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Step-scan transient Fourier transform infrared (FT-IR) difference
spectra are often measured in an ac-coupled configuration. The re-
sulting differential intensity spectra contain both positive and neg-
ative bands. This condition poses problems for direct phase correc-
tion by the standard Mertz and Forman methods. Restricting the
calculated phase angle to the range [—T/2, /2] was previously
shown to fix some of these problems, but we show that the use of a
reduced-resolution phase spectrum can produce other artifacts. The
effect of reduced resolution is analyzed for a simulated noise-free
spectrum and for a measured transient spectrum of a real photo-
chemical system, bacteriorhodopsin. Examination of these results
reveals that the Mertz and Mertz Signed methods can produce spec-
tral bands of reduced magnitude and unusual band shape, with
considerable amounts of intensity remaining along the imaginary
axis after phase correction. However, these errors can be eliminated
by self-convolution of the measured interferogram, which doubles
all phase angles, prior to smoothing. This procedure removes the
potential discontinuities in the phase angle due to sign changes in
the differential spectrum. With bacteriorhodopsin, this doubled-an-
gle method for direct phase correction is able to produce a transient
spectrum which closely matches that produced by using a separately
measured dc interferogram to calculate the phase angle.

Index Headings: Step-scan difference spectroscopy; Doubled angle;
Interferogram self-convolution; Phase resolution.

INTRODUCTION

In step-scan transient Fourier transform infrared (FT-
IR) difference spectra of biological samples, the time-
dependent intensity changes are 2—-3 orders of magnitude
smaller than the static intensity. To measure these inten-
sity changes with maximum sensitivity, it is advanta-
geous to ac-couple the detector.! The resulting spectra
contain both positive and negative intensities, which are
not handled correctly by the standard Mertz and Forman
phase correction algorithms.??

When the spectrum contains regions of positive and
negative intensity, these phase correction methods fail to
produce the true spectrum. A negative intensity can be
interpreted in either of two ways due to the equality:

(_A)ei() = Aei(Oer. (1)

The Mertz and Forman algorithms implicitly assume that
most of the intensity in the spectrum is positive. When
negative intensities are present, they are likely to be mis-
interpreted as positive intensities with a phase shift of 7T
radians. However, the phase-angle errors are not limited
to 7T shifts. As demonstrated below, the use of resolution-
reducing smoothing procedures leads to a more compli-
cated set of errors.

A popular solution to this problem has been to measure
a separate dc-coupled interferogram from which the
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phase information can be extracted.*> A disadvantage of
this approach is that care must be taken to ensure instru-
ment stability between these two measurements. Alter-
natively, one can measure the two interferograms con-
currently with special hardware.®’

To circumvent the need for a separate dc-coupled in-
terferogram, McCoy and de Haseth proposed a modifi-
cation of the Mertz algorithm for vibrational circular di-
chroism spectra,® which also have positive and negative
peaks. This phase correction method has been incorpo-
rated into some commercial software applications as the
“Mertz Signed’” method.” The broad difference bands of
quarterwave plate/polarizer spectra were shown to be
properly phase corrected with this algorithm.® However,
as shown below, this method does not work nearly as
well on spectra that have narrow bands of alternating
positive and negative intensity. This situation is often en-
countered in time-resolved step-scan spectroscopy as well
as other step-scan methods and vibrational circular di-
chroism .*~7

In light of these shortcomings, we propose here a dif-
ferent method for phase correcting spectra with alternat-
ing positive and negative bands, based on doubling the
phase angles prior to lowering the resolution. The advan-
tage of doubling the phase angles is that the phase factor
e is identical for 0 and O + 7. This benefit eliminates
all the potential 7T flips in the phase. Comparison of this
method with the Mertz and Mertz Signed methods shows
that our new approach eliminates the phase artifacts as-
sociated with the latter two methods. The doubled-angle
phase correction method is capable of producing time-
resolved step-scan spectra that match those produced with
the dc Stored Phase method, without the need for a sep-
arate experimental measurement. This new phase correc-
tion method may also find utility in phase correction of
other types of FT-IR spectra that display both positive
and negative bands.

THEORY

Optical and electronic factors can introduce odd (sine)
components into the ideally even (cosine) interferogram.'
Thus, Fourier transformation of the interferogram pro-
duces a complex result. Phase correction algorithms are
designed to rotate each complex value in this represen-
tation of the spectrum onto the real axis. With the Mertz
correction method, the frequency-dependent phase angle,
0W), is calculated from a short double-sided region of
the interferogram around the position of zero path differ-
ence (ZPD). The phase correction can be represented as

B(V) = [b(V)e ] e (2)
where b(V)e®® is the complex spectrum obtained by Fou-

rier transformation of the interferogram. As long as 0(V)
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is slowly varying, then 0¥) = 0(V), and the Mertz phase
correction method produces the true spectrum, with only
noise remaining in the imaginary part of the spectrum.

The assumption that 5(V) > 0 with the Mertz algorithm
means that negative intensities can result in erroneously
calculated phase angles of 0%) = 6(v) + . Substituting
into the above equation,

B(V) = b(¥)e @ 0O+M = pg)e~im = —pv).  (3)

Thus, peaks in some ranges of the phase-corrected spec-
trum may be incorrectly signed because of the 7T radians
phase error.

Mertz Signed Algorithm. A modification of the Mertz
phase correction algorithm designed to handle the posi-
tive and negative peaks of vibrational circular dichroism
spectra was proposed by McCoy and de Haseth.® This
method limits the possible phase angles to the range —7t/
2 to 1/2. Thus, the 7 flips in the phase angle caused by
negative intensities are reversed by disallowing phase an-
gles in the second and third quadrants. Of course, with a
poor choice of the ZPD position, proper phase correction
would require phase angles outside the allowed range.
However, with the limited phase angle dispérsion pro-
duced by carefully engineered interferometers in modern
FT-IR spectrometers, there exists a proper choice for the
ZPD that allows the Mertz Signed algorithm to map the
phase angles of all negative-intensity bands to 0'v) =
(6(v) + ) — T, so that the phase correction produces the
true spectrum.

Nevertheless, as discussed below, lowering the reso-
lution of the phase spectrum to improve the signal-to-
noise ratio can result in phase errors of intermediate val-
ues; ie., OV) < 0 w) < 6(v) + m. In these cases, the
Mertz Signed method does not produce the true spectrum.

Phase Correction of a Simulated Interferogram. To
demonstrate the errors caused by lowering the resolution
to calculate the phase spectrum, we construct a simulated
difference interferogram I(x), corresponding to eight dif-
ferential intensity band pairs of varying spacing, as fol-
lows:

I(x) = Z cos[2TxV, + O(v,)] — icos[ZTCx-(\'/j + Av))

+ 0, + Av))] (4)
where
V; =/ (200 em ™), (5)
v, =46 cm™ + /(2 cm™) (6)
and
0v) = 2-v — 1000 cm )2, (7)

With the use of Happ-Genzel apodization and a phase
correction angle 0 (V) taken directly from the above def-
inition of O(V), the spectrum calculated from the simulat-
ed interferogram is shown in Fig. 1A. The double-sided
interferogram used for this calculation contains 1000
points with a discrete spacing of 2.5 um, for a spectral
resolution of 8 cm ™' over a bandwidth of 0-2000 cm ~.

Calculation of the same spectrum by using the Mertz
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F1G. 1. Phase correction of a simulated difference interferogram, I(x)

[see text for the definition of I(x)]. (A) True spectrum, i.e., spectrum
obtained after Fourier transformation and phase correction using the
predefined phase angle: 6(V) = 2% — 1000 cm')?. The spacing be-
tween each pair of oppositely signed & functions is listed. (B) Spectrum
produced by using Mertz phase correction with a phase resolution of
128 ¢cm™'. The superimposed dotted line represents the real part of the
Fourier transform at 128 cm™' resolution. (C) Spectrum produced by
using Mertz Signed phase correction with a phase resolution of 128
cm ', At this resolution the Mertz Signed method is not able to produce
the negative bands without error. (D-E) Spectra corresponding to B and
C, but with 64 cm™' phase resolution. With an increase in the phase
resolution, the Mertz Signed method is now able to phase correct the
negative bands without error.

phase correction method at a phase resolution of 128
cm ™! (instead of relying on our a priori knowledge of
the phase angle) results in the characteristic “‘reflected
peaks’’ pattern for some of the negative bands (Fig. 1B).
However, the negative components at 248, 450, and 652
cm ™! remain unreflected. It is only the more widely
spaced differential band pairs at higher frequency that
exhibit reflection, with the weaker negative component
becoming more completely reflected as the spacing in-
creases.

Using the Mertz Signed method at 128 c¢cm ™' phase
resolution (Fig. 1C) orients the peaks in the correct man-
ner qualitatively, but the negative peaks above 1000 ¢cm ™!
are reduced in magnitude or show unusual band shape.
In some cases, the peaks even become split. These arti-
facts occur when the real part of the Fourier transform at
128 c¢m ™' resolution (dotted line superimposed on Fig.
1B) crosses zero at a frequency within a negative band
of the phase-corrected spectrum. When the phase reso-
lution is changed to 64 cm™!, all the negative peaks are
reflected in the Mertz phase-corrected spectrum (Fig.
1D). The real part of the Fourier transform at 64 cm™'
(dotted line superimposed on Fig. 1D) is <0 in the vi-
cinity of all the negative peaks; thus, the Mertz Signed
method is able to properly phase correct the spectrum at
this phase resolution (Fig. 1E). However, if the spacing
of + and — bands is reduced to <32 cm ', the phasing
errors and resulting spectral artifacts return (not shown).

These artifacts can be better understood by thoroughly
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FiG. 2. Effect of a band of intensity M, = *2M, on the phase calcu-
lation of a nearby band of intensity M,. It is assumed that the true phase
angles of the bands are 0, = 7t/8 and 0, = 57/32. The calculated phase
angle is plotted as a function of the band separation, AV, normalized by
the nominal phase resolution, 1/x,,.. If the intensities of both bands are
positive (M, = 2M,), then with either the Mertz or Mertz Signed al-
gorithm, the calculated phase angle (plus symbols) is bounded by 57/
32 and 7/8. However, if the intensities are of opposite sign (M, =
—2M,), then the phase angle calculated with the Mertz method (dotted
line) is bounded only by 57/32 and 970/8. Application of the Mertz
Signed phase correction (ATAN function) restricts the resultant phase
angle to the —7U/2 to 702 range (dashed line), but large errors in the
phase angle persist near a discontinuity at AV-x,, = 0.44. The band
separation near which these errors appear depends on the relative mag-
nitude of the two bands and the apodization function.

examining the phase calculation. The apodized interfer-
ogram can be represented as the inverse Fourier trans-
form of the spectrum b(V) times the instrumentally gen-
erated phase factor ¢, all multiplied by the apodization
function A(x):

I(x) = A(X)'fl{b(V)eiO(v’}~ )

Fourier transformation of this apodized interferogram
yields the convolution of the complex spectrum with the
line shape function, L(V) = j{'A(x)}:

BV) =LO) ® [b@)e]. )

Regardless of the apodization function used, as the res-
olution of the phase calculation is lowered, L(V) broadens.
Therefore, all bands are broadened; i.e., the contribution
to the calculated phase angle from neighboring peaks is
increased.

Let us now examine in more detail the effects of this
contribution using a simplified spectrum consisting of
two O functions of magnitudes M, and M, at ¥V, and v, —
AV, respectively. Applying the convolution described
above, one obtains

B(V) = LV —V)M e + Lv —v, + AV)M,e®% ~ 2,
(10)
Evaluation of this equation at the center frequency of the
band at V, gives
By = L(O)M,e™ + L(AV)M,e™ (11)

where we have defined 0, = 0(v,) and 0, = 0(v, — Av).
Thus, B "evaluated at the position of one band is actually
a weighted vector sum with contributions from both
bands.

Figure 2 shows the behavior of the calculated phase
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angle, 0, as a function of the separation between the two
bands, AV, normalized by the phase resolution 1/x,,,. If
M, and M, are of the same sign, then the calculated phase
angle 0 (V,) at the center of the resolution broadened line
is constrained to the range of 0, to 0, (Fig. 2, solid line).
Assuming that the true phase angle varies slowly (i.e., 0,
~ 0,), the phase errors introduced by using a reduced
resolution are small for bands of the same sign.

However, if M, and M, are of opposite sign, as in the
simulated spectrum of Fig. 1, then 6 'may vary from 0,
to 0, + 7 (Fig. 2, dotted line). In the example in Fig. 2,
the relative intensity of the neighboring bands is given
by M, = *2M,. Thus, the intensity in the wings of band
2 exactly cancels the center intensity of band 1 when the
band separation is equal to the half-width at half-height
(HWHH) of the apodization function. Passing through
this separation, the calculated phase angle at v, undergoes
a rapid transition of 7t radians. At much smaller separa-
tions, it approaches 0,; at much larger separations, it ap-
proaches 60, + .

For the Happ-Genzel function (the apodization func-
tion used throughout this paper), AV, = 0.44/x,,.."
When AV-x,,, < 0.44, the calculated phase angle at V,, is
heavily influenced by the larger neighboring band, so that
0’ =~ 0,. This is the situation also encountered in Fig. 1B
for the bands at 248, 450, and 652 cm~!. In these cases,
the neighboring positive band is close enough to the neg-
ative band of interest to dominate the phase angle cal-
culation. Thus, no 7T flip is encountered in the calculated
phase angle, and a negative band is properly produced
by the Mertz phase correction method.

On the other hand, when Av-x,, ->>0.44, the phase
angle calculation is influenced more by the negative band
itself, so that ' =~ 0, + 7. This pattern can be seen in
Fig. 2, where the dotted line approaches 97/8 at large
separations. All the bands in Fig. 1D also fall into this
category. The two oppositely signed bands in each pair
are much farther apart than the half-width of the line
shape function introduced by resolution reduction and
apodization. Thus, the influence of the positive band on
the neighboring negative band is small, and a 7t shift does
occur in the calculated phase angle. In this case, the
Mertz algorithm produces reflected band shapes.

With the addition of a (second) 7t shift when AV-x, .
> 0.44, the Mertz Signed algorithm can often produce a
properly phase-corrected spectrum even when the Mertz
algorithm fails (Fig. 2, dashed line). This result can also
be seen by comparing traces D and E in Fig. 1. However,
in the region of AV-x,.. = 0.44, the phase angle 0’ cal-
culated with the Mertz Signed algorithm still undergoes
large swings away from the true phase angle. The source
of these large swings is apparent from Fig. 2. Use of the
full-range arctangent function, as in the Mertz method
(dotted line), produces a smooth transition from 0’ =0,
to '~ 0, + . Limiting the phase angle to —7t/2 to Tt/
2 with the ATAN function, as in the Mertz Signed al-
gorithm (dashed line), produces a calculated phase angle
in which large errors remain. These large errors occur
whenever the phase resolution is chosen in such a way
that neighboring bands of unequal intensity and opposite
sign nearly cancel one another near the center of the
weaker band.

This is precisely the situation encountered for the



peaks above 1000 ¢cm ' in the simulated spectrum of Fig.

1 with a phase resolution of 128 c¢cm ™' (traces B and C).
The spacing between the peaks at this phase resolution
is just large enough to ensure that the positive band can
significantly influence, but not dominate, the calculation
of the phase angle for the negative band. This pattern can
be seen in the 128 cm ! resolution Fourier transform of
the interferogram (dotted trace superimposed on Fig. 1B),
which shows the nearly complete cancellation of intensity
at the centers of these negative bands. The intermediate
phase angles that result are manifest as partially reflected
peaks in the Mertz-calculated spectrum (Fig. 1B). These
errors cannot be properly corrected by application of the
Mertz Signed algorithm (Fig. 1C).

While the preceding discussion focuses on phase cor-
rection errors with the use of the Mertz method, it is
applicable to the Forman method as well. The phase er-
rors resulting from oppositely signed bands occur during
the calculation of the phase spectrum, ¢ ®® a step that
is common to the Mertz and Forman methods.??

Phase Correction via Self-Convolution of the Inter-
ferogram (Doubled-Angle Method). As shown above,
the problems encountered in applying the Mertz Signed
algorithm to ac-coupled spectra can be traced to the
smoothing of a discontinuous function. However, it is
possible to eliminate the discontinuities and thus restore
the slowly varying nature of the phase angle, simply by
convolving the interferogram with itself prior to carrying
out the phase correction. This convolution is equivalent
in the Fourier domain to squaring the complex represen-
tation of the spectrum, i.e.,

[Q I} = [b@)e™) = b*(©)e™"™.
F (12)

Thus, the self-convolved interferogram I & I is the in-
verse Fourier transform of a complex spectrum contain-
ing only positive intensities, b, and a slowly varying
phase angle, 20(V). The doubled phase angle, 20 V), can
easily be calculated by applying the ATAN2 function to
the real and imaginary parts of the Fourier transform of
I @ I (Note that the algorithm used in the Array Basic
program provided in the Appendix does not actually em-
ploy the ATAN2 function, but carries out mathematically
equivalent operations.) The advantage of performing the
self-convolution and thus doubling the phase angles is
that the phase factor ¢?°® becomes identical for 6 and 0
=+ 7. This condition eliminates all the 7t flips in the phase.
It is thus possible to truncate and apodize the self-con-
volved interferogram (I & I) prior to Fourier transfor-
mation, i.e., to reduce the phase resolution, without in-
troducing any large phase angle errors.

Taking half of the reduced-resolution doubled-phase-
angle gives the best smoothed estimate for the phase of
the original interferogram. However, determining the
half-angle still requires a choice between Y420 V)] and
1420v)] + . This ambiguity can be resolved by using
the criterion that the phase angle must be a slowly vary-
ing function of V. During the calculation of the discrete
array of phase angles, each 0 V) is simply chosen to be
the value closer to that of the previous element of the
array. This choice is now easy because the resolution re-
duction has suppressed the noise without introducing
phase angles between 0 V) and 0'(v) + m.

When the entire phase array has been produced, a glob-
al choice remains. Adding 7 to the phase angle at all
frequencies also satisfies the criterion of slowly varying
phase. The only way to make this choice is by examining
the resulting phase-corrected spectrum. Adding 7 to the
phase angle is equivalent to multiplying the entire spec-
trum by —1. Thus, while the algorithm produces the cor-
rect relative orientation of positive and negative peaks,
some knowledge of the ‘“‘correct’” global orientation of
the spectrum is required. With respect to the simulated
spectrum of Fig. 1, a priori knowledge of the sign of any
one band allows proper global orientation of all of them.
Thus, without any other information, the Doubled-Angle
method can correct the phases of our simulated differ-
ential interferogram, producing a result (not shown) that
is identical to Fig. 1A.

For the Doubled-Angle phase correction method to
work properly, a double-sided interferogram is needed.
To see why, consider the effects of truncating one side
of a double-sided differential interferogram prior to con-
volving it with itself. This one-sided truncation introduc-
es erroneous phase angles in the Fourier transform of the
unconvolved interferogram; convolution doubles these
erroneous angles. Reducing the resolution after convo-
lution smooths the errors slightly but does not signifi-
cantly reduce them. They can be avoided only by using
the full double-sided interferogram to calculate the con-
volution.

ZPD Selection. The interferogram signal at the ZPD
is approximately equal to the spectral intensity integrated
over the bandwidth. Thus a spectrum containing positive
and negative intensities of comparable magnitude will
produce an interferogram without a centerburst at the
ZPD. Even in such cases, the ZPD can often be defined
from the convolution of the interferogram with itself. The
integration of the squared intensities results in a center-
burst in the self-convolved interferogram. The position of
this centerburst can then be used to locate the ZPD of
the original interferogram. If a measured interferogram
of N points is represented as I(n) where n = (0, ..., N
— 1), and I(n) is set to zero for n < 0 and n = N, then
the self-convolution is defined as

N-1 N
I® I(m) = Z; I(n)I(; —1—n +m). (13)

(Note: This definition of convolution is dictated by the
Array Basic programming language that we used to im-
plement our phase correction method as detailed in the
Appendix). According to this definition, if the ZPD is at
point N/2 — 1 + Ax of the original interferogram, then
the self-convolution will shift it to point N/2 — 1 + 2Ax.
If the centerburst of the self-convolved interferogram oc-
curs at a point where 2Ax is odd, it is rounded down by
one so that Ax can be integral.

MATERIALS AND METHODS

Bacteriorhodopsin (bR) samples were prepared from
H. halobium as described previously.!® Purple membrane
pellets were washed with distilled water and transferred
to a CaF, window. A second CaF, window was coated
around its edge with vacuum grease and pressed against
the first to seal the bR sample.
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resolution with a bandwidth of 0 to 1970 cm™'; i.e.,

(A) Transient ac-coupled interferogram of bacteriorhodopsin photoproducts averaged over the time range 0—1 ms after photolysis (8 cm
a total of 888 points). (B) Same interferogram after application of a digital high-pass Fourier

=1

filter with a cutoff frequency of 400 cm™'. (C) Convolution of the filtered interferogram (B) with itself. This self-convolved interferogram has an
enhanced intensity at the ZPD (or a nearby point; see text for details) and is therefore used to identify the ZPD of the original interferogram. For
the two-sided interferogram in A, there are 444 points to the left of the ZPD and 443 to the right. For the self-convolution in C, the ZPD is shifted
slightly, as calculated by our program, with 445 points to the left and 442 to the right.

Interferograms were collected on a Bruker IFS-66 FT-
IR spectrometer in time-resolved step scan mode at 8
cm ™! resolution by using a Kolmar photovoltaic HgCdTe
detector (Model #KMPV11-1-LJ2/239). This detector’s
preamplifier has dual ac- and dc-coupled outputs. The
measured bandwidth was limited to 0-1970 cm ™' as a
result of reduced sampling of the interferogram. A long-
pass optical filter placed in front of the detector prevented
aliasing of optical signals from outside this bandwidth.
A pulsed, frequency-doubled Nd*:YAG laser (532 nm,
10 mJ cm?) was used to trigger the bR photocycle for
the transient FT-IR measurements, which were made with
the detector and internal digitizer ac-coupled. Transient
signals from 10 flashes, spaced every 300 ms, were re-
corded at each mirror position. Time-resolved interfero-
grams corresponding to 10 time slices of 100 ps each
were sorted and stored to disk, but the 10 interferograms
were averaged together prior to phase calculation.

To obtain a dc-coupled step-scan interferogram for
phase correction with the dc Stored Phase method, we
recorded three time slices of 10 ms each with the laser
off, with 10 coadditions at each mirror position. The three
time slices were then averaged and stored as a single
interferogram. This interferogram was measured imme-
diately prior to collection of the ac-coupled differential
interferograms to which the stored phase was to be ap-
plied.

Data processing of the interferograms was carried out
in Array Basic routines on GRAMS/32 software (Galac-
tic Industries, Salem, NH). The Mertz and dc Stored
Phase methods for phase correction were implemented by
running the standard icompute.ab Array Basic code sup-
plied with the software. The Mertz Signed and Doubled-
Angle methods were implemented by simple modifica-
tions of icompute.ab, as detailed in the Appendix.

RESULTS

We tested various phase correction methods on typical
time-resolved FT-IR data from a biological sample, bac-
teriorhodopsin. The transient differential interferogram
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measured from a bR sample after photolysis is shown in
Fig. 3A. These data, and the phase correction results ob-
tained from them, are representative of measurements on
four different samples of bR.

Determination of the ZPD. There is a sloping base-
line in the raw interferogram in Fig. 3A; such a baseline
drift is quite common in step-scan measurements. This
artifact must be removed by the application of a digital
high-pass Fourier filter (Fig. 3B). Failure to remove this
sloping baseline results in a self-convolved interferogram
with low-frequency features that prohibit selection of the
ZPD position (not shown). The self-convolution of the
filtered interferogram has a clear centerburst at its ZPD
(Fig. 3C). The position of this centerburst is used to de-
fine the ZPD of the original interferogram as discussed
above.

Comparison of Phase Correction Methods. Figure 4
shows the results of different phase correction algorithms
applied to a step-scan time-resolved interferogram of bR
photolysis. The same measured differential interferogram
(Fig. 3A) and ZPD position were used for all of the phase
correction methods. For the Doubled-Angle method, the
only a priori knowledge of the spectrum that was utilized
is the positive sign of the large intensity change at 1527
cm """ This information is needed to make the correct
global choice of sign for the spectrum.

The spectra produced with the dc Stored Phase (A) and
Doubled-Angle methods (D) match very closely over the
entire 850-1950 cm ™' region, while the Mertz algorithm
(B) produces a pattern of ‘“‘reflected peaks’ over much
of the spectrum. The Mertz Signed algorithm (C) corrects
some, but not all, of these peaks. The broad area of neg-
ative intensity from 1250 to 1450 cm ™' is properly phase
corrected, but the juxtaposition of positive and negative
bands from 1500 to 1600 ¢cm ™' causes the Mertz Signed
algorithm to produce bands of much reduced intensity,
corresponding roughly to a 7t/2 phase error.

A's a more stringent test of these methods, the residual
spectra remaining along the imaginary axis after phase
correction were examined (Fig. 5). Both the dc Stored
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F1G. 4. Phase correction methods applied to calculating the transient

ac-coupled spectrum of bR, averaged over the first 1 ms after a pho-
tolysis flash. All four traces were computed from the same transient
difference interferogram, each using the indicated method of phase cor-
rection. The spectral resolution is 8 cm ™' over a bandwidth of 0 to 1970
cm ™' with Happ-Genzel apodization and 128 cm ™' phase resolution.
Although the Mertz Signed method corrects some areas of “‘reflected
peaks™ (12501450 cm™') seen with the Mertz phase correction, it pro-
duces bands of reduced magnitude in other regions (1500-1600 c¢m ™).
However, the Doubled-Angle and dc Stored Phase methods produce
nearly identical spectra.

Phase and Doubled-Angle methods produce residual
imaginary spectra which appear as random noise. How-
ever, the residuals from the Mertz and Mertz Signed
methods have features much larger than the noise at
1201, 1527, and 1560 cm ~!; these correspond to improp-
erly phase-corrected bands in the real spectra. Note that
in the broad region of negative intensity between 1250
and 1450 cm ™!, all four methods give residual (imagi-
nary) spectra smaller than the noise. Although the Mertz
algorithm succeeds in rotating the differential intensity in
this region fully onto the real axis, it incorrectly assigns
the sign of that intensity.

The phase spectra produced with the four methods are
shown in Fig. 6. The phase angles from both the dc
Stored Phase and Doubled-Angle methods are close to
zero and vary slowly across the spectrum. However, the
phase angles calculated by using the Mertz and Mertz
Signed algorithms cover the entire allowed ranges ([ —Tt,
7] and [—7/2, /2], respectively). As discussed in the
Theory section, with a true phase angle close to 0, the
Mertz algorithm applied to a spectrum of alternating pos-
itive and negative bands should ideally produce a dis-
continuous phase spectrum which jumps between 0 and
+7 radians. There are hints of such discontinuities in the
Mertz phase spectrum (Fig. 6, dot-dash line), but these
features are smoothed by the low (128 cm™') resolution
of the phase calculation. Likewise, in the region from
1500 to 1600 cm ™', in which the Mertz Signed algorithm
works least effectively, the phase angle takes an inter-
mediate value of —7/2 instead of 0 or %7t radians.

Effect of Varying the Phase Resolution. As discussed
in the Theory section above, the spectral artifacts pro-
duced with the Mertz Signed algorithm are due to
smoothing of the phase spectrum. The phase angle is cal-
culated from a truncated region of the interferogram and

A. DC Stored Phase

B. Mertz

Alntensity

C. Meytz Signed

D. Doubled-Angle

I 1 i
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Wavenumber (cm™)
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F1G. 5. Residual spectra left along the imaginary axis after phase cor-
rection with each of the methods. The scale is the same as in Fig. 4.
With either the Mertz or the Mertz Signed method, the residual spectral
intensity is as large as the real spectral intensity (Fig. 4) for some bands.
On the other hand, the residual intensities of the Doubled-Angle and dc
Stored Phase methods are comparable to the noise.

then interpolated to match the point spacing of the spec-
trum from the full interferogram.

Figure 7A shows how truncating the interferogram at
different resolutions affects the real part of its Fourier
transform (i.e., the spectrum used for calculating the
phase angles). To give accurate phases with the Mertz
Signed method, this real part of the Fourier transform
generally needs to faithfully reproduce the positions of
the zero-crossings of the true intensity spectrum. How-
ever, as the phase resolution is lowered from 8 to 32 cm ™!
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F1G. 6. Phase spectra calculated by using each of the four methods at

128 cm ™' phase resolution. Interpolation to the full 8 e¢cm™" spectral

resolution was performed by zero-filling the truncated interferogram
prior to Fourier transformation. The Mertz method does not simply
jump from an angle near 0 for positive bands to an angle near =+ for
negative bands. Instead, large regions of the spectrum have calculated
phase angles of intermediate values. Restriction of the phase angle to
[—m/2, 1t/2] with the Mertz Signed method does not restore all phase
angles to near 0 because of these intermediate angles. However, the
Doubled-Angle method does produce phase angles that vary slowly
with v and are close to 0 everywhere.
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and then to 128 cm ™', the number of zero-crossings be-
tween 850 and 1950 ¢cm ™' drops from 17 to 10 to 4, and
their positions are shifted. The large positive real band at
1527 cm ™" in the high-resolution Fourier transform (Fig.
7A, top trace) corresponds to an area of near zero inten-
sity at 128 c¢cm ™' resolution (Fig. 7A, bottom trace). The
same is true for the three positive bands near 1200 cm '
The only consistent feature with a sign that does not de-
pend strongly on spectral resolution is the broad area of
negative intensity between 1250 and 1450 c¢cm ~'.

In contrast, Fig. 7B shows the real part of the spectrum
calculated from the Fourier transform of the self-con-
volved interferogram. Nearly all intensities are now
greater than zero regardless of the resolution used. Al-
though the bands are broadened at 128 cm ™! resolution,
the positions of the peaks are consistent with the bands
observed at 8 cm ™! resolution.

For the Mertz Signed method, smoothing due to the
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F1G. 8. Phase spectra calculated with the Mertz Signed method at var-
ious spectral resolutions. The interferogram was truncated at the indi-
cated resolution, and zero-filled prior to Fourier transformation and
phase angle calculation using the formula, 8’ (%) = ATAN(ImV)/Re@)).
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Behavior, as the resolution is decreased, of the real part of the Fourier transform of (A) the original interferogram and (B) the self-
convolution of the interferogram. No phase correction has been applied.

reduced resolution of the phase spectrum results in inter-
mediate values of the calculated phase angle 0'(V) in
regions of sharp alternating positive and negative features
in the spectrum (see Fig. 8). The zero-crossings of the
real part of the Fourier transform (Fig. 7A) occur at the
same wavenumber values as the big jumps in the phase
angle (Fig. 8). At 8 cm ™' resolution, after application of
the —7/2 to 7TU/2 limitation, the phase angle 0 V) is close
to zero at most frequencies except for those directly ad-
jacent to zero-crossings. Unfortunately, these are made
more frequent by spectral noise. At 32 and 128 cm™'
resolution, the noise is progressively suppressed, but the
phase spectrum is also progressively subject to the sys-
tematic errors induced by the broadened line shape (see
Theory section).

The results of these systematic errors can be seen clear-
ly in Fig. 8C. The worst case occurs between 1500 and
1750 cm ™', Here, the phase angle might be expected to
flip between ~0 and ~ (Z£7) for the Mertz method, and
to be corrected to ~0 everywhere by the Mertz Signed
method. Instead the phase angle takes on an intermediate
value near —7U/2 over a large spectral range. This value
is unaffected by whether the Mertz or Mertz Signed
method is used. The resulting spectra (Fig. 4B, 4C) thus
coincide in this wavenumber range, but show incorrect
magnitudes of both positive and negative bands.

The Mertz and Mertz Signed methods do not diverge
over the 1500-1750 cm ™! spectral region until the phase
resolution is raised to 32 ¢cm ™! (spectra not shown). Even
at this resolution, however, the negative band at 1560
cm ! still shows a systematic artifact due to the broad-
ening of the large positive neighboring band at 1527
cm !, analogous to the artifacts shown in Fig. 1C. Only
at 8 cm 7! resolution does the Mertz Signed method prop-
erly correct the phase in the 1500-1750 cm ™' range.
However, the poorer signal-to-noise ratio in other regions
of the spectrum precludes use of this phase resolution for
correcting the entire spectral range.

DISCUSSION

The presence of both positive and negative peaks in an
FT-IR difference spectrum poses a binary choice of 0 or



0 + m for each phase angle for any direct method of
phase-correcting a measured differential interferogram.
For most FT-IR spectrometer designs, there are two char-
acteristics of the phase spectrum that can be used to make
this choice: (1) the phase angle should be everywhere
close to zero simultaneously for an appropriately chosen
ZPD; and (2) the phase angle should vary slowly as a
function of V.

The three direct methods of phase correction evaluated
here— Mertz, Mertz Signed, and Doubled-Angle—each
use different criteria for determining the phase angle. The
Mertz algorithm assumes that the phase angle varies
slowly and that the intensity is always positive except for
noise. The latter assumption is clearly incorrect for ac-
coupled difference spectra. Use of the Mertz algorithm
results in an error of 7T radians for broad negative bands,
and an error near 7U/2 radians for regions containing
closely spaced positive and negative bands of similar in-
tensity.

The Mertz Signed method substitutes the assumption
of positivity with a more realistic criterion for differential
spectra, which assumes that the phase angles should all
lie within the interval [ —7t/2, 70/2]. Phase factors are thus
restricted to lie in the first and fourth quadrants of the
complex plane; 7 radians are added to any calculated
angle that falls outside these limits. The method is suc-
cessful at correcting the reflection of broad negative-in-
tensity peaks. However, it fails to correct spectral regions
containing sharp alternating positive and negative bands,
frequently yielding a result identical to the Mertz algo-
rithm, i.e., strongly attenuated bands due to an erroneous
phase that cannot be corrected by the addition of any
multiple of 7t radians. As we show above, this erroneous
phase results from blurring of neighboring positive and
negative bands by the use of a lowered phase resolution.

Like the Mertz and Mertz Signed methods, the Dou-
bled-Angle method presented here utilizes a truncated
(reduced-resolution and reduced-noise) interferogram to
calculate the phase, thereby implicitly assuming a slowly
varying phase angle. However, the errors obtained with
the Mertz Signed method as a result of blurring sharply
alternating positive and negative bands into each other
are eliminated by doubling their phase angles prior to
blurring. This approach allows nearby bands with phases
that differ by nearly 7 to be smoothed onto each other
without introducing erroneous intermediate phase angles,
since 0 and 0 + T give equivalent angles when multiplied
by 2. Therefore, the slowly varying nature of the phase
spectrum is maintained. There is a binary choice that
must be made when the original phase angles are restored
by dividing by 2. However, this choice can be made eas-
ily because the Doubled-Angle method succeeds in al-
lowing resolution reduction to improve the signal-to-
noise ratio in regions of alternating bands, without intro-
ducing phase artifacts.

Effect of Noise on Phase Correction. The anomalous
phase angles produced with the Mertz and Mertz Signed
methods in the presence of positive and negative bands
occur at the zero-crossings of the reduced-resolution
spectrum. It might therefore be assumed that noise is the
culprit. This assumption is true only indirectly. If at cer-
tain frequencies the spectral magnitude drops below the
noise level, then the phase angle, 0 V) = arctan[ImV)/

Re(V)], becomes indeterminate. However, as shown in the
Theory section above, phase errors near zero-crossings
can occur even in the complete absence of noise. There-
fore, it is not correct to assert that the phase angle errors
that occur near the zero-crossings of Re(V) with the Mertz
Signed method are due to random noise.

It is true that noise-free spectra, such as the simulated
spectrum of Fig. 1, can always be properly phase cor-
rected by using the Mertz Signed method, if the phase
resolution is increased sufficiently. However, for mea-
sured spectra, increasing the phase resolution always in-
creases noise. Thus, at high phase resolution, noise limits
the accuracy of the phase angle calculation; at low phase
resolution, on the other hand, line shape smoothing in-
troduces phase errors regardless of the amount of noise
present.

The Doubled-Angle method eliminates the phase errors
produced with alternating signed bands at reduced phase
resolution. However, the effect of noise with the Dou-
bled-Angle method can be more severe than with the
Mertz methods, especially at high resolution. Thus, the
phase correction with the Doubled-Angle method must
generally be performed at low phase resolution, typically
128 cm ™"

Direct (Doubled-Angle) Phase Correction vs. the dc
Stored Phase Method. In terms of spectral accuracy, our
Doubled-Angle phase correction method is comparable
to, but does not outperform, the dc Stored Phase method.
However, because it is a direct method, there is no need
to collect a separate interferogram for the phase calcu-
lation. Possible benefits of the direct approach include
decreased susceptibility to instrumental drift and less total
time required to collect the data.

However, these benefits may be partially negated by
the need to use more computer memory to collect double-
sided interferograms. This is the only significant draw-
back of the direct Doubled-Angle phase correction meth-
od. This requirement has a cost in terms of disk space
and RAM utilization. In addition, the measurement of
transient FT-IR step-scan spectra requires a means to per-
turb the sample reversibly at each of ~ 103 positions of
the moving mirror. The need for double-sided interfero-
grams increases the number of positions required to col-
lect a single interferogram by almost twofold, so that an
even greater premium is place on the reversibility of the
changes effected by the sample perturbation. However,
the signal-to-noise ratio in the final result is improved by
collecting a two-sided interferogram. Most step-scan
time-resolved experiments require significant signal av-
eraging in any case. Therefore, collecting two-sided in-
terferograms actually costs useful measurement time only
in those rare cases where the sample is not stable for the
minimum time period (or minimum number of flashes)
needed to complete a single (double-sided) mirror scan.

A benefit of using the Doubled-Angle phase correction
method may be a reduction in the complexity of the hard-
ware needed to measure interferograms. It is not neces-
sary to switch detector preamplifiers and main amplifiers
from dc to ac coupling in order to collect a phase spec-
trum, thus simplifying the instrument configuration. In
addition, the requirements of a large dynamic range and
a high degree of linearity in the amplification and digi-
tization processes are relaxed. These advantages may also
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be realized for a host of other techniques that produce
spectra with positive and negative bands, such as vibra-
tional circular dichroism, as well as phase-modulation
and lock-in step-scan measurements.

The convolution involved in the Doubled-Angle phase
correction method is computationally intensive. For time-
resolved step-scan spectroscopy, an interferogram is col-
lected for each time point. Thus, there may be several
hundred interferograms from a single experiment. Con-
volving each of these interferograms with itself during
the phase correction process would require a significant
amount of time. Additionally, the resulting phase spectra
are likely to exhibit errors due to poor signal-to-noise
ratio. Instead, it is far better to calculate a single phase
spectrum from the average of all the time-resolved inter-
ferograms or, better yet, from the first principal compo-
nent derived by principal component analysis. This phase
spectrum can be stored, and then used to correct the
phases of the individual interferograms.

The weight of these factors vs. the reduced instrumen-
tal requirements of the Doubled-Angle algorithm will de-
termine the relative advantages of direct phase correction
vs. use of a dc-coupled stored phase. For instances in
which a dc-interferogram can easily be collected, the
Doubled-Angle and dc Stored Phase methods can be used
in combination, each to double-check the other, since the
two methods are susceptible to different sources of error.
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APPENDIX

Modifications of the Array Basic routines supplied
with GRAMS/32 software (v. 4.02; Galactic Industries,
Salem, NH) were made to implement the new method of
phase correction. The changes made to the icompute.ab
program to implement the Mertz Signed or Doubled-An-
gle phase correction method are indicated below. Italics
indicate added lines of code. A few lines of the surround-
ing program are included to mark the locations of the
additions. The unitalicized lines are unaltered from the
original, except for the conversion of three lines into re-
marks by addition of the notation REM. Arrows 0 mark
jumps to different sections of the program.

cmplx2=ph2 : transpose cmplx2 ’get 2 rows: real & imag
mag2 =sqrt((cmplx2(0)*cmplx2(0))+(cmplx2(1)*cmplx2(1))) get magnitude of values

mag2 =divrev(mag2,l) ’get 1/magnitude

cmplx2(0)=cmplx2(0)*mag?2 : cmplx2(1)=cmplx2(1)*mag2 ’normalize

R EEEEEREEEEEEEEEEEEEEEEEREEEEEEEEEERESEEEEEEEEEEESEEEESS
emplx2(1)=cmplx2(1)*( ecmplx2(0)labs(cmplx2(0)) ) if the real part is <0, then
emplx2(0)=cmplx2(0)*( cmplx2(0)labs(cmplix2(0)) ) 'multiply both parts by —I

R EEREEEREEEEEEEEEREEEEEEEEEEEEEEEEEEEEEREEEESEEREEERESE]

cmplx2(1)=—cmplx2(1) get complex conjugate

3070 rfft ph : ph(1)=0 ’fft phase array

cmplx =ph : transpose cmplx ’get 2 rows: real & imag

mag=sqrt((cmplx(0)*cmplx(0))+(cmplx(1)*cmplx(1))) *get magnitude of values

mag=divrev(mag,l) get 1/magnitude

cmplx(0)=cmplx(0)*mag : cmplx(1)=cmplx(l)*mag 'normalize

2 sk skoskoskosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skosk sk sk sk sk sk sk sk sk sk skosk sk sk sk sk sk sk sk sk skosk sk sk sk sk sk sk sk sk ok
cmplx(1)=cmplx(1)*( cmplx(0)labs(cmplx(0)) ) "if the real part is <0, then
emplx(0)=cmplx(0)*( cmplx(0)labs(cmplx(0)) ) "multiply both parts by —I

EEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEESEEEEEEEEEREEEEEERERES]

cmplx(l)=—cmplx(l) ’get complex conjugate

Doubled-Angle Method

R R R R EREEREEEEEEEEEEEEEEEEEEEEEESEEEEEREEEESERESEEEEEERESEESESIEESS]

"AC Difference Interferogram compute with zero fill, phasing and apodization.

"Doubled-Angle Phase Correction Algorithm

EEEEREEEEEEEEEEEEEEEEEEEEEEEEREEEEREEEEEREERESEESERESREESEEESESESESE]

"Copyright (c) 1992-98 Galactic Industries Corp. Copy only for use with GRAM S/32®.
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free

pauseoff : onpaint 0

mode = 0 ’Stand alone

7portout —44,—1 : debug = 0
EEEEEEEEEEEEEEEEEESEEEEEEEEEEEEEEREEREEEEEEEEEEEEEEEEEEEEEEEREEESESS
m=0.1 "get parameters for filter

dialogon ~High-Pass Filter of Interferogram’

dialogask m, 0+256,0,1, >’ Breakpoint:”

dialogoff

© s sk sk sk ok sk skosk sk sk sk sk sk sk sk sk skosk sk sk sk sk sk sk sk sk skeosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skeosk sk sk sk s sk sk sk sk ks sk skok

100 dim resfile(256),text(256),temp(256),temp1(256),temp2(256),temp3(256)

0

’Find ZPD and set up array for apodization functions

1000 free apdfn : dim apdfn(npts(#s)) ’create apodization func array
if getffp()>getflp() then xflip

if ctype=1 then #s = #s — sum(#s)/pts Average subtraction

REM zpd=index0(abs(#s) —max(abs(#s))) 'locate ZPD point

np =npts(#s)

2 sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk skosk sk sk skosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk
free preigram,igram,unapodl : dim preigram(np),igram(np), unapodl(np)
if getffp()>getflp() then xflip 'make sure that zero is on the left
"**Filter interferogram to remove low-frequency drift

preigram =#s transfer to array

filter preigram, 0,0, m,0, m—+0.1,1, 1,1 'remove low frequency noise
igram=preigram ‘use array limits to zap that added

'by the filtering

"*¥*Self-convolution of interferogram

free templ : dim templ(2*np) "Array for self-convolution

temp =0

templ(npl2,npl2+np—1)=igram(0,np—1) ’zerofill igram on each side
convolve templ,igram ’Self-convolution

"**Remove apodization effect of self-convoluting boxcars

free unapodl,unapod?2 : dim unapodl(np)unapod2(2*np)

unapodl =1

unapod2 =0

unapod2(npl2,npl/2+np—1)=unapodl(0,np—1)

convolve unapod2,unapodl

unapodl =unapod2/(max(unapod?2))

igram=templlunapodl

"**Find the ZPD of the convolution
zpd_c=index0(igram-max(igram)) 'Find ZPD of self-convolution
zpd=int ( (zpd-c — (npl2—1))I2 + (npl/2—1) ) "and use to assign zpd of igram
zpd_c=(zpd—(npl2—1))*2 + (np/2—1) 'reassign zpd-c based on zpd

2 sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk skosk sk sk sk sk skosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skosk sk skok
if (zpd>=(np/2)—50) then dblside =true else dblside =false

fillbeg —(1/(np—zpd —1))*zpd ’set up fills

fillinc 1/(np—zpd—1)

goto 1100+(apod*100)

0

’Linear interpolation of phase

3010 if phint>0 goto 3050

dim ph2(p),ap2(p),cmplx2(p/2,2),mag2(p/2)

REM ph2(0,h)=#s(#zpd,#zpd +h):ph2(p—h,p—1)=#s(#zpd —h,#zpd —1) ’rotate Igram into small phase array

EEEEREEEEEEEEEEEEEEEEEEEEEEEEEESEEEEEREEEEREEREEEREESERESESEESEES:SE]

ph2(0,h)=igram(zpd_c,zpd-c+h):ph2(p—h,p—1)=igram(zp d_c—h,zpd_-c—1) 'rotate Igram into small phase array

EEEEREEEEEEEEEEEEEEEEEEEEEEEEEESEEEEEREEEEREEREEEREESERESESEESEES:SE]

0

3050 REM ph(0,h)=#s(#zpd,#zpd +h):ph(n—h,n—1)=#s(#zpd —h,#zpd —1) ’rotate Igram into big phase array

EEEEREEEEEEEEEEEEEEEEEEEEEEEEEESEEEEEREEEEREEREEEREESERESESEESEES:SE]

ph(0,h)=igram(zpd-c,zpd_c+h): ph(n—h,n—1)=igram(zpd-c —h,zpd_c—1) 'rotate Igram into big phase array

EEEEREEEEEEEEEEEEEEEEEEEEEEEEEESEEEEEREEEEREEREEEREESERESESEESEES:SE]

0
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’Store phase array if ’Store_new”’

2 3k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk
3100 free cosT, sinT, quad : dim cosT(nl2), sinT(nl2), quad(n/2)
"**Compute half-angles

transpose cmplx

emplx(1)=cmplx(1)*(—1) 'undo complex conjugate

quad=cmplx(1)<0 =0 if cmplx(1)>0 and =—1 if cmplx(1)<<0
cosT=sqrt (((ecmplx(0))*(1) + 1)I2) "half-angle formulas for cos
sinT=sqrt (((cmplx(0))*(—1) + 1)/2) "and sin

sinT=sinT*(quad*2 + 1) 'multiply by 1 or —I to choose proper quadrant
"**Test for flips in the phase array and correct

for j=0 to n/2—2

testl =cosT(j)*cosT(j+1)

test2=sinT(j)*sinT(j+1)

test=testl +test2 'test is cos(T[j]—T[i+1])

if test<O then flip=—1 else flip=1 "if <O then T has jumped by >pil2
cosT(j+1) = flip*cosT(j+1)

sinT(j+1) = flip*sinT(j+1) "correct for flip

next j

cmplx(0)=cosT 'reassign into phase array

cmplx(1)=sinT

cmplx(1)=cmplx(1)*(—1) 'redo complex conjugate

transpose cmplx
2 3k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk

if phstr<>2 goto 3200
newspc zqzq(n)
#s=cmplx
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