FeedRite Feeding Tube

•••

Alex Heilman Graham Husband Katherine Jones Ying Lin

Problem Statement

Gastric bypass is an invasive procedure that requires up to 5 days of hospitalization and has a narrow patient population (those with a BMI greater than 40 or greater than 35 with obesity-related conditions; roughly 18 million Americans) in comparison with the rate of obesity in America (78.6 million Americans; defined as BMI > 30). In addition, gastric bypass can cost ~\$25,000 (depending on state of residence), reducing the number of patients who receive the procedure to 1% of those who qualify. Current analogs to gastric bypass use naso-duodenal feeding tubes that rely on repeated fluoroscopic procedures and several hours for proper tube placement.

Needs Assessment

Device must be radiation-free

Device must integrate a second method that ensures proper tube positioning

Feeding tube must require 1 outpatient appointment for placement

Tubing must be biocompatible

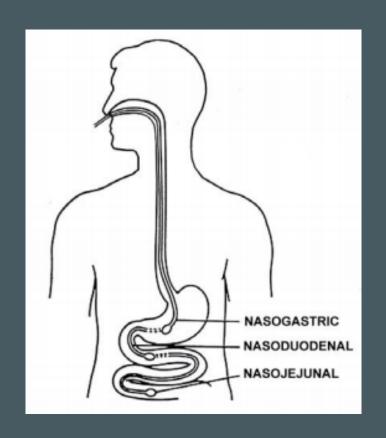
Must be portable such that it can be used throughout a hospital

Primary placement tool must be detachable from tube after placement

Device must verify differences between duodenum and jejunum

Device must provide real-time updates of tube position

Background


Problems: Obesity, Type II Diabetes

Solution: Gastric Bypass Surgery

Lose weight, may reverse diabetes

Invasive, risky and expensive

For patients with BMI > 40, or BMI > 35 with obesity-related conditions

Background

Alternative Solution: Nasoduodenal Feeding Tube

For patients with BMI > 30, or unqualified for gastric bypass surgery because of age or physical conditions

Existing device - Cortrak EAS

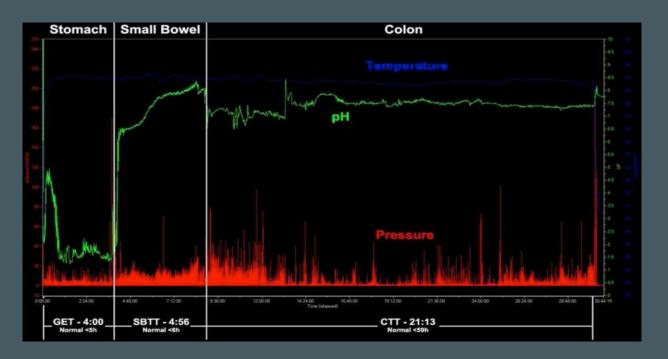
Our design - less expensive, confident placement

The tip of the Stylet contains an electromagnetic transmitter that generates a real-time signal as the feeding tube is inserted and advanced to the desired placement.

The signal from the Transmitting Stylet is tracked throughout the placement procedure via a lightweight Smart Receiver Unit (SRU) that is placed on the patient's Xiphoid process. The All-In-One Monitor triangulates the signal from the SRU and displays a real-time representation of the feeding tube tip's passage as it proceeds down the esophagus and into the preferred placement position—gastric, duodenal, or jejunal.

Potential Market

Obesity and Type II Diabetes - 9 % of American adults


Gastric Bypass Procedures - 180,000 per year

Marketing:

Medical professionals at hospitals

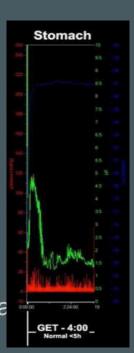
Individual patients at home

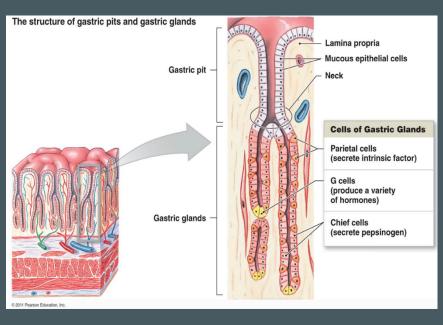
Evidence

Tran, K., Brun, R., & Kuo, B. (2012). Evaluation of regional and whole gut motility using the wireless motility capsule: relevance in clinical practice. *Therapeutic Advances in Gastroenterology*, *5*(4), 249-260.

Physiology of Gastrointestinal System--pH

Saliva (pH range 6.5-7.5)


Stomach (pH range 1.5-2.5)

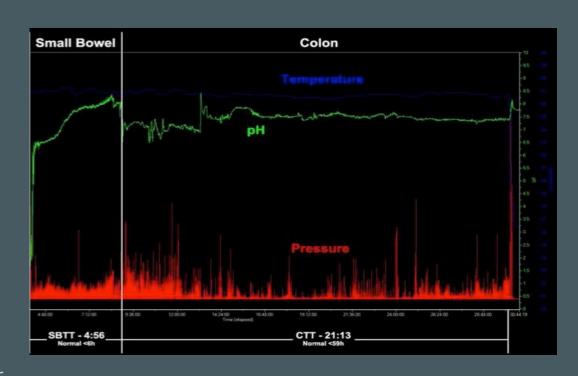

Parietal cells secrete HCI

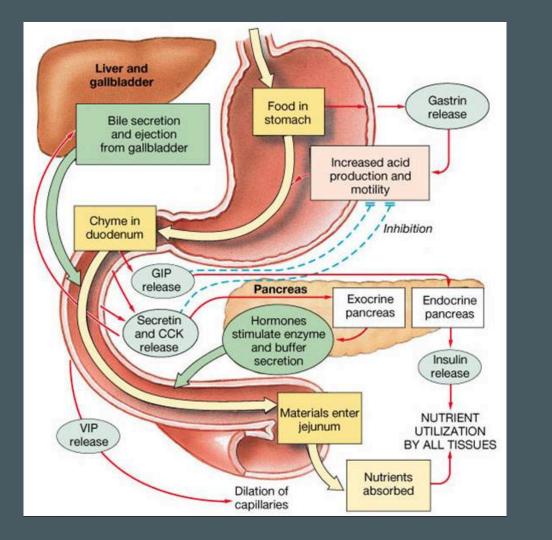
G cells secrete gastrin

Chief cells secrete pepsinogen

Purpose of low pH: immune bate to microorganisms, activate digestive enzymes

Physiology of Gastrointestinal System--pH


Duodenum (pH brought to 7)


Cholecystokinin (CCK) stimulates release of bile from gallbladder

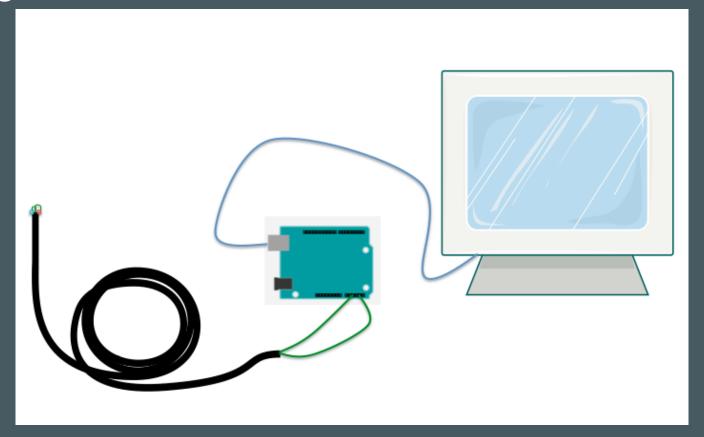
Secretin stimulates the release of sodium bicarbonate from pancreas

Brunner's glands produce alkaline secretion

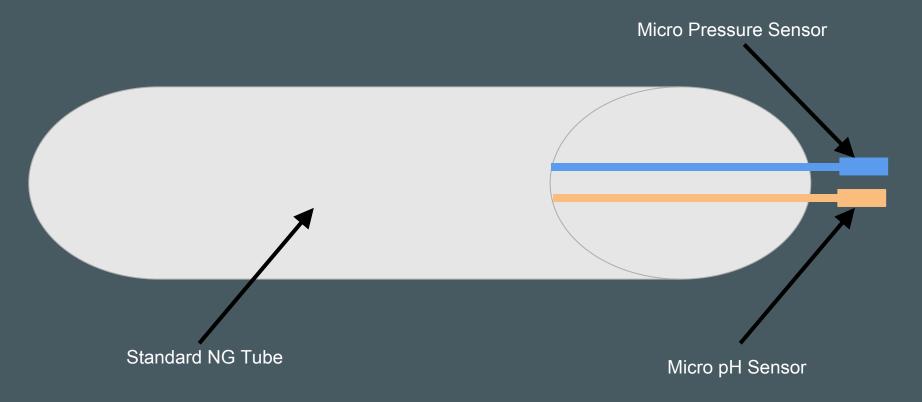
Purpose of pH: Activate intestinal enzymes for absorption, deactivate digestive enzymes for breakdown, protect intestinal

Physiology of Gastrointestinal System--Pressure

Pressure profile (Kuo et al. [2010]):

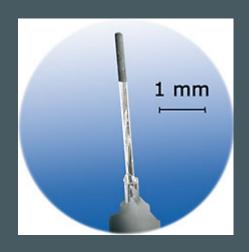

	Area under pressure curve (mmHg/s) (median, n =71)
Stomach	4790 {3091, 6933}
Small intestine	5182 {2791, 7538}

Major limitations:


Wide range of pressure in both stomach and small intestine - difficult to differentiate

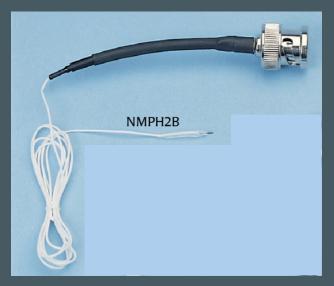
Gastroparetic patients have about 10% reduction in pressure profile, while

Design

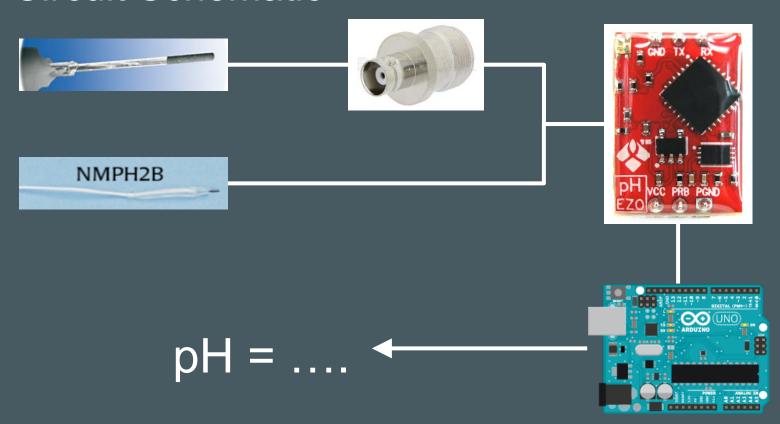


Design

pH Sensor - Option 1


pH Microsensor by PreSens Precision Sensing

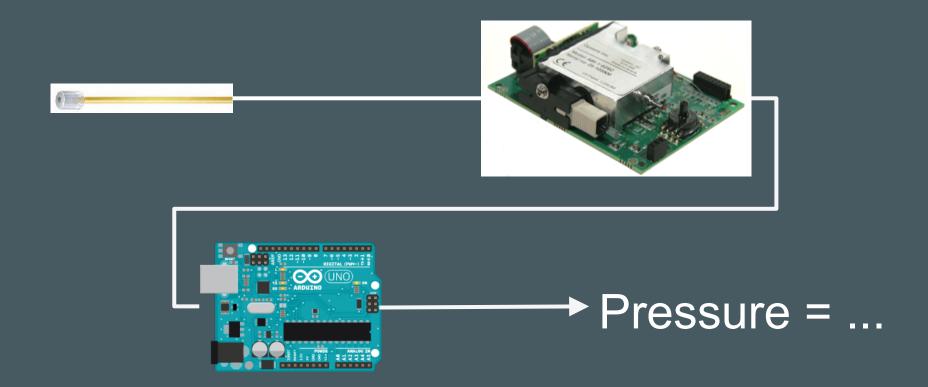
Specifications		


pH Sensor - Option 2

NMPH2B Beetrode Micro pH Electrode by World Precision Instruments

Specifications		

Circuit Schematic


Pressure Sensor

OPP-M Pressure Sensor by OpSens Solutions

Specifications		
	OPP-M250	
Dimension (mm O.D.)	0,25 mm OD	
Pressure range	- 300 mmHg to + 350 mmHg (relative to atmospheric pressure)	
Precision	±1 mmHg	
Resolution	0.2 mmHg	
Moisture drift (typical)	< 3 mmHg/28 days	
Thermal coefficient of Zero (typical)	0.2 mmHg per °C	
Proof pressure	4000 mmHg	
Operating temperature	10 °C to 50 °C	
Operating humidity range	0-100%	
EM/RF/MR/MW susceptibility	Complete immunity	
Cable length	1.5 meters standard (Other lengths available)	
Optical connector	SC standard	
Cable sheathing	Customer specifications	
Signal conditioner compatibility:best suited for MiniP OEM board, LifeSens and ProSens; also compatible with other Opsens WLPI signal.		
NOTE: The OPP-M product is designed to be integrated into customer host system but is not approved by the FDA or by any applicable regulatory bodies.		

Circuit Schematic

Parts Ordered

EZO embedded pH circuit from Atlas Scientific

BMP180 Pressure Sensor from Adafruit

New part needed:

pH Probe from Atlas Scientific

Potential parts for the future:

pH microsensor by PreSens
NMPH2B Beetrode Micro pH Electrode by World Precision Instruments
OPP-M micro-pressure sensor and OEM-MNP Signal Condition by OpSens

Future Directions

- Meet with advisor Dr. Abumrad
 - Discuss ideas for final design
 - Review testing procedures
 - Evaluate first prototype
- Meet with Dr. Mahadevan-Jansen
 - o Receive feedback on unfamiliar fiber optic components of design
- Build first prototype
 - Waiting on parts

Grant Proposal Modifications

Specify target patient population: patients who are not qualified for gastric bypass surgery because of age, physical conditions or other concerns.

Physiology behind this device - pH and pressure.

Specifications for pH and pressure sensors, circuit schematic.