FeedRite Feeding Tube

Alex Heilman Graham Husband Katherine Jones Ying Lin

Problem Statement

Gastric bypass is an invasive procedure that requires up to 5 days of hospitalization and has a narrow patient population (those with a BMI greater than 40 or greater than 35 with obesity-related conditions; roughly 18 million Americans) in comparison with the rate of obesity in America (78.6 million Americans; defined as BMI > 30). In addition, gastric bypass can cost ~\$25,000 (depending on state of residence), reducing the number of patients who receive the procedure to 1% of those who qualify. Current analogs to gastric bypass use naso-duodenal feeding tubes that rely on repeated fluoroscopic procedures and several hours for proper tube placement.

Needs Assessment

- Device must be radiation-free
- Device must integrate a second method that ensures proper tube positioning
- Feeding tube must require 1 outpatient appointment for placement
- Tubing must be biocompatible
- Must be portable such that it can be used throughout a hospital
- Primary placement tool must be detachable from tube after placement
- Device must verify differences between duodenum and jejunum
- Device must provide real-time updates of tube position

Background

- Problems: Obesity, Type II Diabetes
- Solution: Gastric Bypass Surgery
 - Lose weight, may reverse diabetes
 - Invasive, risky and expensive
 - For patients with BMI > 40, or BMI > 35 with obesity-related conditions

Background

- Alternative Solution: Nasoduodenal Feeding Tube
 - For patients with BMI > 30, or unqualified for gastric bypass surgery because of age or physical conditions
 - Existing device Cortrak EAS
 - Our design less expensive, confident placement

The tip of the Stylet contains an electromagnetic transmitter that generates a real-time signal as the feeding tube is inserted and advanced to the desired placement.

The signal from the Transmitting Stylet is tracked throughout the placement procedure via a lightweight Smart Receiver Unit (SRU) that is placed on the patient's Xiphoid process. The All-In-One Monitor triangulates the signal from the SRU and displays a real-time representation of the feeding tube tip's passage as it proceeds down the esophagus and into the preferred placement position—gastric, duodenal, or jejunal.

Potential Market

- Obesity and Type II Diabetes 9 % of American adults
- Gastric Bypass Procedures 180,000 per year
- Marketing:
 - Medical professionals at hospitals
 - Individual patients at home

Evidence

Tran, K., Brun, R., & Kuo, B. (2012). Evaluation of regional and whole gut motility using the wireless motility capsule: relevance in clinical practice. *Therapeutic Advances in Gastroenterology*, *5*(4), 249-260.

Physiology of Gastrointestinal System-pH

- Saliva (pH range 6.5-7.5)
- Stomach (pH range 1.5-2.5)
 - Parietal cells secrete HCl
 - o G cells secrete gastrin
 - Chief cells secrete pepsinogen
- Purpose of low pH: immune barrier to microorganisms, activate digestive enzymes

Physiology of Gastrointestinal System-pH

- Duodenum (pH brought to 7)
 - Cholecystokinin (CCK) stimulates
 release of bile from gallbladder
 - Secretin stimulates the release of sodium bicarbonate from pancreas
 - Brunner's glands produce alkaline secretion
 - Purpose of pH: Activate intestinal enzymes for absorption, deactivate digestive enzymes for breakdown, protect intestinal lining
- Jejunum (pH up to 8)
- Colon (pH stable about 7-7.5)

Physiology of Gastrointestinal System-Pressure

• Pressure profile (Kuo et al. [2010]):

•

	Area under pressure curve (mmHg/s) (median, n =71)
Stomach	4790 {3091, 6933}
Small intestine	5182 {2791, 7538}

Major limitations:

- Wide range of pressure in both stomach and small intestine difficult to differentiate
- Gastroparetic patients have about 10% reduction in pressure profile, while gastroparetic patients with diabetes have about 15% reduction in pressure profile.

Design

Design

pH Sensor - Option 1

pH Microsensor by PreSens Precision Sensing

Specifications		
Measuring range	5.5 - 8.5 pH	
Response time at 25° C	30 sec	
Resolution at pH = 7	± 0.01 pH	
Accuracy at pH = 7	± 0.05 pH	
Drift at pH = 7	< 0.05 pH per day	
Temperature range	5 - 50 °C	

pH Sensor - Option 2

NMPH2B Beetrode Micro pH Electrode by World Precision Instruments

Specifications		
Measuring range	0 - 14 pH	
Response time at 25° C	10 sec	
Resolution at pH = 7	± 0.01 pH	
Drift at pH = 7	< 2.5 mV / 5 min	
Temperature range	5 - 50 °C	
Tip diameter	100 μm	

Circuit Schematic

Pressure Sensor

OPP-M Pressure Sensor by OpSens Solutions

Specifications		
	OPP-M250	
Dimension (mm O.D.)	0,25 mm OD	
Pressure range	- 300 mmHg to + 350 mmHg (relative to atmospheric pressure)	
Precision	± 1 mmHg	
Resolution	0.2 mmHg	
Moisture drift (typical)	< 3 mmHg/28 days	
Thermal coefficient of Zero (typical)	0.2 mmHg per °C	
Proof pressure	4000 mmHg	
Operating temperature	10 °C to 50 °C	
Operating humidity range	0-100%	
EM/RF/MR/MW susceptibility	Complete immunity	
Cable length	1.5 meters standard (Other lengths available)	
Optical connector	SC standard	
Cable sheathing	Customer specifications	
Signal conditioner compatibility:best suited for MiniP OEM board, LifeSens and ProSens; also compatible with other Opsens WLPI signal.		
NOTE: The OPP-M product is designed to be integrated into customer host system but is not approved by the FDA or by any applicable regulatory bodies.		

Circuit Schematic

Parts Ordered

- EZO embedded pH circuit from Atlas Scientific
- BMP180 Pressure Sensor from Adafruit

New part needed:

pH Probe from Atlas Scientific

Potential parts for the future:

- pH microsensor by PreSens
- NMPH2B Beetrode Micro pH Electrode by World Precision Instruments
- OPP-M micro-pressure sensor and OEM-MNP Signal Condition by OpSens

Future Directions

- Meet with advisor Dr. Abumrad
 - Discuss ideas for final design
 - Review testing procedures
 - Evaluate first prototype
- Meet with Dr. Mahadevan-Jansen
 - Receive feedback on unfamiliar fiber optic components of design
- Build first prototype
 - Waiting on parts
 - Some elements remain in final design

Grant Proposal Modifications

- Specify target patient population: patients who are not qualified for gastric bypass surgery because of age, physical conditions or other concerns.
- Physiology behind this device pH and pressure.
- Specifications for pH and pressure sensors, circuit schematic.