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Abstract—This paper introduces a clustering algorithm,
called principal coordinate clustering. It takes in a similarity
matrix SW of a data matrix W and computes the singular
value decomposition of SW to determine the principal
coordinates to convert the clustering problem to a simpler
domain. It is a relative of spectral clustering, however,
principal coordinate clustering is easier to interpret, and
gives a clear understanding of why it performs well.
In a fashion, this gives intuition behind why spectral
clustering works from a more simple, linear algebra
perspective, beyond the typical explanations via graph
cuts, or other techniques. Moreover, it was demonstrated
through experimentation on real and synthetic data that
the proposed method performs equally well on average as
spectral clustering, and that the method has the ability to
scale quite easily to truly large data.

Index Terms—Spectral clustering, principal component
analysis, similarity matrix, clustering.

I. INTRODUCTION

Currently, there are many methods which attempt to
tackle the problem of clustering data lying in very high
dimensional Euclidean space. From dimension reduction
techniques to manifold learning to graph-based cluster-
ing algorithms, every method competes to take a set
of data and reduce its complexity to make it more
managable. Clustering methods strive to sort the data
into meaningful subgroups, or clusters, which represent
different natures represented therein.

Prior to implementing a clustering algorithm, often a
similarity matrix related to the data is obtained which
somehow captures the nature of how connected the
data is. Spectral clustering in particular, takes a given
similarity matrix to be the adjacency matrix of an
undirected, weighted graph, which is then converted
into a positive semi-definite matrix by taking its graph
Laplacian. Subsequently, if there are assumed to be
k clusters in the data, a matrix U is formed whose
columns are the k eigenvectors of the graph Laplacian
corresponding to its k largest eigenvalues. Finally, the
rows of U are clustered using a traditional clustering

technique such as k–means. Spectral clustering is also
widely used in many subspace segmentation algorithms
(as last step) that focus on clustering data that comes
from a union of subspaces [1], [2], [3], [4], [5], [6], [7],
[8].

In [9], it is stated that “on the first glance spectral
clustering appears slightly mysterious, and it is not
obvious to see why it works at all and what it really
does,” an assessment which is borne out by the many
different viewpoints of what spectral clustering is. The
goal of this paper is to present a simple algorithm which
is quite similar in spirit to traditional spectral clustering,
and moreover which performs essentially the same as
spectral clustering on real and synthetic data, but whose
success is more intuitively easy to understand. Moreover,
the proposed method is exceedingly easy to implement,
and in theory, requires no pre-processing of a similarity
matrix, contrary to spectral clustering. Reflecting its
similarity to principal component analysis, the algorithm
is called principal coordinate clustering, and is derived
simply from the Singular Value Decomposition of the
similarity matrix.

Definition 1 (Similarity Matrix). Let W ∈ Rm×n be a
data matrix. We say SW is a similarity matrix for W if
(i) SW is symmetric, and (ii) SW(i, j) 6= 0 implies that
wi and w j come from the same cluster, and SW(i, j) = 0
implies that wi and w j come from different clusters.

II. PRELIMINARIES

A. Graph Laplacian Matrix

Given a similarity matrix, S, the spectral clustering
algorithms compute eigenvectors of a graph Laplacian
matrix, which is typically in one of the following forms:

L := D−S unnormalized

Lrw := In−D−1S normalized

Lsym := D−1/2LD−1/2 symmetrically normalized,

each of which can be shown to be positive semi-definite.
Additionally, L and Lsym are symmetric.



Algorithm 1: Spectral Clustering Algorithm
Require: Assume columns of data matrix

W = [w1 · · ·wn] are in Rm.
• A similarity (affinity) matrix SW = (si j), where

si j determines how close xi and x j in some
sense. For example,
si j = exp(−||xi−x j||22/2σ2) if i 6= j and sii = 1.

• The number of clusters, k.
1: Compute the diagonal degree matrix

D = Diag(d1, · · · ,dn) where di = ∑
n
j=1 si j.

2: Compute a graph Laplacian matrix, L.
3: Compute the k eigenvectors u1, · · · ,uk

corresponding to k largest eigenvalues of the graph
Laplacian.

4: Build the matrix Uk = [u1 · · · uk] ∈ Rn×k.
5: Apply a traditional clustering technique (such as

k-means) in Rk to the rows of Uk.

B. Singular Value Decomposition

Let W ∈ Rm×n with m > n. Then its Singular Value
Decomposition (SVD) is given as follows:

W =UΣV T

=
[
u1 u2 · · · um
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where U ∈ Rm×m, Σ ∈ Rm×n, and V ∈ Rn×n. If
rank(W) = r, then the skinny SVD of W is UrΣrV T

r ,
where Ur comprises the first r columns of U , Σr =
Diag(σ1, . . . ,σr), and V T

r comprises the first r rows of
V T . Note here that the singular values are in descending
order σ1 ≥ . . .≥ σr.

C. Matrix Operations

Given a matrix A, we define its binary version to be the
matrix whose entries are 1 if the corresponding entry of A
is nonzero and 0 otherwise. Similarly, the absolute value
version of a matrix A is given by abs(A)(i, j) = |A(i, j)|.

III. PRINCIPAL COORDINATE CLUSTERING

Algorithm 2 is the proposed clustering algorithm,
which, while similar in spirit to spectral clustering,
provides some natural advantages, which will be seen

in the experimentation on both synthetic and real data
below.

Algorithm 2: Principal Coordinate Clustering Algo-
rithm

Require: Assume columns of data matrix
W = [w1 · · ·wn] are in Rm.
• A similarity (affinity) matrix SW = (si j),
• The number of clusters, k.

1: Compute rank-k skinny SVD of SW =UkΣkV T
k .

2: Build the matrix ΣkV T
k ∈ Rk×n.

3: Apply a traditional clustering technique (such as
k-means) in Rk to the columns of ΣkV T

k .

Remark 1. The graph Laplacian matrices L and Lsym
are symmetric, and therefore their rank-k skinny SVD
can be represented as L = UkΣkUT

k . The spectral clus-
tering algorithm then clusters the columns of UT

k , which
correspond to the coordinates with respect to the basis
vectors from the columns of UkΣk. On the other hand, the
principal coordinate (PC) clustering algorithm clusters
the columns of ΣkUT

k , which are the principal coordi-
nates with respect to the basis vectors u1, . . . ,uk.

Remark 2. One of the purposes of computing the
graph Laplacian in the first step of spectral clustering
is to obtain a positive semi-definite matrix. However,
principal coordinate clustering requires no such positive
semi-definite constraint.

The method proposed here is based on a simple
observation that the rank of SW is equivalent to the
number of clusters when the binary version of SW is
used. For the following illustrative example, we consider
W = [w1 · · ·wn] ∈ R15×400 where the first 150 points
come from one cluster, and remaining 250 come from
another. Here, without loss of generality, we assume that
W is sorted, so that data points belonging to the same
cluster are next to each other. At the beginning, we also
assume that there is no noise in W.

A. An Illustrative Example

Let’s first assume that we can find a perfect similarity
matrix for W such that if wi and w j are in the same
cluster, then SW(i, j) = 1, and SW(i, j) = 0 otherwise.
Hence, if we plot this similarity matrix SW as an image,
we should get an image similar to the one illustrated in
Fig. 1, where white regions correspond to 1 and indicate
that these data points are in the same clusters, and black
regions correspond to 0 and indicate otherwise.



Fig. 1. An ideal similarity matrix.

If we consider this ideal similarity matrix SW as a
data matrix, then its rank should be 2 in this particular
example, which is precisely the number of clusters
in W. Therefore, if SW = U2Σ2V T

2 , then the principal
coordinates of SW – i.e. the columns of Σ2V T

2 – will
perfectly gather at exactly two points on the correspond-
ing principal axes u1 and u2.

On the other hand, consider the slightly more general
case where W is still noise free, but we do not have an
ideal similarity matrix. A plot of the principal coordi-
nates of SW in this case is shown in Fig. 2.

Fig. 2. Principal coordinates of a non-ideal similarity matrix with
2 clusters and no noise.

Here, rather than seeing only one point on each
principal coordinate axis as in the ideal similarity matrix
case, it can be seen that the columns spread out to some
extent, but remain on the coordinate axes due to the
absence of noise.

Next, consider a more general case where W contains
noise, and hence the similarity matrix SW (shown in Fig.
3) is no longer ideal. Further analysis of this similarity
matrix reveals that even though the rank of SW is no

longer 2, the best estimate of the rank should still be 2.
The principal coordinates of SW according to Algorithm
2 are shown in Fig. 4 – i.e. these are the columns of
Σ2V T

2 .

Fig. 3. Similarity matrix for W that contains low levels of noise.

Fig. 4. Principal coordinates of a similarity matrix with 2 clusters
and relatively low noise.

Finally, consider the general case where W contains
a large amount of noise; here the similarity matrix SW
is far from ideal as shown in Fig. 5. Even though the
boundaries between clusters in SW are evidently fading,
the best estimate of the rank is still 2. The principal
coordinates of SW are shown in Fig. 6.

Fig. 5. Similarity matrix for W that contains high levels of noise.



Fig. 6. Principal coordinates of a similarity matrix with 2 clusters
and relatively high noise.

B. Remarks

To sum up, the principal coordinates of a similarity
matrix SW can be easily clustered for cases that are
close to ideal. It is observed that as the data matrix W
is contaminated with higher levels of noise, principal
coordinates merge into each other which will naturally
degrade the clustering performance. Particular examples
so far are provided for 2 clusters in order for the results
to be easier to plot and understand. Yet given that
the principal axes (columns of Uk) are orthogonal, the
proposed method nicely scales up for any cluster size k.

IV. EXPERIMENTAL RESULTS

A set of experiments are conducted on real and
synthetic data to understand how the aforementioned
clustering method performs compared to the well-known
spectral clustering algorithm. In all of the comparisons,
the same similarity matrix is fed to both methods for
clustering, and to make a consistent comparison, the final
step in both algorithms is to use k means to cluster the
columns (or rows) of the appropriate matrix.

A. Real Data – Motion Segmentation

The real data is related to a subspace clustering
problem known as motion segmentation, and Hop-
kins155 [10] is a well-known benchmark dataset for
this problem. For motion segmentation, the data comes
from a union of low-dimensional subspaces which, in
the ideal case, may be assumed to be independent.
It has been shown [11] that in this case, taking the
appropriate power of the absolute value version of the
shape interaction matrix of Costeira and Kanade [12]
yields a similarity matrix in the noiseless case. If W is
the data matrix whose columns come from the union
of low-dimensional independent subspaces, and whose

skinny SVD is W = UkΣkV T
k , then the corresponding

shape interaction matrix is VkV T
k .

For motion data, each vector lies in a 4-dimensional
subspace by nature [13]. Each set of data in the Hop-
kins155 dataset has a specified number of features.
For instance, if one data matrix from the dataset has
3 features, each lying in a 4-dimensional space, then
the rank of this matrix is well-estimated to be 12. To
compare the performance of Algorithms 1 and 2 on the
Hopkins155 dataset, for each of the 155 separate data
matrices containing feature trajectories, the correspond-
ing shape interaction matrix is used as SW and fed into
the algorithms with the rank of each matrix assumed to
be 4 times the number of features as discussed above.

Results are shown in Fig. 7 where accuracy values
corresponding to the same case are connected with a
line. Given that all methods rely on k-means at the
end, this comparison returns slightly different results on
each run. Therefore, for the results to be statistically
meaningful, this comparison is run 1000 times over the
Hopkins155 dataset. Results given in Tables I-III show
that, on the average of all 155 cases, PC clustering has
similar performance to spectral clustering.

Remark 3. In addition to the PC clustering algorithm,
we also ran a normalized PC clustering algorithm, where
the columns of ΣkUT

k were normalized prior to running
k-means. In all trials on the Hopkins155 dataset, the
performance of PC and normalized PC clustering were
the same. Thus, it is suspected that this normalization
step is extraneous in general.

Fig. 7. Accuracy comparison of PC clustering and spectral clustering
on Hopkins155 dataset.



TABLE I
% CLASSIFICATION ACCURACY FOR TWO MOTIONS.

Checker (78) Spectral PC
Average 90.29 88.97
Median 95.72 92.35

Traffic (31) Spectral PC
Average 97.58 96.61
Median 100.00 100.00

Articulated (11) Spectral PC
Average 88.69 88.81
Median 100.00 100.00

All (120 seq) Spectral PC
Average 92.03 90.93
Median 97.94 95.99

TABLE II
% CLASSIFICATION ACCURACY FOR THREE MOTIONS.

Checker (26) Spectral PC
Average 77.94 79.68
Median 80.52 84.45

Traffic (7) Spectral PC
Average 69.61 73.35
Median 69.53 70.99

Articulated (2) Spectral PC
Average 82.45 82.45
Median 82.45 82.45

All (35 seq) Spectral PC
Average 76.01 78.36
Median 77.52 81.83

B. Synthetic Data

Synthetic data experiments aim to compare the perfor-
mance of the PC clustering algorithm to that of spectral
clustering systematically. Unlike using real data, in this
case we can control certain parameters and observe if
there are any changes in performance as these parameters
change. Level of noise in the data and the number
of clusters are chosen as parameters to vary in the
subsequent experiments.

To allow for comparison to the real data in Hop-
kins155, in what follows, data points in W are randomly
drawn from a union of subspaces where each coordinate
in a datapoint is uniformly randomly selected from
interval [−1,1]. Then random Gaussian noise with zero
mean and standard deviation σ is added independently
to every element in W.

Parameters used in the generation of the data matrix
W are described below:
• D : The ambient space dimension
• n : The set of dimensions of subspaces from which

the data is drawn
• N : The set of the number of data coming from each

TABLE III
% CLASSIFICATION ACCURACY FOR ALL SEQUENCES.

All (155 seq) Spectral PC
Average 88.53 88.14
Median 94.63 92.31

subspace
• σ : Standard deviation of noise added to the noise-

free data matrix
• n exp : Number of different experiments conducted
In the remainder of the paper, these parameters as a

set will be referred to as process parameters.
A derived term, the so called occupancy factor based

on the process parameters is defined as follows:

κ = min

(
∑
|n|
i=1 ni

D
,1

)
(IV.1)

Observe that as the sum of subspace dimensions equals
or surpasses the ambient space , D, the occupancy
parameter κ saturates at 1. The effect of κ is also
investigated along with the level of noise.

1) Effect of Noise Level: In the first set of experi-
ments, the response of PC clustering and spectral cluster-
ing to the change in noise level, σ , and occupancy factor,
κ , are investigated. Five different cases are investigated
for 5 different values of D. In each case, the noise level
σ is gradually increased. For D, σ and all other process
parameters being fixed, n exp experiments are run. In
this context, an experiment refers to the clustering of
one particular instance of W generated from the given
process parameters. At the end of each run, the mean
and standard deviation of the clustering accuracy of both
methods are recorded.

The 5 test cases for different values of D have the
following process parameters:
• D = {200,150,75,30,15}
• n = {5,5,5}
• N = {25,25,25}
• σ = {0.01,0.05,0.1,0.15,0.17,0.19,0.21}
• n exp = 100
Occupancy values that correspond to D for these 5

cases are κ={0.075,0.100,0.200,0.500,1.000}. Results
for Cases 1 to 5 are given in Tables IV-VIII respectively.

The results indicate that spectral clustering and PC
clustering perform similarly given data with varying
level of noise and occupation factors. For all cases, it
is observed that both methods degrade in performance
as the level of noise increases. It is also observed that
both methods respond similarly to changes in occupancy



factor. In fact, as the occupancy factor increases, both
methods better cope with higher levels of noise.

TABLE IV
% CLASSIFICATION ACCURACY FOR CASE 1: κ = 0.075.

Spectral PC
Noise Level Mean / STD Mean / STD

0.01 100.00 / 0.00 100.00 / 0.00
0.05 99.91 / 0.34 99.89 / 0.36
0.10 99.21 / 0.93 99.16 / 0.96
0.15 91.71 / 4.24 90.95 / 4.78
0.17 80.96 / 7.96 79.71 / 8.53
0.19 68.05 / 10.53 65.61 / 10.91
0.21 54.55 / 7.62 53.68 / 7.30

TABLE V
% CLASSIFICATION ACCURACY FOR CASE 2: κ = 0.100.

Spectral PC
Noise Level Mean / STD Mean / STD

0.01 100.00 / 0.00 100.00 / 0.00
0.05 99.92 / 0.32 99.92 / 0.32
0.10 99.21 / 1.04 99.07 / 1.22
0.15 92.89 / 4.60 92.00 / 4.79
0.17 84.33 / 7.41 82.99 / 7.62
0.19 73.35 / 9.72 72.75 / 10.40
0.21 59.88 / 9.55 58.49 / 9.51

TABLE VI
% CLASSIFICATION ACCURACY FOR CASE 3: κ = 0.200.

Spectral PC
Noise Level Mean / STD Mean / STD

0.01 100.00 / 0.00 100.00 / 0.00
0.05 99.93 / 0.29 99.92 / 0.37
0.10 99.28 / 0.96 99.31 / 0.92
0.15 95.79 / 3.11 95.47 / 3.17
0.17 90.19 / 5.18 89.11 / 5.80
0.19 80.49 / 9.27 78.40 / 10.54
0.21 69.77 / 11.21 68.16 / 10.67

TABLE VII
% CLASSIFICATION ACCURACY FOR CASE 4: κ = 0.500.

Spectral PC
Noise Level Mean / STD Mean / STD

0.01 100.00 / 0.00 100.00 / 0.00
0.05 99.92 / 0.32 99.88 / 0.38
0.10 99.01 / 1.13 98.96 / 1.27
0.15 94.83 / 3.39 94.51 / 3.53
0.17 91.09 / 4.23 90.43 / 4.83
0.19 83.05 / 8.93 82.43 / 8.90
0.21 74.01 / 10.37 72.76 / 10.23

2) Effect of Number of Clusters: In studying the per-
formance of both clustering methods when the number

TABLE VIII
% CLASSIFICATION ACCURACY FOR CASE 5: κ = 1.000.

Spectral PC
Noise Level Mean / STD Mean / STD

0.01 99.97 / 0.19 99.96 / 0.23
0.05 99.57 / 0.82 99.49 / 0.86
0.10 96.89 / 2.41 96.53 / 2.62
0.15 86.47 / 8.01 84.95 / 8.61
0.17 81.72 / 9.48 80.80 / 9.37
0.19 74.99 / 10.97 74.29 / 10.18
0.21 66.60 / 10.33 65.28 / 9.99

of clusters in the data changes, 10 more cases are tested.
The first 5 cases have common process parameters as
follows:
• D = 50
• σ = 0.05
• n exp = 100

where the number of clusters and number of data in each
cluster is as follows for each case:

Case 6: Two clusters of dimension 5 with 50 data
points in each. Hence, n = {5,5}, N = {50,50}.

Case 7: Three clusters of dimension 5 with 50 data
points in each. Hence, n = {5,5,5}, N = {50,50,50}.

Case 8: Five clusters of dimension 5 with 50 data
points in each, n and N scale similarly.

Case 9: Seven clusters of dimension 5 with 50 data
points in each.

Case 10: Ten clusters of dimension 5 with 50 data
points in each.

In Cases 6–10, given that the sum of cluster dimen-
sions is less than or equal to the ambient space dimen-
sion, these clusters correspond to independent subspaces.
Results for these cases are given Table IX, and indicate
that both spectral clustering and PC clustering perform
similarly. It is also observed in this case PC clustering
does not favor higher occupancy levels.

TABLE IX
% CLASSIFICATION ACCURACY FOR CASES 6-10.

Spectral PC
Noise Level Mean / STD Mean / STD

Case 6 99.98 / 0.20 99.98 / 0.20
Case 7 99.95 / 0.26 99.93 / 0.29
Case 8 99.94 / 0.22 99.92 / 0.24
Case 9 99.90 / 0.22 99.70 / 1.94
Case 10 99.82 / 0.28 96.13 / 6.22

It is known that the Shape Interaction Matrix does not
work well as a similarity matrix for data coming from
non-independent subspaces. Hence, a final comparison
for 5 more cases is considered where the data comes



from subspaces that are not necessarily independent. For
these cases, common process parameters are as follows:
• D = 10
• σ = 0.05
• n exp = 100.

In Cases 11–15, the values of n and N are the same
as Cases 6–10 respectively. Observe that all of these
cases share a common occupancy factor of κ = 1.0. For
Case 11, the subspaces are still independent, but for all
remaining cases, the data comes from subspaces that are
not independent.

Results for Cases 11–15 are given in Table X.
These results also indicate that both algorithm degrade
in performance similarly in clustering data from non-
independent subspaces.

TABLE X
% CLASSIFICATION ACCURACY FOR CASES 11-15.

Spectral PC
Noise Level Mean / STD Mean / STD

Case 11 99.36 / 1.10 99.40 / 1.04
Case 12 95.92 / 2.80 95.63 / 3.02
Case 13 62.57 / 8.61 62.15 / 8.59
Case 14 45.01 / 6.22 45.17 / 5.22
Case 15 34.56 / 2.58 35.46 / 2.73

V. CONCLUSIONS

A relative of spectral clustering, which we call prin-
cipal coordinate (PC) clustering, was introduced. It
was shown that performing k-means on the k principal
coordinates (which come from the singular value de-
composition) of a similarity matrix yields similar results
to doing the same for the k eigenvectors of the graph
Laplacian corresponding to its k largest eigenvalues.
However, PC clustering is remarkably easier to interpret,
and gives a clear understanding of why it performs well.
In a fashion, this gives intuition behind why spectral
clustering works from a more simple, linear algebra
perspective, beyond the typical explanations via graph
cuts, or other techniques. Moreover, it was demonstrated
through experimentation on real and synthetic data that
the proposed method performs equally well on average
as spectral clustering, and that the method has the ability
to scale quite easily to truly large data. In this study,
the objective was not to get the best performance, but
rather to show that PC clustering is similar to spectral
clustering. There are numerous improvements of basic
spectral clustering methods in the literature, which would
thus likely enhance the performance of PC clustering as
well.
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