A simplified derivation of Wang and Busemeyer's Q-test

JM Yearsley

December 10, 2014

Notation: We have two measurements, A and B, to which Ps can respond "yes" or "no". The projection operators corresponding to these measurement outcomes are $P_{A}, P_{\bar{A}}, P_{B}, P_{\bar{B}}$, with $P_{A}+P_{\bar{A}}=P_{B}+P_{\bar{B}}=1$.

This derivation makes use of the properties of commutators and projection operators, which together imply,

$$
\left[P_{A}, P_{B}\right]=\left[P_{A},\left(1-P_{\bar{B}}\right)\right]=-\left[P_{A}, P_{\bar{B}}\right]=\left[P_{\bar{B}}, P_{A}\right], \text { etc. }
$$

Note however that the use of commutators is just a mathematical convenience.
Now for the derivation. We begin with,

$$
\left[P_{A}, P_{B}\right]-\left[P_{A}, P_{B}\right]=0
$$

Inserting two copies of the identity gives,

$$
P_{A}\left[P_{A}, P_{B}\right]+P_{\bar{A}}\left[P_{A}, P_{B}\right]-\left[P_{A}, P_{B}\right] P_{B}-\left[P_{A}, P_{B}\right] P_{\bar{B}}=0
$$

Now we use the property of the commutator noted above, to get,

$$
P_{A}\left[P_{\bar{B}}, P_{A}\right]+P_{\bar{A}}\left[P_{B}, P_{\bar{A}}\right]-\left[P_{B}, P_{\bar{A}}\right] P_{B}-\left[P_{\bar{B}}, P_{A}\right] P_{\bar{B}}=0
$$

Expanding out the commutators gives,

$$
P_{A} P_{\bar{B}} P_{A}+P_{\bar{A}} P_{B} P_{\bar{A}}-P_{B} P_{\bar{A}} P_{B}-P_{\bar{B}} P_{A} P_{\bar{B}}=0
$$

Since this operator is identically zero, it follows that for any density matrix ρ,

$$
\operatorname{Tr}\left(\left\{P_{A} P_{\bar{B}} P_{A}+P_{\bar{A}} P_{B} P_{\bar{A}}-P_{B} P_{\bar{A}} P_{B}-P_{\bar{B}} P_{A} P_{\bar{B}}\right\} \rho\right)=0
$$

By the linearity and cyclic property of the trace this gives,

$$
p(A y B n)+p(A n B y)-p(B y A n)-p(B n A y)=0
$$

Where $p(A y B n)=\operatorname{Tr}\left(P_{\bar{B}} P_{A} \rho P_{A}\right)$ etc. This is Wang and Busemeyer's Q-test.
There are two points worth noting;

1. This derivation does not rely on any property of 'reciprocity' or similar.
2. Instead the properties that are used are actually properties of the operators P_{A} etc. Specifically we use

- Completeness, $P_{A}+P_{\bar{A}}=1$ etc.
- Idempotency, $P_{A}^{2}=P_{A}$ etc.

The second property in particular holds only if the P's are projection operators, which means in theory the Q-test could be violated by POVM type measurements.

