tj shows up in the first-order condition for team i,

these first-order conditions can also be interpreted as best-response functions. For

any value of tj, the first-order condition for Team i tells us the best choice of ti. In

this sense, without an analysis of duopsony, game theory and price-taking behavior

have previously led to identical conclusions.

Profit maximization. Profit maximization from Equations 7 and 12 leads to:

MRPi ¼ MCi ¼
mit

2
j

T 3
¼ 1� Tð Þ�y�1ð1� T þ ytiÞ: ð13Þ

This implicitly defines the ith team’s best-response function.

Solution

Examples

The solution of this model is the pair (t1, t2) that solves the two best-response func-

tions, and the associated values for the wage, wins for the two teams, and other endo-

genous variables. For most arbitrary values of y, a closed-form solution is

problematic, but fortunately the model can be solved numerically for a variety of

parameter values. These examples display features consistent with the general spe-

cification introduced previously and also generate conjectures about limiting beha-

vior. Solutions are shown in Table 1 for m1 ¼ 8 and m2 ¼ 4, as y approaches zero.

Three features of these solutions emerge. First, the equilibrium values of the

endogenous variables clearly depend on y. This is a feature not shared by the
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price-taking model.16 Second, as y ! 0, the talent ratio t1/t2 approachesffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=m2

p
¼ 1:414 for specified parameter values. Also, MRP1, MRP2, MC1, and

MC2 all converge to the same value m1= 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=m2

p� �2

¼ 1:3726 for m1 ¼ 8 and

m2 ¼ 4 and total talent T approaches unity. The win percentages approach

wi ¼ ti=tj

� 	
= 1þ ðti=tjÞ
� 	

(w1 ¼ .5858 and w2 ¼ .4142 for m1 ¼ 8 and m2 ¼ 4).

As shown subsequently, this is the same relative talent solution and competitive bal-

ance as in the price-taking models, but in contrast to conventional theory the wage

relate c approaches unity in the duopsony model.

Reaction curves and their solutions are shown in Figure 2 for these solutions. The

upward sloping straight line is t1 ¼ t2 and the downward-sloping straight line is t1 ¼
1 � t2 (and the identical transpose for Team 2, t2 ¼ 1 � t1). The solution for

approaches
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=m2

p
¼

ffiffiffiffiffiffiffi
1:2
p

¼ :586=:414 for m1 ¼ 8 and m2 ¼ 4. Also notice how

the reaction curves get arbitrarily close to the multiple equilibria along straight line

t1 ¼ 1 � t2 as y! 0.17 These simulations suggest two things. First, the values of the

Table 1. Solutions for y ! 0.

y ¼ 1 y ¼ .1 y ¼ .01 y ¼ .001 y ¼ .0001

t1 .2895 .5107 .5785 .5851 .5857
t2 .1961 .3524 .4072 .4136 .4142
T .4856 .8631 .9857 .9987 .9999
w1 .5962 .5917 .5849 .5859 .5858
w2 .4038 .4083 .4151 .4141 .4142
MR1 2.7773 1.5744 1.3964 1.3746 1.3727
MC1 2.7773 1.5740 1.3885 1.3622 1.3720
MR2 2.8993 1.6133 1.3962 1.3736 1.3749
MC2 2.8993 1.6134 1.3959 1.3750 1.3739
c 1.9440 1.2200 1.0434 1.0067 1.0007

Figure 2. Asymmetric reaction curve solutions for y! 0.
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endogenous variables depend on the parameter values of the talent supply function.

In this example, the relative competitiveness of the large team t1/t2 increases directly

with value of y. As y approaches zero, the price of talent approaches the reservation

value of 1. This is a major distinction between this duopsony approach and the price-

taking approaches.

Solution of the Limiting Case

Price taking. With price taking, the first-order conditions are

MRP1 ¼
m1t2

2

t1 þ t2ð Þ3
¼ c; i ¼ 1; 2; i 6¼ j; ð14Þ

where c is viewed by teams as an exogenous constant. Taking the ratio of the first-

order conditions yields:

t1

t2
¼

ffiffiffiffiffiffiffi
m1

m2

r
which implies: t2 ¼ t1

ffiffiffiffiffiffi
m2

m1

r
: ð15Þ

Substituting this relationship between t1 and t2 back into Team 1’sfirst-order con-

dition (Equation 14) yields the talent demand curves for both teams:

td
1 ¼

m2

c 1þ
ffiffiffiffi
m2

m1

q
 �3
and td

2 ¼ t1

ffiffiffiffiffiffi
m2

m1

r
¼

m2

ffiffiffiffi
m2

m1

q
c 1þ

ffiffiffiffi
m2

m1

q
 �3
: ð16Þ

Summing the individual demands creates the downward-sloping market demand

for talent in inverse form:

cd ¼ m2

1þ
ffiffiffiffi
m2

m1

q
 �2

td
1 þ td

2

� � : ð17Þ

As shown in Figure 3, the inverse talent supply curve has a flat portion where c¼
1 for T 2 0; 1½ � and a vertical segment at T ¼ 1. The intersection of market demand

(MRPT) and supply curve at AT determines the equilibrium wage as well as the equi-

librium values of t1 and t2 at A1 and A2. If MRPT evaluated at T¼ 1 is greater or equal

than 1, then talent demand equals supply at T ¼ 1 and c � 1. If MRPT evaluated at

T ¼ 1 is less than 1, then T < 1 and c ¼ 1. From Equation 17, c > 1 if and only if:

m1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=m2

p� �2
� 1: ð18Þ

This leads to a summary proposition for the price-taking solution:

Proposition 1: The equilibrium of this price-taking model is described by:
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1. Relative talent level: t1
t2
¼

ffiffiffiffi
m1

m2

q
.

2. Wage rate c ¼ m1

ð1þ
ffiffiffiffiffiffiffiffiffiffi
m1=m2

p
Þ2

where total league talent T¼ 1 if m1

ð1þ
ffiffiffiffiffiffiffiffiffiffi
m1=m2

p
Þ2
� 1.

3. Wage rate c ¼ 1 where total league talent T < 1 if m1

ð1þ
ffiffiffiffiffiffiffiffiffiffi
m1=m2

p
Þ2
< 1.

As shown in Figure 4 (shaded region), the condition m1=ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=m2

p
Þ2 � 1

assures that the market size pair (m1, m2) lies sufficiently far northeast of the

origin in the positive quadrant. This is what is meant by the markets being ‘‘suf-

ficiently large.’’ A numerical example of the price-taking solution is shown in

Figure 3 for m1 ¼ 8 and m2 ¼ 4; where t1 ¼ .5858, t2 ¼ .4142, and

c ¼ 8=ð1þ
ffiffiffi
2
p
Þ2 ¼ 1:3726.

Duopsony. In the duopsony game solution, the ratios of the reaction curves from

Equation 13 imply:

m1t2
2

m2t2
1

¼ 1� T þ yt1ð Þ
1� T þ yt2ð Þ : ð19Þ

In the limit y! 0, the duopsony talent ratio becomes t1
t2
¼

ffiffiffiffi
m1

m2

q
which is identical

to the talent ratio for the price-taking case. Evaluating Team 1’s best-response func-

tion for t2 ¼ t1

ffiffiffiffi
m2

m1

q
yields Team 1’s reaction curve that is an implicit function solely

of its own talent t1 and exogenous market size parameters:

Figure 3. Price-taking solution.
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m2

t1 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2=m1

p� �3
¼ 1� t1 1þ

ffiffiffiffiffiffi
m2

m1

r
 �� 
�y�1

1� t1 1� yþ
ffiffiffiffiffiffi
m2

m1

r
 �� 

: ð20Þ

This is shown for Team 1 in Figure 5 at A1 and for Team 2 A2. The MRP side of

this equation is a rectangular hyperbola that is independent of y and the equilibrium

MC function has an asymptote where y ! 0 at:

ta
1 ¼

1

1þ
ffiffiffiffi
m2

m1

q : ð21Þ

As y! 0, the equilibrium marginal cost curve approaches an inverse-L with the

vertical segment positioned at the asymptote, and the horizontal segment extending

from 0 to ta
1 ¼ 1

1þ
ffiffiffiffi
m2
m1

p . Furthermore, the MC function lies everywhere above the sup-

ply function. If the MRP curve for each club crosses this limiting marginal cost func-

tion on the horizontal segment, then MC ¼ 1 and T < 1. If MRP intersects the MC

curve on the vertical segment, then MC > 1, and talent is fully employed at T ¼ 1. If
m2

1þ
ffiffiffiffiffiffiffiffiffiffi
m2=m1

p� �2 > 1, then MRP1 intersects the MC1 curve on its vertical segment, but if

m2

1þ
ffiffiffiffiffiffiffiffiffiffi
m2=m1

p� �2 � 1 then MR1 intersects MC1 on its horizontal segment and

Figure 4. Sufficiently large markets.
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t1 � 1

1þ
ffiffiffiffiffiffiffiffiffiffi
m2=m1

p� �. The major discovery is that c ¼ 1 in both duopsony cases for both

clubs at A1* and A2* as shown in Figure 5.

The following duopsony proposition is immediate:

Proposition 2: The equilibrium of the duopsony model is characterized by:

1. Relative talent is equal to the square root of the ratio of market size:
t1
t2
¼

ffiffiffiffi
m1

m2

q
.

2. The duopsony price of talent is the reservation wage c ¼ 1 and level of total

league talent T ¼ 1, if m1

1þ
ffiffiffiffiffiffiffiffiffiffi
m1=m2

p� �2 > 1.

3. The duopsony price of talent is the reservation wage c ¼ 1 and level of total

league talent T < 1, if m1

ð1þ
ffiffiffiffiffiffiffiffiffiffi
m1=m2

p
Þ2
� 1:

The important difference between the equilibrium under the assumption of

duopsony and the equilibrium under the assumption of price-taking behavior is obvi-

ously the price of talent. The nonlimiting duopsony case yields multiple equilibria

all of which imply a price of talent equal to the reservation wage (in this case

c ¼ 1). The limiting model preserves this outcome but picks the unique talent ratio
t1
t2
¼

ffiffiffiffi
m1

m2

q
, which is identical to the relative talent ratio for the price-taking case. The

actual level of talent for each team (and for the league) depends on whether the mar-

kets are ‘‘sufficiently large.’’ If the markets are relatively small, total league talent is

θ = .01

t1 = .5858t2 = .4142

c = 1.3726

MRP2

MRP1

c2 c1

A1A2

MC2

A2*

0.0 0.2 0.4 0.6 0.8
0.8

1.0

1.2

1.4

1.6

1.8

Talent

W
ag

e 
ra

te

A1*

MC1

Figure 5. Asymmetric duopsony solution.
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less than 1. If the markets are relatively large, then talent is fully employed and lea-

gue talent T ¼ 1.

Revenue-Sharing Paradox

A major controversy in the modeling sports leagues concerns the effects of revenue

sharing on competitive balance. Intuition suggests that revenue sharing should

improve competitive balance between a large and a small market team. The exis-

tence of a counterintuitive revenue-sharing paradox arises from virtually all models

with profit-maximizing teams. This result is robust in the limiting case of this duops-

ony model as y !0. It is also shown that as revenue-sharing approaches the equal

sharing cartel level, then relative talent t1/t2 approaches the league revenue maximiz-

ing ratio m1/m2 and talent surprisingly approaches zero for both clubs.

To demonstrate the effect of revenue sharing on competitive balance consider a

hybrid revenue function where a is the home team revenue share, and (1 � a) is the

visiting team share for a 2 :5; 1½ �. The revenue-sharing profit function becomes:

pi
0 ¼ aRi þ 1� að ÞRj � tiwðTÞ: ð22Þ

The associated best-response functions are:

am1t2
2 � ð1� aÞm2t1t2

t1 þ t2ð Þ3
¼ 1� t1 � t2ð Þ�y�1

1� t1 � t2 þ yt1ð Þ: ð23:1Þ

am2t2
1 � ð1� aÞm1t1t2

t1 þ t2ð Þ3
¼ 1� t1 � t2ð Þ�y�1

1� t1 � t2 þ yt2ð Þ: ð23:2Þ

Solution pairs for Equations 23.1 and 23.2 are shown in Figure 6 for y ¼ .01

from left to right for a ¼ 1, a ¼ .75, and a ¼ .5, where a ¼ .5 is the pure

Figure 6. Revenue-sharing paradox.

14 Journal of Sports Economics



syndicate. As a ! .5, the talent levels for both teams clearly approach zero. The

equilibrium talent ratios t1/t2 for different revenue-sharing splits (values of a)

can be found from the ratio of Equations 23.1 to 23.2:

am1t2
2 � ð1� aÞm2t1t2

am2t2
1 � ð1� aÞm1t1t2i

¼ 1� t1 � t2 þ yt1ð Þ
1� t1 � t2 þ yt2ð Þ : ð24Þ

In the limit where y!0 (Equation 24) becomes a quadratic in terms of the talent

ratio t1
t2

:

m2

t1

t2


 �2

� 1� að Þ
a

m1 � m2ð Þ t1
t2
� m2 ¼ 0: ð25Þ

Define x � ð1�aÞa and the quadratic solution of Equation 25 becomes:

t1

t2

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm1x� m2xÞ2 þ 4m1m2

q
þ m1x� m2x

2m2

: ð26Þ

It is straightforward now to show that increased revenue sharing (a ! .5)

decreases competitive balance (increases t1/t2) and d
da

t1
t2

� �
< 0. For m1 > m2 the deri-

vative of Equation 26 is positive with respect to x:

d

dx

t1

t2


 �
¼
ðm1 � m2Þð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm1x� m2xÞ2 þ 4m1m2

q
þ m1x� m2xÞ

2m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm1x� m2xÞ2 þ 4m1m2

q > 0; ð27Þ

and the derivative of x � ð1�aÞa with respect to a is negative: dx
da ¼ � 1

a2 < 0.

This implies that the revenue-sharing paradox still holds and that there is an

inverse relationship between revenue sharing and competitive balance, that is,

d
da

t1
t2

� �
¼ dx

da

� 	
d
dx

t1
t2

� �h i
< 0. More precisely, as a ! .5 in Equation 25 competi-

tive balance moves from the duopoly solution t1
t2
¼

ffiffiffiffi
m1

m2

q
toward the less balanced

relative talent solution t1
t2
¼ m1

m2
at the limit.

It can also be shown that the revenue-sharing limit solution t1
t2
¼ m1

m2
is the coopera-

tive cartel profit-maximizing talent ratio. Total cartel profit PC is the sum of indi-

vidual club revenues minus total talent cost:

pC ¼ R1 þ R2 � cT ¼
m1

1
2

t2
1 þ t1t2

� �
þ m2

1
2

t2
2 þ t1t2

� �
t1 þ t2ð Þ2

� cð1� TÞ�y: ð28Þ

Cartel profit and revenue each reach a maximum when qpC

qt1
¼ qpC

qt2
:

t2 m1t2 � m2t1ð Þ
t1 þ t2ð Þ3

¼ t1 m2t1 � m1t2ð Þ
t1 þ t2ð Þ3

¼ ð1� TÞ�y�1ð1� T þ yTÞ: ð29Þ
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This implies that t2 m1t2 � m2t1ð Þ ¼ t1 m2t1 � m1t2ð Þ and for m1 > m2 the cartel

profit maximum obtains when the relative talent ratio is the same as the ratio of mar-

ket size:

t1

t2

¼ m1

m2

ð30Þ

MC2MC1'

MRP2

MRP2'
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Figure 8. Revenue-sharing small market.
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Figure 7. Revenue-sharing large market.
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This all leads to the following proposition about revenue sharing in profit-max

leagues:

Proposition 3: For a between 0 and .5 increased revenue sharing (a! .5):

1. Generally decreases competitive balance (increases t1/t2): d
da

t1
t2

� �
< 0.

2. Specifically decreases competitive balance at the limit toward the cartel

profit maximum t1
t2
¼ m1

m2
.

3. Leads to a reduction in talent for each team that approaches zero at the limit.

The implications of duopsony Proposition 2 and revenue-sharing Proposition 3

are shown for the large market club (m1 ¼ 8) in Figure 7 and the small market club

(m2¼ 4; both for y¼ .01) in Figure 8. In the absence of revenue-sharing, Proposition

2 states that the profit-maximizing talent level obtains at A1 and A2 for the large and

small market clubs and that each duopsony club then sets its wage at c ¼ 1 for that

talent at A1* and A2*, respectively. At the revenue-sharing limit a! .5 Proposition 3

holds that the profit-maximizing level of talent approaches zero. Solving Equation

26 for t2 in terms of t1 and t1 in terms of t2 for a ¼ .48 and then substituting both

into Equation 23 yields the revenue-sharing solutions A
0
1 and A

0
2 for the large and

small market clubs with the wage set at the duopsony reservation rate c ¼ 1.

Increased revenue-sharing amounts to progressive collusion as MRP1 and MRP2

both shift toward MRP
0
1 and MRP

0
2. As a! .5, the marginal revenue product curves

for both clubs collapse toward the origin with the vertical and horizontal axes as

asymptotes. Given these market size parameters (m1 ¼ 8; m2 ¼ 4) duopsony talent

equilibrium shifts from t1=t2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=m2

p
¼ 1:414 with t1 ¼ .5858 at A1 and t2 ¼

.4142 at A2 toward t1=t2 ¼ m1=m2 ¼ 2 with t1 ¼ .0318 and t2 ¼ .0222 at A
0
1 and

A
0
2. The most interesting result is that while revenue sharing increases the talent ratio

t1=t2 from
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=m2

p
toward m1=m2, the absolute levels of talent are approaching

zero for both clubs as a ! .5.18

This all derives from a revenue function that depends only on the ratio of talent,

and not individual talent levels. With homogenous-of-degree-zero league revenue

functions, maximization of revenue occurs at the talent ratio t1=t2 ¼ m1=m2. There-

fore, for any such ratio of talent, t1/t2, the cartel would maximize profits by scaling

down operations to zero.19 What is even more remarkable is that this vanishing talent

effect occurs for any model in which revenues depend on wins defined by talent

ratios, such as the commonly used logistic CSF: wi ¼ t
g
i = ti þ tj
� �g

and this is true

for any g.

The cartelization problem from revenue sharing only emerges when competitive

balance is viewed in actual talent rather than win percentages, and when the strategic

choice variable is talent rather than talent expenditure. The solution to the problem is

not to further obscure underlying duopsony behavior and avoid the problem alto-

gether by using payroll as a convenient strategic choice variable. Rather, the
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immediate solution in duopsony theory is to introduce absolute talent as well as rela-

tive talent into the measure of the quality of a game.

Conclusion

Since its modern origins in QFV theory, there has been a major confusion in the eco-

nomic modeling of professional sports leagues. The controversy is about how to

model duopsony in a two-team league with perfectly inelastic aggregate talent sup-

ply. SK attempted to reconcile the talent supply-side issue by making a distinction in

theory and reality between open talent markets with a perfectly elastic talent supply

and closed markets with a perfectly inelastic talent supply. The open markets are

found in the talent markets of the European football leagues, whereas the closed

markets characterize the more provincial North American sports. Open and closed

markets lead to different conclusions about competitive balance and the paradoxical

effects of revenue sharing on competitive balance and player compensation.

In the closed market case (QFV), there is a simple linear relationship between

talent and winning with no formal CSF. The only nonlinearity appears in the revenue

function that shows the diminishing marginal returns to wins based on fan prefer-

ences. In the closed case, the ratio of talent is equivalent to the ratio of home market

size of the two clubs (w1=w2 ¼ t1=t2 ¼ m1=m2Þ and players’ MRP is simply the mar-

ginal revenue of a win. Revenue sharing will not affect the relative demand for wins

or talent between the clubs and competitive balance will remain the same. The dif-

ference is that revenue sharing will proportionately reduce the marginal revenue of a

win for both clubs and lead to player exploitation.

In the open-market case (SK), the nonlinear demand-side assumptions are left

intact, but a second nonlinearity is introduced with a CSF on the supply side. The

CSF is usually specified in the logistic form where success depends on the propor-

tion of talent that a team has in each game. The result of increasing the nonlinearity

in production of wins is to dampen the market power of the larger market club.20 As

a result, the open league equilibrium is more competitive and the talent ratios are

proportional to the square root of the ratios of home market size for the two clubs

(w1=w2 ¼ t1=t2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=m2

p
). Revenue sharing at the limit would reduce competi-

tive balance in an open league to that of a closed league and team payrolls would

drop to the reservation level. Revenue sharing would yield the same equilibrium

in open and closed markets at the limit (Vrooman, 2007, 2009).

In the course of the open league critique, there has also been major confusion

about the use of duopoly game theory in the two-team league model and specifica-

tion of an inconsistent duopsonist as a scheming monopolist on the demand side who

willingly accepts the market price for talent on the supply side, where he wields con-

siderable labor market power. As a result of the confusion, there seems to be a build-

ing consensus to resort to a nonstandard strategy space of talent expenditure instead

of talent when analyzing the game between members of a two-team league. Talent
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expenditure is an attractive alternative to talent because it is a quick fix to a misdiag-

nosed problem. Madden (2011, p. 419) agrees with the schizophrenic problems in

price-taking theory:

A problem with the existing approaches is that they treat the two-club talent market as

perfectly competitive overlooking the market power clubs might be expected to have in

such a setting. . . .

He sees the problem as one of game specification and proposes a backward induction

solution of a new strategic market game (SMG) where:

(T)he two clubs will anticipate correctly the (non-negligible) impact that their deci-

sions will have on the market clearing wage, thus capturing their talent market power.

If the decision variables were quantities of talent, the new model would simply and

exactly be a Cournot duopsony model. However, in the most basic league, with its per-

fectly inelastic supply of talent, the market clearing wages are not then well defined. So

we insist now on talent expenditures as the club strategic choice variables, an assump-

tion that is anyway probably more realistic for the context of a sports league. (Madden,

2011, p. 419)

Madden unfortunately abandons this well-defined duopsony game and insists on talent

expenditure as a strategic choice variable (originally proposed by and later retracted by

Szymanski, 2013) rather than the conventional game theory choice of talent level. This

is because the inelastic wage problem was really a solvable problem of multiple equi-

libria, rather than being undefined. The appropriate game-theoretic remedy is to find

the unique limit of the duopsony game as total talent supply approaches perfect inelas-

ticity. Moreover, the use of talent expenditure as a strategic variable yields exactly the

same results as the price-taking theory that Madden criticizes.

The game-theoretic analysis developed in this article meets the usual expecta-

tion in a duopsony model that the wages paid to talent are always less than the mar-

ginal revenue product of talent. In fact, this model is the only analysis that actually

determines a duopsony wage rate. With fairly standard assumptions on revenue

functions and a well-defined supply functions, the revenue-sharing paradox still

holds that revenue sharing does not increase balance. This analysis also isolates

strategic talent reductions as the previously hidden result of cartelization from

increased revenue sharing. This result is true for any revenue function (including

the widely used logistic CSF) where wins are solely a function of relative talent. Of

course, there are other assumptions, such as win-maximizing teams (Vrooman,

2007, 2009) or revenue functions that depend on total talent (Madden, 2011) that

can overturn this now familiar paradox.

Authors’ Note

‘‘The opera ain’t over until the fat lady sings’’ was used as a catch phrase by Washington Bul-

lets coach Dick Motta to caution against overconfidence as the Bullets won the 1978 NBA
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Championship. ‘‘The Fat Lady sings’’ refers to Brünnhilde’s final immolation scene in

Wagner’s Götterdammerung.
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Notes

1. Vrooman (1995) used a nonlinear model where QF is treated as a special linear case. ‘‘If

the marginal product of playing talent is diminishing . . . the actual competitive balance

solution under profit maximization will be more competitive than that predicted by lea-

gue revenue maximization solution’’ (p. 976).

2. See Madden (2010) for an attempt to motivate price-taking behavior in a two-team model

by treating the two ‘‘teams’’ as two continua of different team types.

3. See Falconieri, Palomino, and Sakovics (2004), Szymanski (2004), Szymanski and

Kesenne (2004), and Dietl et al. (2009). Madden (2011) is the exception, but in contrast

to the approach used in this article, he used talent expenditure as the teams’ strategic

choice variable instead of the level of talent.

4. Most widely known selection criteria are associated with dynamic games such as back-

ward induction, forward induction, and subgame perfection. In static games like the one

here, refinements such as Pareto optimality are sometimes suggested. The search for

refinements in other contexts is widespread, such as e-stability in learning models (Evans

& Honkapodja, 2001), limits of a finite-horizon equilibrium in infinite-horizon models

(Driskill, 1997, 2006; Driskill & McCafferty, 2001, Fershtman & Kamien, 1990).

5. The revenue function is from the model of Dietl, Lang, and Werner (2009), which was

derived from an explicit model of consumer choice. This revenue model has some

unusual properties not discussed previously.

6. This seems a natural selection criterion because it captures the notion that a perfectly

inelastic inverse supply function is really an abstraction designed to be close to a

‘‘very’’ inelastic function. The notion that a parametric change from ‘‘very’’ inelastic

to perfectly inelastic should lead to a change in the number of equilibria from one to infinity

suggests that these multiple equilibria are simply an artifact of this perfectly inelastic

abstraction. The only one of these equilibria that are reflective of the underlying eco-

nomic forces is the one associated with the limit as the supply moves from very inelastic

to arbitrarily close to perfectly elastic.

7. Much of the literature is focused on whether revenue sharing left competitive balance

unchanged (the ‘‘invariance proposition’’) or made it worse. What seems more interesting
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is the more general counterintuitive result that competitive balance does not increase.

Vrooman (1995) called this ‘‘the revenue-sharing paradox.’’

8. This avoids the problem posed by Madden (2011) that if t1 þ t2 ¼ 1, the wage is indeter-

minate or undefined. One response to his view is to see talent in discrete (but very fine)

units and then consider best responses as being such that t1þ t2 is always one (very small)

unit less than 1.

9. Note here that for all of these possible Nash equilibria, the price of talent is reduced to the

minimum reservation wage of unity. This is one important feature that differentiates this

strategic talent choice model from the price-taking approach.

10. See, for example, a general specification of this equality in Winfree and Fort (2011). Also

note that in the duopsony model of Madden (2011), the choice of talent expenditure as the

strategic choice variable implies this equality of marginal revenue. Without the imposi-

tion of more structure on the model, for example, a specific talent supply function, or a

homogeneity restriction on the revenue functions with respect to team talent levels, noth-

ing definitive can be derived about key issues, such as the effect of revenue sharing on

competitive balance.

11. The focus here is on the limiting case, but this functional form is flexible for nonzero val-

ues of y.

12. This concave revenue function reflects the uncertainty of outcome hypothesis that fans

prefer winning close contests. Vrooman calls this the Yankee paradox where

qij ¼ jwij þ ð1� jÞwijwji and fan preference for competitive balance is an empirical

question 1� jð Þ: In the quadratic case, j ¼ :5 for wij ¼ 1� wji.

13. See Fort and Winfree (2009) for the implications of other specifications of contest success

functions.

14. One important feature of this MRP function is zero-degree homogeneity in team talent

levels. Changing both teams talent level in the same proportion leaves revenue unaf-

fected. Madden (2011) argues that this is an undesirable feature. This feature is respon-

sible later for important effects of revenue sharing on league talent.

15. Alternatively

MRPi ¼ MRiMPi ¼ qRi=qti ¼ ðqRi=qwiÞðqwi=qtiÞ
¼ ½mitj=ðti þ tjÞ�½tj=ðti þ tjÞ2� ¼ mit

2
j =ðti þ tjÞ3:

16. This feature is not shared by Madden (2011) where talent expenditure is the strategic

choice variable.

17. For ‘‘smaller’’ markets, the convergence of best-response curves may not get closer to

0.5, 0.5. This suggests that as y! 0, the unique solution pair becomes arbitrarily close

to the t1¼ 1� t2 locus as long as m1 and m2 are sufficiently large, while the solution pair

approaches the constant marginal cost case when m1 and m2 are sufficiently small. See

Figure 4 for a description of the precise meaning of ‘‘sufficiently large.’’

18. An example of the talent drain occurred when French Ligue1 was ranked last of the Big 5

leagues in Europe by Union of European Football Associations (UEFA) in 2001, while

FIFA had the French national team ranked first in the world. The quality of Ligue 1 was
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declining because of a talent drain, while the French national team was strong, because of

the development of French grassroots talent and French talent playing for higher wages

throughout Europe. Before 2005, French Ligue 1 TV revenue-sharing formula allocated

83% for solidarity, 10% merit, and 7% appearances. Increased merit sharing under Charte

2002 des clubs de football was justified on the premise that large market Ligue 1 clubs

were at a disadvantage in international competition (Champions League) because of sol-

idarity sharing. Beginning in 2005, Ligue 1 changed its formula to 50% solidarity, 30%

league finish, and 20% appearances.

19. Similar results of decreasing competitive balance from increased revenue sharing is

found in Vrooman (2007, 2009), but the price-taking model could not separate the effects

on talent from the cost per unit of talent.

20. Vrooman (1995) first used exponential revenue and cost functions for equilibrium

w1/w2 ¼ [m1/m2]a/b.
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