FeedRite Feeding Tube

Alexander Heilman Graham Husband Katherine Jones Ying Lin

Problem

Gastric bypass is an invasive procedure that requires up to 5 days of hospitalization and has a narrow patient population (those with a BMI greater than 40 or greater than 35 with obesity-related conditions; roughly 18 million Americans) in comparison with the rate of obesity in America (78.6 million Americans; defined as BMI > 30). In addition, gastric bypass can cost ~\$25,000 (depending on state of residence), reducing the number of patients who receive the procedure to 1% of those who qualify. Current analogs to gastric bypass use naso-duodenal feeding tubes that rely on repeated fluoroscopic procedures and several hours for proper tube placement.

Background

- Problems: Obesity, Type II Diabetes
- Solution: Gastric Bypass Surgery
 - Lose weight, may reverse diabetes
 - Expensive
 - Invasive and risky

Background

Alternative Solution: Naso-duodenal Feeding Tube

- Confirmation of placement X-ray
- **Existing device Cortrak EAS**
- Our design less expensive, confident placement

Potential Market

- Obesity and Type II Diabetes 9 % of American adults
- Gastric Bypass Procedures 180,000 per year
- □ Marketing:
 - Medical professionals at hospitals
 - Individual patients at home

Needs Assessment

- Device must be radiation-free
- Device must integrate a second method that ensures proper tube positioning
- Feeding tube must require 1 outpatient appointment for placement
- Tubing must be biocompatible
- Must be portable such that it can be used throughout a hospital
- Primary placement tool must be detachable from tube after placement
- Device must verify differences between duodenum and jejunum
- Device must provide real-time updates of tube position

Original Design Components

Confirming Position

- pH sensors
- Gastrointestinal motility sensors
- Imaging
 - Ultrasound
 - Camera
- Aim
 - Minimize cost and equipment
 - Maximum return for money invested

Design Components

- Mimic endoscope surrounded by feeding tube
- Camera
 - □ Visualize current position
 - Measure gastrointestinal motility
- Strain Gages
 - Track path
- Removable insert

Future Design Considerations

- Measure motility using electromyography
- Handle and camera/light controls
- Attachment and detachment of tube for smooth insertion and removal
- Specific materials

Conclusions

- Effective alternative to gastric bypass surgery
- Very open market
 - Only one competitor
 - □ Significant differences between the two devices
- Many options for placement assessment
 - Imaging
 - Physiological Sensors
 - Electromyography

Next Steps

Advisor Meetings

- Dr. Naji Abumrad Thursday, November 19
- Dr. Pietro Valdastri, Dr. William Grissom, Dr. Cynthia Paschal
- Narrowing down features
- Locating facility to test device
- Initial prototyping