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MRI is a diagnostic technology enabling high-quality 
imaging of organs and soft tissues by using a strong 
magnetic fi eld and sensor array. The tight space within 
the closed-bore scanner limits clinician access to the 
patient as well as the available actions that could be per-
formed under MRI guidance. The capabilities of MRI 
can be extended beyond 
diagnostics by using tele-
operated robots, which 
are able to provide high 
precision and enhanced 
dexterity.  MRI-guided 
robotic surgery, where 
a surgeon performs an 
operation based on real-
time MRI images, has 
the potential to play a 
key role in the expand-
ing fi eld of interventional 
radiology by enabling 
operational procedures 
that are more accurate 
and less invasive. Func-
tional MRI (fMRI) is a 
newer technology that 
can provide brain activ-
ity images, and fMRI-
compatible robotic technologies enable research on a 
wide variety of rehabilitation research. For example, 
neuroplasticity after stroke, somatosensory and motor 
functions, and sympathetic nerve activity during motor 
task learning. 

The use of robotic devices in MRI/fMRI requires 
developing actuators and mechanisms that are able to 

work in strong magnetic fi elds and do not distort or otherwise interfere with 
imaging. These design requirements impose the challenging limitation that 
only materials within a certain range of the magnetic susceptibility spectrum 
can be used.  Traditional electromagnetic actuators fail and may cause arti-
facts, especially intense magnetic fi elds, therefore making fl uid power useful. 
Development of MRI-compatible devices began during the 1990s, with the 

fi rst robotic platform reported 
in 1995 by a team of researchers 
at the University of Tokyo and 
Tokyo Women’s Medical College

1
.  

Using six piezoelectric motors, 
the robot positioned a needle for 
stereotactic neurosurgery, but the 
motors substantially degraded 
the MRI image quality. In the 
years that followed, designs for 
non-magnetic robots attempted 
to avoid this problem by locating 
the piezoelectric motors outside 
the imaging volume, but many of 
these devices still produced unac-
ceptable levels of signal noise, as 
described in a 2007 review study

2
.

Fluid power actuators are 
considered the best solution for 
MRI compatibility because they 
can completely eliminate electric 

and magnetic presences from the scanner room
3
. The creators of INNOMO-

TION, an MR-compatible robotic system commercially available in Europe, 
used piezoelectric motors in an early version of the robot. However, reduction 
in image quality and the risk of inductive heating led the team to an improved 
design with pneumatic piston-cylinders, engineered for safety and control-
lability through high dynamic and low static friction characteristics

4
. In other 

research efforts, pneumatic piston-cylinders have been used in several MRI-

T
his article introduces recent developments and 
challenges related to magnetic resonance imaging 
(MRI)-compatible medical devices. Recent advances 
in fluid-powered medical devices are described, 
including a needle steering robot for neurosurgery 
and a haptic device for hemiplegia rehabilitation. 

Recent 3-dimensional printing technologies for fabricating 
integrated fluid-powered robots are also reported. 

Fluid-Powered Medical Devices
MRI –compatible

By JUN UEDA* Mechanical Engineering, 
Georgia Institute of Technology • DAVID B. 
COMBER  Mechanical Engineering, Vanderbilt 
University  • JONATHON SLIGHTAM Rapid 
Prototyping Center, Milwaukee School of Engineer-
ing  • MELIH TURKSEVEN Mechanical 
Engineering, Georgia Institute of Technology  • 
VITO GERVASI Rapid Prototyping Center, 
Milwaukee School of Engineering • ROBERT J. 
WEBSTER III Mechanical Engineering, Vanderbilt 
University  • ERIC J. BARTH Mechanical 
Engineering, Vanderbilt University
*corresponding author

FIGURE 1  Pneumatic needle steering robot for epilepsy therapy 11.
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be required to verify that heat can accomplish the same goal as surgery. However, the 
potential benefi t to patients of replacing open brain surgery with a needle insertion in 
terms of trauma and complication risk is vast if we are ultimately successful.

Actuated by fi ve non-magnetic pneumatic piston-cylinders, the steerable needle 
robot rests on the MRI scanner bed just above the patient’s head. Long lines of tubing 
tether the cylinders to remotely located pressure sensors and valves, which position 
the pistons to sub-millimeter precision using a robust, nonlinear controller. 

A fi ve degree-of-freedom needle has been designed to target the hippocampus, an 
anatomical structure about 1 cm across and 4 cm long, located deep within the tem-
poral lobe. The needle comprises a stiff outer tube and two tubes of a super-elastic 
memory metal called nitinol. Telescoping and rotating the tubes with respect to each 
other, the pneumatic robot steers the needle along a desired path in the patient’s 
brain.  Before the procedure, the front end of one nitinol tube is set to a curved shape, 
and during the procedure the tube returns to this shape as it telescopes beyond the 
outer stiff, straight tube. At its tip the needle carries an MRI-compatible thermal abla-
tor. The MRI scanner provides real-time feedback of the needle location as well as 
real-time thermal dose monitoring using MR thermometry.

FLUID-POWERED HAPTIC INTERFACE FOR HEMIPLEGIA REHABILITATION
Hemiplegia, a paralysis of one side of the body, is widely observed in the 700,000 
people who survive strokes in the U.S. every year, and it often restricts their ability 
to perform normal daily activities

12
. Recent studies indicate rehabilitation exercise 

guided needle placement robots designed 
for diagnosis and treatment of cancers of 
the prostate and breast

5-6
. Robots employ-

ing intrinsically fail-safe pneumatic stepper 
mechanisms have demonstrated successful 
image-guided interventions in pig abdo-
mens and canine prostate

7
. Pneumatic 

actuators, particularly, have the compliance 
necessary for safety in devices interacting 
with humans. However, the use of fl uid-
driven systems, without compromising 
performance, is a challenging task due to 
the higher order dynamics those systems 
require and the time-delay problems associ-
ated with their tele-operation. 

FLUID-POWERED NEEDLE STEERING ROBOT 
FOR EPILEPSY THERAPY
One half to one percent of the population 
in North America and 50 million patients 
worldwide are affected by epilepsy with a 7 
to 17 percent chance of sudden unexplained 
death if left untreated

 8-9
. In the majority of 

temporal lobe epilepsy cases, seizures are 
caused by the hippocampus, and 60 to 70 
percent of patients who undergo surgical 
removal of the hippocampus become seizure 
free for at least two years

10
.

Mechanical engineers at Vanderbilt Uni-
versity have created the fi rst fully pneumatic 
robot to be designed for neurosurgical inter-
ventions as shown in Figure 1 

11
. The idea 

is that this robot could be used to position a 
needle at the hippocampus to deliver ther-
mal energy (e.g. via a laser, acoustic ablator 
or other ablation technology) that would 
achieve the same goal as surgical removal of 
the hippocampus. We do note that thermal 
ablation in the brain is an experimental 
procedure, meaning that much testing will 
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FIGURE 2  Pneumatic haptic device for hemiplegia rehabilitation 18.
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FIGURE 3  Non-assembly pneumatic robotic system 20.

could shape subsequent reorganization in the 
adjacent intact cortex

13
. Robotic systems can 

be well-suited for rehabilitation, improving the 
effi ciency of the health-care system as well as 
providing researchers with valuable data about 
the brain’s involvement in physical tasks

14
. 

Research indicates that fMRI can be an effec-
tive tool for evaluating functional recovery, 
providing direct evidence of the effi cacy of 
rehabilitation

15
. Thus, fMRI compatible robotic 

systems have been introduced where the 
strong magnetic fi eld prevents a therapist from 
performing the exercise

13, 16
.

Given the magnetic operating environment 
in the MRI room and the tight space inside 
the scanner-bore; compact, non-magnetic, 
low-noise, accurate robotic (i.e. force feed-

back) interfaces are required 17-18. Fluid driven 
systems are often preferred since they satisfy 
the challenging compatibility requirements. 
Gassert et al. developed a tele-operated robotic 
system that interacts with the patient inside 
the MRI room

19
. A hydraulic connection was 

utilized to transmit force and motion produced 
by magnetic components that operate outside 
the magnetic shield of the MRI room. 

Engineers at Georgia Institute of Technol-
ogy have developed a fi ber-optic force sensor 
and encoder made from polyoxymethylene 
and acrylonitrile butadiene styrene (ABS) 
for a pneumatic haptic interface

18
. The team 

invented a new design method based on 
the distribution of strain energy. The newly 
designed force amplifi cation mechanism 
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