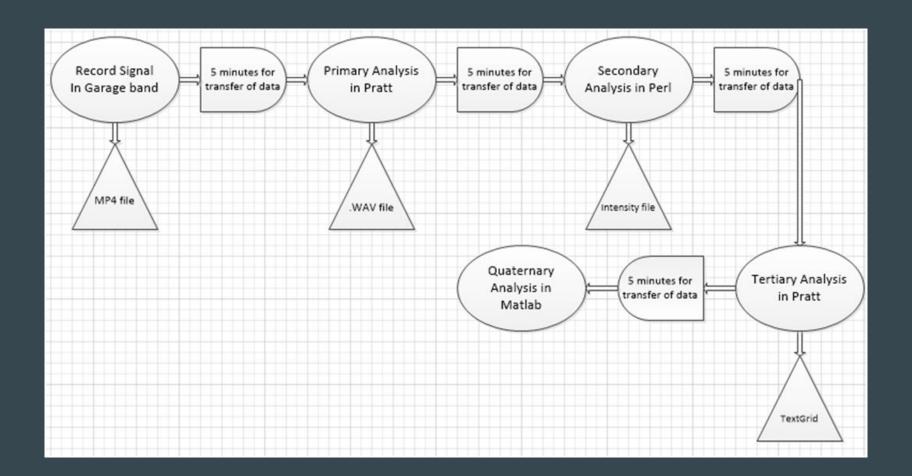
Oral Presentation #6 Clinical Analysis of Speech Rhythms in Language Development using MATLAB

Ben Christ, Madeline Girard, Zeynep Sayar, Cathleen Trespasz


Problem Statement

Preliminary research has been conducted that indicates a correlation exists between an **individual's rhythmic capabilities and language development**.

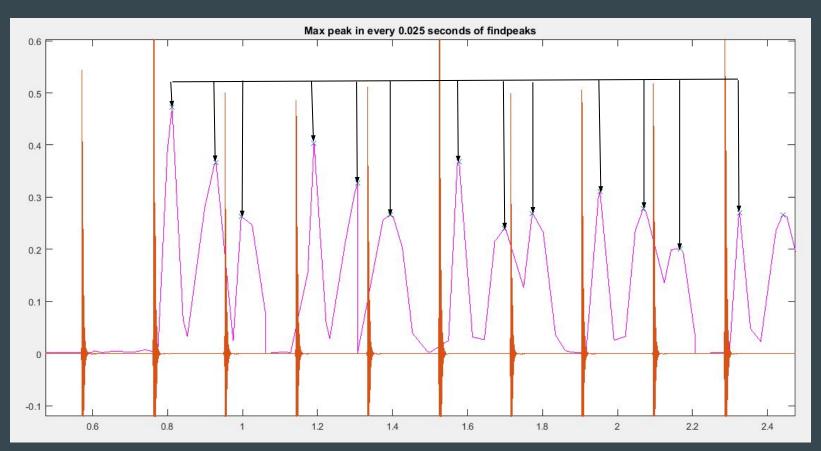
Currently, the data analysis process used to determine an individual's rhythmic abilities is **inefficient** and **impractical** in a clinical setting.

No data analysis process or system exists to assess an individual's speech rhythm. There is a need in the industry for **a diagnostic technique** that efficiently analyzes the individual's recorded speech to determine whether their rhythm is considered good or bad.

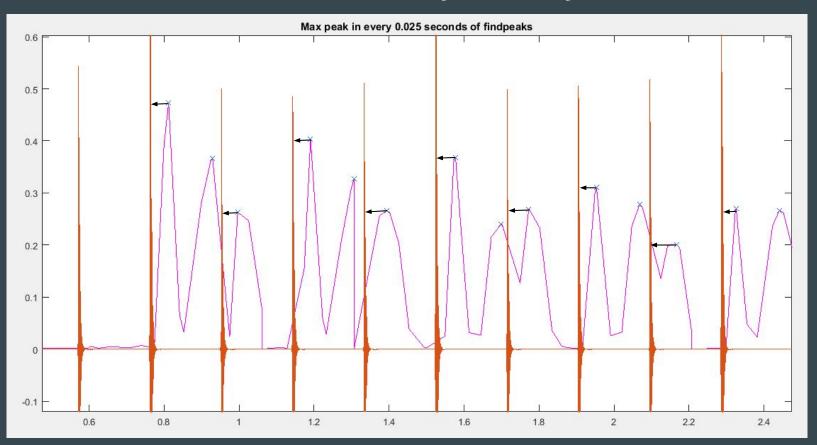
There is an immediate need in the Gordon lab for **a data analysis** process that quickly and efficiently judges rhythm in speech. Beyond the Gordon lab, there is a **clinical need for a device** with an intuitive interface that is capable of immediate analysis and display of feedback

Needs Assessment

- Must (simultaneously):
 - Detect the rhythm of the English language
 - Detect the rhythm of musical metronomes
- Must streamline data in one software program
- Must reduce time needed to analyze data
- Must use consistent analytics
- Must provide feedback to user and lab staff
- Must have intuitive interface
- Must store data for future analysis and retrieval
- Must be safe, physically compatible with children, and comfortable

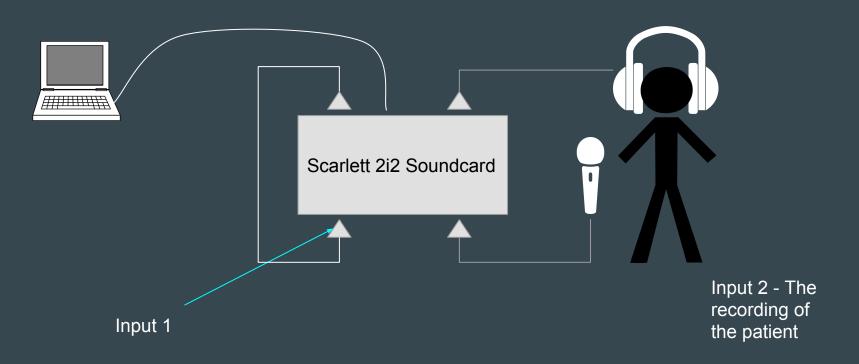

Specific Language Impairment

- A "disorder that delays the mastery of language skills in children who have no hearing loss or other developmental delays" [1]
- About 7-8% of kindergartners have SLI
- The cause is unknown but there does seem to be a genetic link
- Symptoms:
 - Beginning to talk after 2 years of age
 - Not being understood after 3 years of age
 - Difficulty with verbs- dropping the 's' in present tense, avoiding past tense, etc.
 - Studies have shown that there is difficulty in processing rhythm in speech & music [2]
 - Also limited phonological awareness with rhyming, syllable deleting, segmentation and blending [3]
 - General lack of confidence when speaking


Music Cognition Lab Participants

- Identification of SLI:
 - Often identified by parents and/or teachers
 - There are numerous identification tools but they all focus on grammar and verb usage
- Potential subjects are found from pediatric speech clinics, flyers, and word of mouth
- How are subjects chosen for the study?
 - Potential subjects have screening visits to quantify language skills
 - Occurs by administering the SPELT-3 exam
 - This data excludes late talkers and untrue SLI

Manifestation of SLI- Nuclear Synchrony


Manifestation of SLI- Global Synchrony

Design Components

- MATLAB program:
 - Collect and analyze speech and metronome tracks
 - Utilization of toolbox functions and circular statistics (PsychoPhysics toolbox, Gstreamer)
 - Feedback and user interface to assess patient rhythm consistency and accuracy
- Data analysis program must be compatible with:
 - Various computer operating systems
 - A microphone (SM 58)
 - Headphones (any brand)
 - External Soundcard (Scarlett 2i2 system)
- The design of the study will:
 - Determine the rhythm baseline by sampling a population of individuals with normal speech development
 - Longitudinally assess impact of musical training on speech rhythm therapy

Soundcard Application working diagram

Design Components: MATLAB Program

- I. Load data into MATLAB
- II. Filter the signal
 - A. Take envelope of raw data: *abs(hilbert())*
 - B. Butterworth lowpass filter: *butter*

III. Locate speech peaks

- A. [pks, loc] = findpeaks(data) returns peak amplitude and index
- B. *for* loop converts indices to time
- C. for loop runs through the vector of the location of peaks converted to time
 - 1. *if* statement locates time points within a specific, predetermined division of time.
 - 2. The maximum peak amplitude is found within the time division using an *if* statement. This value and its associated time value are saved to a new vectors.
 - 3. The process is repeated for the next time division.
- D. findpeaks locates absolute speech peak

Design Components: MATLAB Program

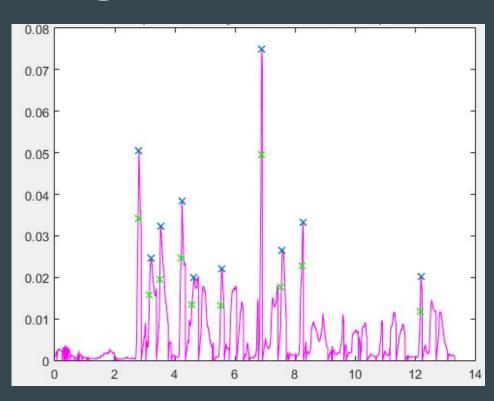
IV. Eliminate multiple points found on same speech peak

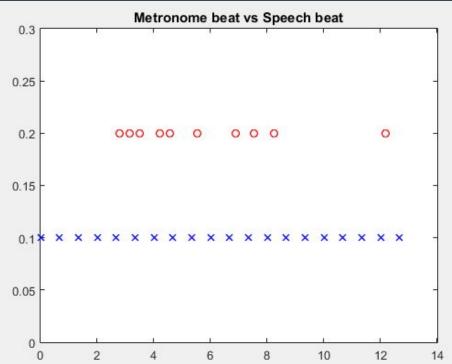
- A. for loop runs through all peak locations. Two subsequent peak locations are looked at at a time.
 - 1. if the two peak locations are spaced far enough in time (>=0.2s), both are valid peaks and saved to a new array. If not, only the first peak is saved to the final array.

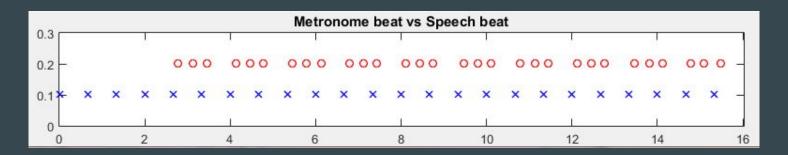
V. Locate speech beats

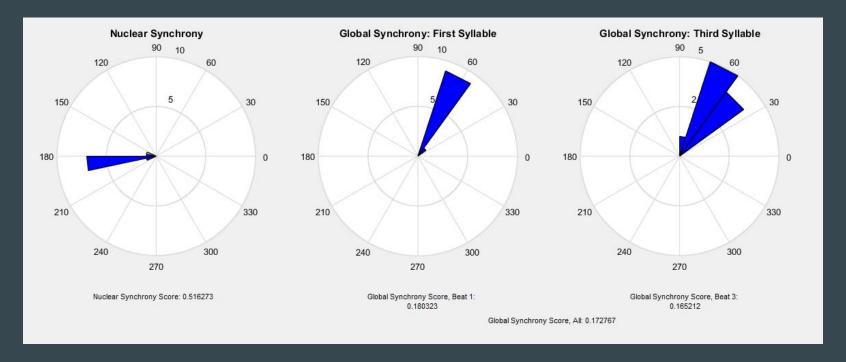
- B. resample filtered data to reduce array size
- C. interpolate peak location and amplitude data to same size as resampled data
- D. for loop runs through resampled data
 - 1. for loop calculates 60% of each speech peak
 - a) find all values in the resampled array for each 60% value
 - b) for loop to compare indices found with the specific speech peak location. if the 60% value found is the last value found before the location of the associated speech peak, it is the speech beat associated with that peak. 60% indices and associated amplitudes are saved to a new array.

Design Components: MATLAB Program

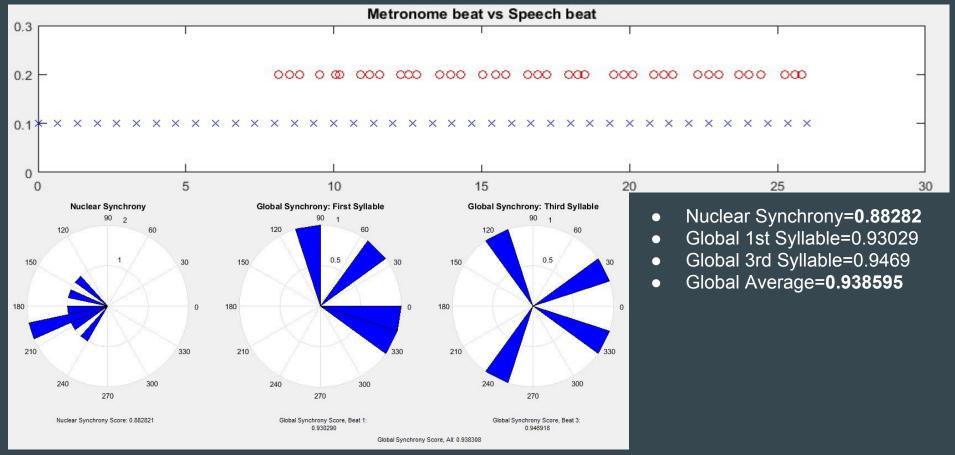

VI. Nuclear Synchrony


- A. locate the first, second, and third syllables of every phrase (ex: $syllable1 = t_60(1:3:end)$;)
- *B. for* loop to find the difference in time between first and second syllables of every phase and first syllables of subsequent phrases
- C. phase = (difference between first and second syllables)/(difference in time between first syllables)
- D. Nuclear synchrony score = mean of phase values
- E. circ_r: mean resultant vector length

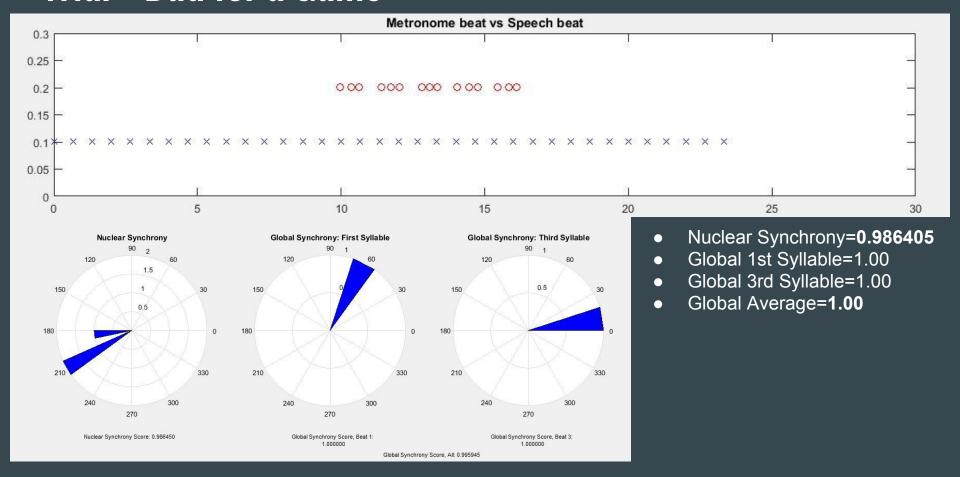

VII. Global Synchrony


- A. *for* loop separates metronome beats into two vectors: first and second beats
- B. *for* loop calculates the time difference between the first syllable and first metronome beat and the third syllable and second metronome beat for each phrase
 - a. if both time differences are less than 0.666 seconds (one metronome beat), the phase is calculated
- C. phase = (time difference)/0.666; Global synchrony score = *mean* of phase values
- D. circ r: mean resultant vector length

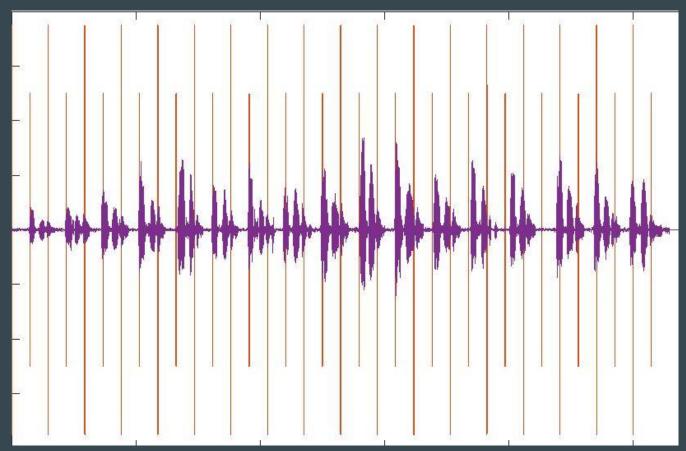
Progress: Hand Adjustments



Data Summary

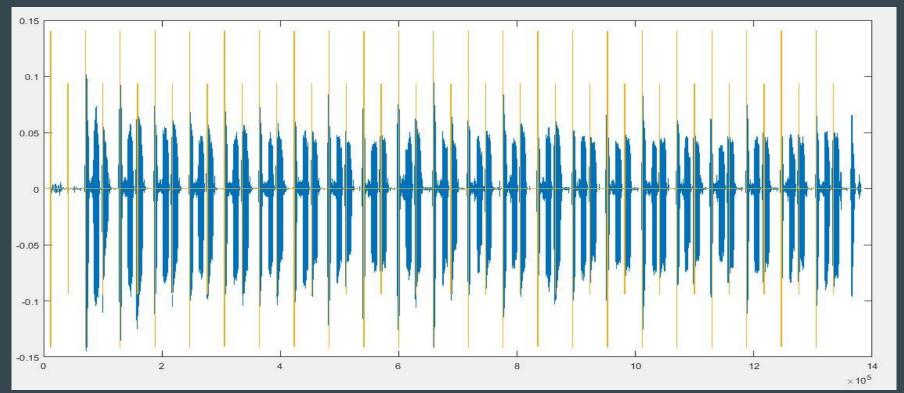

	Phrase	Nuclear Synchrony	Global 1st Syllable	Global 3rd Syllable	Global Synchrony
Pilot Study	Bad for a game	0.88282	0.93029	0.9469	0.938595
	Bank for a doll	0.91205	0.972687	0.96402	0.9683535
	Go for a boot	0.96706	0.973555	0.964241	0.968898
	Averages	0.920643333	-		0.9586155
Trial	Bad for a dance	0.941772	1.00	1.00	1.00
	Beg for a duck	0.947227	0.999888	0.999199	0.9995435
	Go for a boot	0.947483	0.991868	0.994896	0.993382
	Bad for a game	0.986405	1.00	1.00	1.00
	Bank for a doll	0.916409	0.993932	0.99292	0.993426
	Averages	0.9478592	-		0.9972703

- Elementary aged children considered to have good & normal speech
- It has been scheduled for us to collect more data in the upcoming weeks
 - 2-3 children with normal speech
 - 1 child with SLI


Pilot Study- "Bad for a game"

Trial- "Bad for a Game"

Trial- "Bad for a Game"


Temporary Setup for Analysis vs. Design Day Setup

- Recorded using FocusRite sound card
- Metronome played & speech recorded through Audio Live Lite
- Metronome and speech files were trimmed and exported as .wav files separately
- Using Simulink the .wav files were called and converted into MATLAB variables
- Analysis of metronome and speech workspace variables

- Recorded using FocusRite sound card
- Metronome played & speech recorded into MATLAB
- Analysis of metronome and speech workspace variables

Progress: Soundcard

• The Soundcard, using MATLAB code, now simultaneously plays the metronome while recording speech

Demonstration

- We are going to play a metronome for you, through headphones, using the soundcard
- While listening to the metronome we will say the phrase "Bad for a game" two times with you
- Then you will continue to say "Bad for a game" to the metronome on your own for 10 times

Next Steps

- Collect data in the upcoming trials for children both with and without SLI
- Continue to work on perfecting playing the metronome with the sound card
- Further improve consistency (improve ease of hand adjustments, etc.)
- Further investigate why our circular statistic output values are so high (and global synchrony code)
- Work with the Music and Cognition Lab to agree upon an appropriate metronome frequency

Questions & Comments

Resources

[1]http://www.nidcd.nih.gov/health/voice/pages/specific-language-impairment.aspx

[2]http://www.nuffieldfoundation.org/rhythmic-perception-music-and-language

[3]http://www.asha.org/PRPSpecificTopic.aspx?folderid=8589935327§ion=Signs_a nd_Symptoms