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 

Abstract— There are significant benefits to medical laser 

surgeries performed with mid-infrared wavelengths, including 

the ability to select laser parameters in order to minimize 

photochemical and thermal collateral damage.  It has been shown 

that a wavelength of 6.1 micrometers (m) is optimal when high 

ablation efficiency and minimal collateral damage is desired in 

biological soft tissues.  Historically, free electron lasers were the 

only option for ablating tissue at this wavelength due to their 

ample pulse energy and average power. In recent years new 

sources are being developed for this wavelength that can 

successfully ablate tissue.  These alternative sources have 

different pulse structures and pulse durations than free electron 

lasers, motivating investigation of how these parameters affect 

the ablation process.  Here, we present the pulse duration 

dependence for mid-IR laser ablation of biological tissues at a 

wavelength of 6.1 m on a tissue phantom of cooked egg white.  

The crater shape, depth, and volume all changed in a significant, 

non-monotonic manner as the laser pulse duration was increased 

from 100 ns to 5 s. 

 
Index Terms— Mid-infrared laser ablation, pulse duration, 

Pockels cell, tissue ablation, crater shape, crater depth, crater 

volume, Free Electron Laser (FEL), Optical Parametric 

Oscillator (OPO). 
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I. INTRODUCTION 

There are many properties of biological tissues that 

affect pulsed laser ablation.  Tissue optical properties 

determine the internal energy distribution that initiates the 

ablation process[1].  The structure and morphology of tissue 

also affects energy transport within its constituents[2] and, 

along with mechanical and thermal properties, controls the 

response of tissue to pulsed heating and phase 

transformation[1].  Strong absorption of energy in tissues 

occurs in both the ultraviolet and mid-infrared wavelength  

regions; however, due to the potential mutagenic effects of 

ultraviolet wavelengths, mid-infrared laser radiation is 

preferred for many types of tissue, in particular in tissues with 

high cellularity[3].  The wavelengths of greatest interest for 

mid-infrared pulsed laser ablation have traditionally been at 

2.1, 2.94, 6.1, 6.45, and 10.6 m due to either the ability to 

remove tissue with little concomitant thermal damage or the 

availability of laser sources at these wavelengths[1, 3-14].  

The absorption of mid-IR radiation at 2.1, 2.94, and 10.6 m 

is primarily associated with strong water absorption; however, 

water and protein both absorb at 6.1 and 6.45 m which 

coincide with the amide-I and amide-II absorption bands of 

protein respectively[1]. The promising results first obtained at 

the Vanderbilt University Mark-III free electron laser (FEL) 

were initially attributed to the absorbance of the protein in 

addition to the water in the tissue[4]. The absorption of 

collagen is twice that of water at 6.1 m and six times that of 

water at 6.45 m.  In addition, the water absorption at 6.1 m 

is 3.5 times higher than it is at 6.45 m.  Recent work has 

shown that 6.1 m wavelength light gives improved tissue 

ablation with minimal thermal damage for numerous tissue 

types[9, 14-21]. To date, the Vanderbilt FEL has been used for 

a total of eight human surgeries including neurosurgery and 

ophthalmic surgery[6, 22-27]; however, the prohibitive size 

and cost of an FEL limits its practicality for medical uses. 

Although the wavelength range described here allows for 

selective excitation of amide bands, the lifetimes of these 

vibrations are only in the picosecond range[28-31]. Recently, 

researchers have shown that mid-IR laser ablation in the 

picosecond pulse duration range may have benefits in efficient 

ablation related to vibrational excitation to both hard and soft 

tissues[32, 33]; however, on the time scale of the FEL 

pulsewidth (100 ns to 5 µs), selective excitation is relatively 

unimportant and thermal processes dominate. 
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Alternative laser sources in the 6-8 m range are 

currently being developed and tested for numerous medical 

applications, including an Er:YSGG pumped ZnGeP2 crystal 

optical parametric oscillator (OPO)[9, 34], an Er:YAG 

pumped AgGaSe2 OPO[35, 36], and a Raman-shifted 

Alexandrite laser[37].  Recently quantum cascade lasers have 

been shown to provide numerous wavelengths in the region of 

interest; however, these lasers are currently limited to 

spectroscopy applications due to their cw operation and 

energy limitations[38-40].  In addition to wavelength, a 

critical parameter that needs to be specified in the 

development of these laser sources is the pulse duration.  We 

have previously shown that the micropulse structure of the 

FEL (each 5 s macropulse consists of ~14,000 micropulses 

approximately 1 picosecond in duration delivered at 2.85 

GHz) plays a negligible role in the ablation characteristics of 

the FEL[7, 8]; however, the role of the macropulse duration in 

achieving efficient tissue ablation and minimal collateral 

damage has not been well defined.  Therefore, it was our goal 

with this research to explore the pulse duration dependence for 

6.1 m laser ablation of biological tissues. 

 The pulse duration of the ZGP:OPO system (=6.1 m) 

used in previous work was 100 ns[9].  When compared to 

ablation using the FEL, significant differences were found in 

the ablation rate as well as in the size and shape of the ablation 

craters produced in cornea. The ZGP:OPO showed a 

significantly higher ablation rate with all other parameters 

being held constant except for the repetition rate.  To 

determine the effect of pulse duration on crater size, shape, 

and ablation efficiency, we needed to vary the pulse duration 

over the range from the 5 s native FEL macropulse to the 100 

ns width of the ZGP:OPO. Given the large macropulse energy 

available with the FEL, it is possible to shorten the FEL 

macropulse to as little as 100ns and still have enough energy 

to ablate tissue with a single pulse. By using a Pockels cell, we 

were able to slice a portion of the FEL macropulse and thus 

produce pulses with variable durations from the maximum 5 

s to as short as 100 ns over a range of pulse energies[41, 42].  

Previous research using gelatin as a tissue phantom 

yielded only limited results for analysis due to melting and re-

coagulation of the gelatin following ablation; even when 

measurements were performed on craters made in gelatin with 

a single laser pulse, accurate results were not always obtained.  

Therefore, we decided to use cooked egg white as our tissue 

phantom since its water/protein constituency mimics that of 

biological soft tissue and it does not melt and re-coagulate 

during or following laser ablation.  

 

II. MID-INFRARED LASER ABLATION  

A. Laser System 

The laser system used for ablation was the Vanderbilt 

Mark III Free Electron Laser (FEL)[4, 43-45].  The laser was 

operated with a 30 Hz pulse repetition frequency, a 2.856 GHz 

micropulse repetition frequency, and an emission wavelength 

centered at 6.1 m.  The laser beam was sent through a 6 mm 

diameter, =4-8 m Pockels cell (II-VI Inc., Saxonburg, PA), 

operated with a high voltage Behlke switch triggered by a 

TTL pulse synchronized with the FEL pulse train and an 

electrical one-shot box operating a fast shutter to select single 

macropulses.  A digital delay generator (Stanford Research 

Systems, DG535) was used to trigger the Pockels cell and 

shorten the 5 s FEL laser macropulse to the pulse durations 

of interest down to 100 ns.  After confirming that the spatial 

beam profile resembled a Gaussian, the laser beam radius was 

analyzed using a knife-edge measurement[46] in front of a 

pyroelectric detector (J-25, Molectron Inc.), and determined to 

be ~47 m (+/- 5% due to detector uncertainty) for all of the 

experiments performed. 

B. Ablation Threshold Measurements 

The laser ablation threshold was measured on both 

water and cooked egg white using a red HeNe laser beam 

directed tangentially across the target surface at the FEL laser 

ablation location.  The red HeNe beam reflected from ablated 

water and/or egg white passed through an optical iris to a CCD 

detector.  The CCD detector signal was then sent to an 

oscilloscope for analysis.  The laser pulse energy was adjusted 

until the signal due to reflected light from the ablated sample 

was seen; this gave an accurate reading for the ablation 

threshold at all pulse durations investigated between 5 s and 

100 ns.  

We first determined the threshold of ablation for both 

water and cooked egg white at the different 6.1 m pulse 

durations.    Due to the loss of energy with shorter pulses out 

of the Pockels cell, we decided to use as small a spotsize as 

was practical (~47 m radius).     Nine pulse durations were 

used between 100 ns and 5 s as shown in figure 1. For 

cooked egg white irradiated with pulses at 6.1 m in 

wavelength, the threshold energy for ablation was determined 

to be 50 +/- 10 J at the spot size used, giving a threshold 

radiant exposure of approximately 0.72 J/cm2.  There was no 

significant change in the threshold for the ablation of egg 

white over the range of pulse durations used as seen in figure 

1. 

III. PULSE DURATION DEPENDENCE OF CRATER FORMATION, 

DEPTH, AND SHAPE 

A. Crater Formation 

A single pulse at 6.1 m was used to ablate a fresh 

piece of cooked egg white that was placed on a translation 

Fig. 1. The ablation threshold in J versus pulse duration in nanoseconds for 

all of the durations of interest in water and the key pulse durations in cooked 

egg white for comparison with a 47m radius spot size. 
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stage and kept at room temperature (21 oC).  A micrometer 

was used to move the translation stage a distance of 1 mm 

between subsequent laser pulses.  The energy was changed 

between 75 and 225 J using a ZnSe polarizer/attenuator (II-

VI Inc.).  The pulse energy was measured using a J-25 

detector (Molectron Inc.). 

B. Crater Depth Measurements 

The crater depth was measured and averaged for a 

minimum of 10 craters at each pulse duration and pulse energy 

with an Olympus Fluoview laser scanning confocal 

microscope with FV300 software and an Olympus BX-VCB 

motion controller which allowed for depth measurement with 

a precision of 10 nm.  Given the 100 mJ of energy available in 

a 5 s pulse from the FEL, we were able to compare single 

pulse ablation craters for all pulse durations over a wide range 

of pulse energies all well above the ablation threshold energy 

(75, 100, 175, and 225 J). Comparison of craters made with 

equal pulse energies but widely different pulse widths 

revealed substantial differences in their shape, and prompted a 

detailed characterization of the pulse duration-dependence of 

ablation craters produced with these laser parameters.  The 

results (figure 2) show that the deepest craters were made at 

1,000 and 2,000 ns in pulse duration.  The shallowest craters 

were produced with pulse durations of 100 ns and 5,000 ns. 

C. Crater Shape Measurements 

While crater depth is a common parameter for 

determining the overall ablation rate, the shape of the crater 

must also be measured in order to determine the volume of 

material removed (and hence get a handle on the overall 

ablation efficiency).  The crater shape was measured using the 

same laser scanning microscope as described above.  The 

 
Fig. 2. The single pulse induced crater depth in m produced as a function of 

pulse duration (ns) at 75, 100, 175, and 225 J of energy per pulse.  A 

minimum of 10 craters were averaged for each point.  The error bars are the 

standard deviation for the ten craters.  The deepest craters were found at 1,000 

and 2,000 ns in pulse duration. 
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diameter of the crater was measured beginning at the surface 

of the egg white and then measured repeatedly at deeper and 

deeper locations in the crater until the bottom of the crater was 

seen.  This was repeated for a minimum of three craters at 

each pulse duration.  All crater shapes were analyzed at a 

constant pulse energy of roughly 3 times the ablation threshold 

(175 J) for reproducibility. 

The average diameter was then plotted as a function 

of depth to construct a cross section through the crater. The 

resulting crater shapes revealed a pulse duration dependence 

shown in figure 3.  The deepest craters are again seen at 1,000 

and 2,000 ns; however, there was a marked change in the 

shape of the craters through this range of pulse durations. The 

craters get wider as the pulse duration gets shorter, with the 

widest crater being seen at 100 ns.  This crater was more than 

twice the diameter of the Gaussian beam diameter that was 

used to create it.  In addition, the widest short pulse crater is 

almost hemispherical, quite unlike the narrow, conical-shaped 

crater produced by the longest (5,000 ns) pulse. 

D. Crater Volume Measurements 

Each crater shape is approximated by a curve 

specifying the radius as a function of the crater depth. We 

calculated volumes by integrating over the crater depth using a 

polynomial function to fit the radial profile that was 

determined in the crater shape analysis as described above.  

The integration was performed using Microcal Origin 6.0 

software.  The total volume of the single pulse craters was 

calculated from the data and plotted as a function of pulse 

duration; these results are shown in figure 4.   For each pulse 

energy, the volume of tissue removed increases with a 

decreasing pulse duration.  The largest volume of tissue was 

removed with the 100 ns pulse and the smallest volume was 

removed with the 5,000 ns pulse duration. A sharp decrease in 

crater volume occurred near 1,000 ns, which corresponds to 

the shape change seen in figure 3; this may coincide with the 

onset of steady-state tissue ejection and plume screening[10]. 

E.  Mathematical Modeling 

Multiple physical mechanisms could impact the 

pulsewidth-dependence of crater depth and shape. To better 

understand these interacting mechanisms, we constructed a 

phenomenological model based on time-delay partial 

differential equations. This model includes a transition from 

blow-off type behavior – i.e. material removal occurs only 

after the pulse – to a process of continuous material removal 

during the pulse and its associated plume screening.  

The model is simplified because the role of thermal 

diffusion is minimal. Egg white is largely denatured protein 

and should have a thermal diffusivity similar to that of protein, 

 = 8.1 x 10-8 m2/s [47]. Even for the longest pulses used here, 

the characteristic thermal diffusion distance is just ()½ ~ 0.6 

µm, much smaller than any of the observed crater dimensions. 

Thermal diffusion would not become important until the 

pulsewidths approached the characteristic thermal diffusion 

times: Radial ~ w2/ ~2.7 ms based on a 1/e2 beam radius of 47 

µm; and Axial ~
2/ ~ 170 s based on an absorption depth of 

3.7 µm. Given these estimates, our model excludes thermal 

diffusion. 

 Existing mathematical models can reproduce the 

range of observed crater shapes, but fail to account for the 

pulsewidth-dependence, and do not reproduce the correct 

coupling of crater shape and depth. For short pulsewidths 

(100-500 ns), we observe rounded craters that are in 

reasonable agreement with a blow-off model [48]: 

z(r) = d ln
F(r)

dHabl
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where z(r) is the crater depth at distance r from the beam axis, 

F(r) is the fluence  is the absorption depth and Habl is the 

threshold energy density for material removal. To match the 

observed crater depths, one must assume an extremely low 

Habl (< 10-4 J/cm3) and/or dynamic optical properties that yield 

a dramatic increase in the absorption depth. To match the 

observed trends in crater depth, one would need to assume a 

pulsewidth-dependence for one or both parameters. For longer 

pulsewidths, we observe craters that transition from Gaussian 

to sharply peaked trumpet shapes. These shapes can all be 

reproduced by “steady-state” models that assume continuous 

material removal at a rate that is proportional to the projection 

of the intensity normal to the current crater surface [49, 50]:  
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These models assume the absorption depth is small compared 

to the size of the crater, neglect surface reflection, and neglect 

any absorption or scattering in the ejected material. 

Nonetheless, the models yield Gaussian-shaped craters at 

near-threshold fluence and sharply peaked trumpet-shaped 

craters at higher fluence. One can get a similar range of crater 

shapes by recasting this model as a condition on the slope of 

the final crater wall[51]. For a given fluence, both versions of 

the model predict identical crater shapes regardless of 

pulsewidth. This becomes clear if one casts the model in 

integral form and switches the integration variable to t/: 

 

 
Fig. 4. The crater volume for each of the nine pulse durations is shown in 104 

m3 versus pulse duration in nanoseconds.  The error bars are the standard 

deviation for the average of at least three craters for each pulse duration.   
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The model thus cannot reproduce the observed transition in 

crater shape at constant fluence, but variable pulsewidth. 

Furthermore, the steady-state models yield results in which 

deeper craters are always sharper – in contradiction with the 

experimental results.  

To better match our experimental results, we thus 

constructed a hybrid of the blow-off and steady-state models. 

We chose the most straightforward combination by assuming 

that there is a shortest time, eject, at which material removal 

begins. At t  eject, material is removed according to a blow-

off model. After this time, material is removed continuously at 

a rate that depends on the projection of the intensity normal to 

the crater surface and screening by previously ablated 

material. Mathematically, the model can be expressed as: 

z(r,t eject ) = d ln
F(r)

dHabl,BO

t eject

t
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S(r, t - D2 )
 

where S(r,t2) is a function that accounts for plume 

screening, and 1 and 2 are delays that respectively account 

for the time required to form a well-defined crater interface 

and a highly attenuating plume of ejected material. We 

investigated several screening functions and found that the 

best results were obtained by integrating all of the material 

removed and distributing this material in an annular plume – 

similar to that observed upon impact ejection from a fluid 

surface[52]. The mathematical form for this screening 

function is: 

S(r, t -D2 ) = e
- P(r) z(r, ¢t -D2 )2prdr
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where plume is the absorption depth of the plume and the 

integrals calculate the total amount of material in the plume up 

to time t2. The normalized function P(r) contains all 

information about the annular shape of the plume and was 

assumed to be a Gaussian of width w centered at r  w.  

These partial differential equations were cast as 

coupled time-delay ordinary differential equations with radial 

derivatives approximated by finite differences. The equations 

were then numerically integrated in Mathematica (Wolfram, 

Champaign, IL). Integration of the ejected material in the 

plume was performed out to a radial distance of 5w. 

Figure 5 shows model solutions for a particular set of 

global parameters (details in figure caption). These parameters 

were chosen to match the trends in crater shape and depth 

observed in experiments. The crater shapes transition from 

rounded to Gaussian to sharply peaked and the crater depth 

first increases with pulsewidth and then decreases, with a 

maximum crater depth of 120 µm reached at  = 1000 ns.  

If one varies each temporal parameter from its 

selected value, one observes characteristic changes in the 

crater shapes and depths. eject and 1 determine the pulsewidth 

scale on which the crater shape transitions from rounded to 

Gaussian. 1 and 2 then determine the pulsewidth scale on 

which the craters become sharply peaked. For the longest 

z(r, t
t
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Fig. 5.  Calculated crater shapes for pulsewidths between 100 and 5000 ns. All calculations used the same global parameters: Epulse = 175 J, w = 47 µm, 

Habl,BO = 4 J/cm3, Habl_SS = 400 J/cm3, eject = 150 ns, 1 = 800 ns, 2 = 1600 ns, and  = plume = 3.7 µm. The plume shape was assumed to be annular with 

a Gaussian density centered at r  w with a 1/e2 width w.  
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pulses, both the slope factor and the plume screening function 

are necessary to generate sharply peaked craters even as the 

crater depth decreases. If one excludes plume screening in the 

model (e.g. by letting plume go to ∞), the craters for  > 2000 

ns still become sharply peaked, but they all have the same 

depth. If one includes plume screening with a uniform plume, 

the long pulse craters become shallower, but also more 

rounded. Only screening with an annular plume matches the 

trends in both the crater shape and depth. 

The model presented here is phenomenological. More 

fundamental modeling would require an explicit consideration 

of the kinetics of explosive vaporization in a mechanically 

constrained tissue, the time-dependent shape of the ejected 

plume and the impact of this plume on how incoming 

radiation reaches the underlying tissue. The equilibrium 

properties of water and steam are very well known; however, 

the kinetics of the phase transition are not as well understood, 

particularly under the extreme conditions of laser ablation. 

These are active areas of research and future results should 

improve the ability to model the relevant hydrodynamics. 

IV. OBSERVATIONS AND BENEFITS FOR FUTURE LASER 

DEVELOPMENT 

The observed transition from a wide, nearly 

hemispherical crater shape to a narrow, conical shape suggests 

that two different mechanisms for ablation are involved over 

this range of pulse durations. The short pulses deliver the 

entire pulse energy (3 times the ablation threshold) to a small 

volume of tissue before significant heat diffusion can take 

place; this results in an explosive phase change, which would 

leave a hemispherical crater. This mechanism acts like a ‘blow 

off’ model which would remove a larger volume of 

material[53]. With the longer pulses, a slower mechanism 

such as an equilibrium state of evaporative boiling may occur 

(‘steady state’ model)[53]. In this case, tissue would be 

removed in a continuous fashion as long as energy required 

for boiling is being deposited in tissue faster than it is being 

lost through diffusion and plume screening. This argument is 

supported by the proximity of the thermal diffusion time to the 

5 s pulse width at the 6.1 m wavelength[54]. Since the laser 

intensity is weaker around the edges of the beam, longer pulse 

durations limit ablation to the central portion of the irradiated 

spot, where losses from heat diffusion and plume screening 

could still be overcome. Therefore, a small, narrow crater 

would be produced. The abrupt change in crater shape seen at 

pulse durations around 1,000 ns is consistent with the onset of 

large amounts of material being removed (and strong plume 

screening). The shrinking crater size observed with pulses 

longer than ~1,000 ns can be explained by the loss of incident 

laser radiant exposure to plume screening.  Previous work 

showed the development of a water plume prior to the end of 

the 5000 ns pulse during ablation of water using the FEL that 

causes plume screening during the long FEL pulse duration[7]. 

While the largest volume of material was removed 

with the shortest pulses, the deepest craters resulted from the 

intermediate pulse durations. We propose the following 

explanation: with the shortest pulses, tissue may reach radiant 

exposures well in excess of the threshold needed for ablation; 

the extra energy would be lost to pressure waves in the bulk of 

the tissue or to kinetic energy of material in the plume.  With 

longer pulses, there is more time for energy transfer into 

deeper regions of the tissue, so that more of the available laser 

energy could be used to remove tissue from underneath the 

center of the irradiated area. This could result in the deeper 

(but narrower) craters found with intermediate laser pulse 

durations. In addition, thermal lensing becomes more of a 

pronounced interaction in tissue with longer pulse durations. 

As a result, the laser beam divergence may increase which will 

reduce the area of the tissue that reaches the ablation threshold 

[55-57].  These factors could lead to a deeper and narrower 

crater shape for the intermediate pulse durations as compared 

to the short pulse durations.  

V. CONCLUSION 

Using the Vanderbilt Mark III free electron laser 

(FEL) and cooked egg white as our tissue phantom allowed us 

to perform a thorough study of the laser pulse duration 

dependence of ablation at 6.1 m in wavelength.  We were 

able to compare nine different pulse durations from 5,000 ns 

down to 100 ns. The 100 ns pulse duration is comparable with 

the pulse durations typically used in alternative laser sources, 

such as the ZGP:OPO laser system, in this mid-infrared 

wavelength range.  This work did not cover the ~10 ns range, 

where several new mid-IR generation schemes are being 

developed. Our results suggest that such short pulses might 

result in even larger total volumes and shallower craters. We 

were able to vary single pulse energies from just above the 

threshold for ablation to four and a half times the threshold, 

and performed a detailed comparison of crater depth, crater 

shape, and crater volume at a fixed pulse energy three and a 

half times the ablation threshold.  We found that the deepest 

craters were achieved at 1,000 ns while the largest crater 

volume was removed with 100 ns pulses, suggesting that a 

short pulse at 6.1 m is preferred for removing large surface 

areas of tissue, while a longer pulse is preferred for a deep and 

narrow cut.  Mathematical modeling with a hybrid of blow-off 

and steady-state models and the inclusion of plume screening 

is able to reproduce the observed trends in both crater shape 

and depth. The results obtained in this work provide a great 

potential for understanding tissue removal in laser medical 

applications in the mid-infrared region of interest. 
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