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We establish that for a broad class of large games with sidepayments, fair out-
comes are nearly stable. More precisely, the Shapley value of a large game is in the
g-core and ¢ is very small if the game is very large. The proof uses two other results
of independent interest: for large games the power of improvement is concentrated
in small coalitions, and the Shapley value of a small syndicate acting together is
nearly the sum of the Shapley values which accrue to the members acting alone.
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1. INTRODUCTION

Kuhn and Tucker [9] posed, as one of a list of important problems for
study, “to establish significant asymptotic properties of n-person games, for
large n.” This paper takes a step in that direction.

We establish that for a broad class of large games, fair outcomes are
nearly stable. Moreover, the larger the game, the more nearly stable is the
fair outcome. In more precise terms, the Shapley value of a large game is in
the e-core, and ¢ is very small if the game is very large. The framework we
use is that of games in characteristic function form with sidepayments. This
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framework can acommodate diverse economic models with money,
including private goods exchange economies (with divisible and indivisible
goods), coalition-production economies, economies with local public
goods, and economies with club goods.

At the heart of this paper are two main ideas concerning the role of small
coalitions which we think are of interest in themselves. The first of these is
that, for large games, the power of improvement is concentrated in small
coalitions. Roughly speaking, this means that if an allocation can be
improved upon at all, then it can be improved upon by a small coalition. A
related idea is familiar in the context of private goods economies (c.f., Mas-
Colell [10]) and appears implicitly in other economic models (c.f., Shubik
and Wooders [17, 18] on economies with local public goods and on
coalition production). In the context of finite games, this idea has been
used implicitly by Wooders [19] and Wooders and Zame [20], to show
nonemptiness of ¢-cores, but to the best of our knowledge, the present
paper is the first place where it is given an explicit statement in the strong
form herein. The second of these main ideas is that, in large games, the
Shapley value cannot be significantly affected by the formation of a small
syndicate. That is, the Shapley value which would accrue to the syndicate
acting together is very nearly the sum of the Shapley values which accrue
to the members acting alone.

The convergence of the Shapley value to the competitive payoff (and
hence to the core) for private goods exchange economies was suggested by
Shubik, and first demonstrated by Shapley [14] in the context of
replication economies with money. It has subsequently been extended by
Shapley and Shubik [16], Champsaur [4], Mas-Colell [11], Cheng [5],
and others.! Some of these extensions treat the case of economies without
money, but they are all restricted to the context of private goods exchange
economies’? with divisible goods and concave, monotone utility function.
Moreover, they all treat either replicated sequences of economies, or con-
vergent sequences of economies.® This kind of private goods framework,
however, rules out many natural economic phenomena, such as indivisible
goods, nonmonotonic or nonconcave utility functions, general production,
local public goods, or club goods. Our framework is broad enough to
encompass all these situations (in the presence of money*). Moreover, our

! This list is not intended to be complete.

2 Strictly speaking, Champsaur allows for production, but only of a restricted kind (additive
production).

3 The work of Aumann and Shapley [3], Aumann [2], Hart [7], and others on values of
economies with a continuum of agents is of a somewhat different nature since it begins with a
limit continuum economy.

4 Without money, such economic settings may be modelled as games without sidepayments.

In that framework, the analog of the Shapley value is the NTU value (or A-transfer value).
(See note added in proof.)
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framework does not require replicated economies or convergent sequences
of economies.

To model large games we introduce the notion of a “technology” (to be
understood in a broad sense). A technology encompasses all possible
opportunities available to any conceivable group of agents in society. More
specifically, a technology consists of a space Q of possible attributes of
agents, and a mapping A which specifies the maximum utility obtainable
by any group of agents, given the attributes of its members. We make
natural assumptions of compactness of the space € of attributes, and
superadditivity, continuity, and marginal boundedness of the mapping 4. A
game is determined from such a technology by specifying a finite set of
players, and the attributes of each player. (In a private goods economy, for
example, we would specify, for each agent, an initial endowment and a
utility function.)

The stability concept we employ is the individually rational g-core. A
payoff is in this e-core if it is feasible, Pareto optimal, individually rational,
and has the property that no coalition can improve upon it by more than ¢
for each of its members.

Our main result shows that given an ¢ > 0, any game, derived from such
a technology, which is sufficiently large (in the sense of having many
players whose attributes are sufficiently close) has the property that the
Shapley value (a fair outcome) is in the individually ratlonal e-core (the set
of nearly stable outcomes).

In the special case of private goods exchange economies with divisible
goods and money (but allowing for nonconcave and nonmonotone utility
functions), such e-core payoffs can be “approximately decentralized” by
prices (in the sense of Anderson [1]). In this setting, therefore, our result
implies that the Shapley value is an approximately competitive payoff (if
the economy is sufficiently large). We stress, however, that this is a very
special case of our result.

This work is—in part—an outgrowth of an earlier paper (Wooders and
Zame [20]), in which- the technology framework used herein was
established. Although there is an overlap of ideas between the two papers
the thrust of the present paper is quite different. In particular, the present
paper may be read quite independently.

The remainder of the paper is organized in the following way. We collect
general information about game theory in Section 2, and our notion of
technologies is described in Section 3. In Section4 we give a precise
statement of our main result and some comments on its meaning, and
decribe the two main ideas of its proof. The proof itself is divided into four
sections: Section 5 is devoted to the first main idea (the blocking power of
small coalitions), Section 6 contains a simple probabilistic estimate, Sec-
tion 7 is devoted to the second main idea (the power of small syndicates),
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and the proof is completed in Section 8. Finally, Section9 relates the
¢e-cores of a sequence of games to the core of a nonatomic limit game.

2. GAMES

By a game (in characteristic function form, with sidepayments) we mean
a pair (N, v) where N is a finite set (the set of players) and v is a function
(the characteristic function) from the set 2" of subsets of N to the set R, of
nonnegative real numbers, with the property that v()=0. We usually
refer to subsets S of N as coalitions; the number v(S) is the worth of S. If
the player set N is understood, we frequently refer to v itself as the game.
We say that v is superadditive if for all disjoint subsets S, S” of N we have

v(SuS) = ov(S)+v(S).

By a payoff for (N, v) we mean a vector x in R”; it is convenient to use
functional notation, so for i e N, x(i) is the ith component of x. We say that
x is feasible if x(N)<v(N) (where x(S)=Y,. s x(i) for each S<N).

For ¢ >0, a feasible payoff x is in the g-core of (N, v) if

(a) x(N)=wv(N) (Pareto optimality),
(b) x(S)=0v(S)—¢|S| for all subsets S of N.

(We use |S] to denote the number of elements of the set S.) We say x is in
the individually rational e-core if it is in the e-core and in addition

(¢) x()=v({i}) for all ie N (individually rationality).

When ¢=0, the e-core (which coincides with the individually rational
¢-core) is simply the core.

Less formally, a feasible, Pareto optimal payoff x belongs to the e-core of
(N, v) if no group of players can guarantee for themselves a payoff which
each of them finds better than x by more than & As Shapley and
Shubik [15] point out, such a payoff can be interpreted as stable if players
are nearly optimizing, or satisficing, or if there is an organizational or com-
municational cost to formation of coalitions (proportional to the size of the
coalition).

The Shapley value Sh(v) of the game (N, v) is the payoff whose ith com-
ponent is given by

1 Wt 1
Sh(v, )=— Y Y. [u(Su{i})—o(8)]

|NI J=0 |N|'—1 S M{i}
J IS|=J
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In other words, Sh(v,i) is player s average marginal contribution to
coalitions in N. The Shapley value is a feasible, Pareto optimal and
individually rational payoff. It is frequently interpreted as representing a
“fair” payoff since it yields to each player his expected contribution. It can
also be given various other interpretations (as a von Neumann-
Morgenstern utility function for example, see Roth [13]).

3. TECHNOLOGIES

We want to formalize the notion of a large game for which the worth of
a coalition depends in a continuous fashion on the attributes of its
members. To do this, we introduce the notion of a technology.’

Let © be a compact metric space. By a profile on 2 we mean a function f
from © to the set Z , of nonnegative integers for which the support of f,

support(f) = {w e Q: f(w) #0},

is finite. We denote the set of profiles on 2 by P(£2). Note that the sum of
profiles (defined pointwise) is a profile, and that the product of a profile
with a nonnegative integer is a profile. We write 0 for the profile which is
identically zero. We write < g if f(w) < g(w) for each we Q. For w, a
point of Q, we write y,, for the profile given by

Tnl@)=0  if ©#w;
Xwo(w()):l‘

By the norm of a profile f we mean

Ifl= % flo)
we R

(Notice that this is a finite sum, since f has finite support.)

In essence, a profile is simply an (unordered) list of elements of Q, with
each element @ appearing as many times as its multiplicity f(w).

By a technology we mean a pair (€2, 4) where Q is a compact metric
space (the space of attributes) and A: P(2)— R, is a function with the
following properties:

(i) 4(0)=0;
(i) A(f+ g)=A(f)+ A(g) (superadditivity),

5In Wooders and Zame [20] the term “pre-game with attributes” was used; the term
“technology” was suggested by Y. Kannai, and seems more descriptive.
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(iii) there is a constant M such that A(f + x,) < A(f)+ M for each
we, fe P(Q) (we say M is an individual marginal bound);

(iv) for every >0 there is a é >0 such that

A + X)) + A + X))l <€
whenever fe P(Q) and 0, w, € 2 with dist(w,, w,) < (continuity).

The interpretation we have in mind is that a technology encompasses all
the economic possibilities for every conceivable group of players. A point of
2 represents a complete description of the relevant attributes of players
(endowment, utility function, etc.). A profile f represents a group of players
of whom f(w) are described by the attribute w; the total number of players
in the group is just || f||. The number A(f) represents the maximal possible
payoff the members of this groups could achieve (using their own resour-
ces) by cooperation. The requirements that 4(0) =0 means that the group
of no players can achieve nothing. Superadditivity has its usual inter-
pretation: one of the possibilities open to the group represented by f + g is
to split into the groups represented by f and by g and share the proceeds.
(Notice that we do not require the profiles f, g to have disjoint supports.
The groups of players represented by the profiles f, g will have no players
in common in any case; to require that the profiles f, g have disjoint sup-
ports would be to require that these groups have no types of players in
common.) The existence of an individual marginal bound simply means
that there are no players whose (potential) contributions to society are
arbitrarily large. Continuity of 4 means that players with similar attributes
are good substitutes for each other.

If Q is finite, we frequently refer to its elements as types; players of the
same type are exact substitutes. (Notice that continuity of 4 is automatic in
this case.)

To derive a game from the technology (£, A), we specify a finite set N
and a function oa: N - Q (an attribute function). We associate with each
subset S of N a profile prof (z | .S) given by

prof(a | S}(w) = o~ (@) SI;
i.e., prof(a| S)(w) is the number of players in S possessing the attribute w.
We then define the characteristic function v,: 2" - R, by

v4(8) = A(prof(a| 5)).

Thus, the worth of a coalition S in a derived game is determined by the
technology and depends on the attributes of the players in the coalition. It
is easily checked that (N, v,) is a superadditive game.
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4. THE SHAPLEY VALUE AND THE £-CORE

Having described the framework, we can now state our main result. If
the space 2 of attributes is finite (and so consists of a finite number of
types), it seems natural to think of a game as large if it has many players of
each type; thus each player has many exact substitutes. If Q is not finite, it
thus seems natural to think of a game as large if each player has many near
substitutes.

THEOREM 1. Let (22, A) be a technology. For each ¢ >0 there is a num-
ber 6(¢) >0 and an integer n(e) with the following property:

If (N, v,) is a game derived from the technology (2, A), and for
each player i in N there exist n(e) distinct players j,...., Jneyin N
such that dist(a(i), a(j,)) < d(e) for each k=1,.., n(e), then the
Shapley value of (N, v,) is in the individually rational e-core of
(N, v,).

A number of remarks are in order. Most importantly, we stress that our
result is valid for games and not simply for private goods exchange
economies. The case of private goods exchange economies (with money) is
covered by our framework, but is a very special case.

Continuity of A assures us that players whose attributes are close
together are close substitutes. The parameter 6(¢) is thus a measure of how
close these substitutes must be.

For the remainder of our remarks, we will, for ease of exposition, assume
that the attribute space Q2 is finite and speak of types.

We stress that our result asserts that the Shapley value is in the e-core
whenever there are enough players of each type; we do not need to know
anything at all about the relative proportions of players of each type. By
contrast, all the extant value convergence results for private goods
exchange economies treat convergent sequences of economies, or sequences
of replica economies, so that the relative proportions of players of each
type play a crucial role.® Sequences of replica games are also of interest to
us (we discuss them in Section9) but our main result is much more
general.

It is important that the game have enough players of each type (or at
least of each type which is represented at all). It will not suffice merely to
have enough players in total; Example 2 of Wooders and Zame [20] shows
that this weaker condition does not guarantee that there is any payoff at all
in the individually rational e-core.

¢ Of course, these value convergence theorems also assert the convergence of the value to
the competitive equilibrium, which is meaningless in our framework.
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We note that the Shapley value may be in the g-core and yet not be close
to any point in the core. The most obvious reason for this is that the core
may be empty. However, the Shapley value need not be close to the core
even if the core is not empty, as the following simple example illustrates.

ExaMPLE (THE MARKET FOR GLOVES). The attribute space 2 consists of
two points, Q = {L, R}. Every profile f on 2 may then be written uniquely
in the form f =n, x, + ngx; define A(n x, +ngxg) =min(n,, ng). (This is
the market for (indivisible) gloves. Agents of type L own one left glove;
agents of type R own one right glove. The value of a pair of gloves is one
dollar; odd gloves and fractional combinations are valueless. Money is per-
fectly divisible and freely transferable.) If we consider a derived game
(N, v,) with k players of type L and k + 1 players of type R, we see that the
core of (N, v,) consists of the unique payoff for which the players of type L
each receive one dollar, while the players of type R receive nothing. The
Shapley value, on the other hand, shares the total payoff of k dollars more
evenly, with players of type L receiving only a slightly higher payoff then
players of type R. (See Shapley and Shubik [16] for a detailed numerical
discussion of this example.)

Notice that in this example, if we let &k tend to infinity and imagine the
limiting continuum market, the imbalance between left and right gloves
disappears. In the limit, the Shapley value divides the total payoff equaily
between players of type L and type R; this payoff is indeed in the core of
the limiting continuum market. We will pursue this idea in Section 9.

Finally, we want to make some remarks about the proof. The usual
proofs of value convergence theorems for private goods exchange
economies depend of course on the special structure: divisible goods, con-
cave utility functions, etc. At the heart of all such proofs is the idea that the
marginal contribution of a player to a large coalition depends essentially
only on the approximate distribution of types within the coalition. The law
of large numbers guarantees that, for most large coalitions, the distribution
of types within the coalition is approximately the same as in the economy
as a whole. Thus, the Shapley value for each player is approximately the
same as his marginal contribution to the entire economy, which is his
competitive payoff.”

Such an approach cannot work for games in general, since a player’s
marginal contribution to a coalition may depend very critically on the
precise make-up of the coalition. This is the case, for instance, in the glove
market, and will commonly be the case whenever we are modelling
indivisible goods, or coalition-production, or club goods, etc. Our
approach is quite different.

7 This discussion is over-simplified, but we think it captures the essential idea.
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At the heart of our proof are two ideas. The first of these ideas is that,
even in large games, the blocking power is concentrated in small coalitions.
A little more formally: if the feasible, Pareto optimal payoff x is not in the
e-core of a game derived from the given technology, so that there is a
coalition S with v(S)> x(S)+ |5, then there is a small coalition S’ with
v(S") > x(S")+ 4¢|S’|. The second idea is that, in a large game, no small
group can profit by forming a syndicate (i.e., an a priori coalition). More
formally, the Shapley value which would accure to a group if they agreed
to act as a single unit is very nearly the sum of their individual Shapley
values.

Our results on the blocking power of small coalitions are in Section 5.
Section 6 contains a probabilistic estimate which is used in Section 7, where
we discuss the power of syndicates. The proof of Theorem 1 is given in Sec-
tion 8; it follows quite easily from the two basic ideas. We also discuss the
question of estimating the parameters d(¢) and n(e).

5. THE POWER OF SMALL COALITIONS

Throughout this section, we fix a technology (£, A4). Our goal is to show
that for games derived from this technology the blocking power is concen-
trated in small coalition. The precise statement is as follows:

THEOREM 2. For each £>0, there is an integer I(c) with the following
property:

If (N, v,) is any game derived from the technology (2, A) and
x€ R" is a feasible, Pareto optimal payoff which is not in the ¢-
core of (N, v,), then there is a coalition S < N such that |S| < I(¢)
and v,(S) > x(S) + (¢/2)|S|.

Informally: for any derived game, any (feasible, Pareto optimal)
allocation which can be e-improved upon by any coalition whatsoever, can
be (¢/2)-improved upon a small coalition.

Before beginning the proof of Theorem 2, it is useful to isolate two lem-
mas. The first is a combinatorial lemma which will be used several times.

LEMMA A. Let w,,..,wx be distinct points in Q and let 0,,..,0, be
strictly positive real numbers whose sum is one. Let {¢,} and {§ ;} be sequen-
ces of profiles in P(2) such that:

(@) ¢{w)=0 for each i and each w¢ {w,,..,wx} (no restriction is
made for Vr);

(b) lim, o ] =lim, . ., I = +o00;
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(c) Lim;_ . (Bd@)/lIgll)=lim; , (W@ )/ Yll)=0; for each k,
1<kgK

For each i, j let r;; be the largest integer such that r;¢,<y;. Then

lim lim sup (; |4/1¥,1) = lim lim inf (ry ¢/ 1,1} = 1.

i—»oo j—
Proof. For each i, j the integer r; is characterized by the inequalities
ridlw) <y (wg) for each k;
(rij +1) ¢{w))> '/’j(wl) for some .

We now fix an arbitrary real number p with 0 <p <1. By (c) above and

the fact that each 8, is strictly positive, we can find integers i, and j, such
that for i > i, and j = j,,

(1—p) O <@gl < (1 +p) O,
(1—p) O <Y @)/l <(1+p) O

for each k. Combining these inequalities with those which characterize r;
and simplifying yields

Pyl 1+p Yl

—-1<gry,€«—
pligil T 1=p g
or equivalently
L—p il 4l 1+P

<ry
T+p iyl —° IIl/l,lI

provided that i3> i, and j> jo. If we let j tend to infinity (holding i fixed)
and recall that ||y,|| tends to infinity, we obtain

l—p .. . . i
—<liminfr,
T+p i~ "Iyl
lg:ll
<limsupr;——
W
l+p
1_

for each i>i,. Letting our arbitrary p tend to zero, so that i, tends to
infinity, yields the desired resuit. ||
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The next lemma provides us with some information about payoffs for
sequences of profiles with a given limiting distribution. (Note carefully the
difference in assumptions between Lemma A and Lemma B.)

LEMMA B. Let wy,..., 0 be distinct points in Q and let 0,,..., 0 be non-
negative real numbers whose sum is one. Let { f;} be a sequence of profiles in
P(£2) such that lim,_, _ || f)| = +00 and lim; _, ,, (f{w,)/|fil)=0, for each t.
Then lim; _, o, (A(f;)/Ifill) exists. Moreover, this limit is independent of the

sequence {f;} and depends only on the points w,,.., w; and the numbers
01 geesy BT' ’

Proof.  After renumbering if necessary, we may assume that 6,,..., 8 are
strictly positive and that 85, ,= --- =8,=0 for some K, 1 <K< T. Define
a new sequence of profiles {¢,} by

$plw)=fw,) for 1<k<K-1,
K—1

plo)=Ifll— X flw),
k=1

$(w)=0 if wé¢{w,.., ok}

It is evident that the points w,,.., wg, the numbers 6,,.., 0, and the
sequence {¢,} satisfy all the conditions of Lemma A (i.e., take y,= ¢,). For
each i, j let r; be the largest integer such that r ¢, <¢,. We are first going
to show that lim(A(¢,)/|#;]|) exists.

Note that if M is an individual marginal bound for the technology
(2, A) then

A(¢:)

0<——<M foreachi.

(A
Hence lim inf(A4(¢,)/¢,l|) and lim sup(4(¢;)/l|¢;]) both exist, and

lim inf(4(4,)/l1¢:|) <lim sup(A(¢.)/lI¢.)-

To see that the reverse inequality holds we note that since r;¢,<¢;, the
superadditivity of A yields

A(¢j) 2 A(rij¢i) = "ijA(¢i)

and hence that

A@)_ AB)_(ryldd\ A
TRGERTY ‘( 141 )( ||¢.~||)
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for each i, j. Let ¢ be a small positive number. In view of Lemma A and the
definition of lim sup, we can find an index i, such that

rioj||¢io” A(¢i0) . A_(¢_il_
( 16,1 )( u¢.-ou)>"ms“p T

for every index j greater than some j, (which depends on ip). On the other
hand, we can; by the definition of lim inf, find an index j, > j, for which

A(¢;) A(¢))

<liminf —=+¢

1l el

Combining these inequalities yields that

lim inf A,) + &2 lim sup

li;l

A(g:)
Il

Since ¢ was arbitrary, we conclude that liminf(A4(¢;)/lgl)=
lim sup(A(¢,)/l1¢:]l) and hence that L =lLm(A(¢,)/l|#.ll) exists.

Returning to our original sequence {f;} of profiles, we want to show that
L=1im(A(f,)/lIfil). To see this, note that |fl=I4,] and that our
individual marginal bound and the definition of ¢, yi¢ld:

A A@)] _ 14U — A4l
Ifl ledl 17l

ZR=y o — Il
1/l '

Since (I fi(w,)— I£:1)/Ifi] tends to zero (as i tends to infinity), we con-
clude that lim, _, o, (A(f£)/Il fll) =lim, , . (A(¢;)/4:ll) = L.

Finally, to show that this limit L is independent of the sequence {f;}, let
{g;} be another such sequence. Define a sequence {h;} by hy =/,
and h,,,,=g;. By the above argument, lim(A(k;)/|4;]|) exists. Since all
subsequences of a convergent sequence converge to the same limit, we
conclude that L=lm(A(f,)/|fl)=1lim(A(g;)/llg:l), as asserted. This
completes the proof. |

<2M

With these two lemmas in hand, we can now give the proof of
Theorem 2.

Proof of Theorem 2. Suppose the conclusion were not so. Then we
could find, for each integer I/, a finite set N,, an attribute function
a,: N,— 8, a vector x;€R", and a subset B, of N, with the following
properties:
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(@) xAN)=v,(N);
(b) v,(B))>x/(B,)+¢|Bj,
(c) if v,(S)>x/(S)+¢lS|/2, then |S]> 1L

In order to obtain a contradiction, we are going to construct small
representative subcoalitions S, of B, for which v,(S,)/|S)| is approximately
v,(B))/|B,l and x,S,)/|S/| is (almost) less than x,(B,)/|B/].

We begin by choosing a 6>0 such that if w,,w,eQ and
dist{w,, w,)<d then [A(f+ x,,)—A(f+ x.,)| <&/10 for each profile f
(continuity of 4). We then use compactness of 2 to write £ as the disjoint
union of a finite number of nonempty subsets Q,,..., 2, each of diameter
less than §. For each ¢, choose and fix a point w,e Q,.

For each / and ¢, set

0! =la;'(2,)n Bj/B,

so that 6! is the relative proportion of players in B, with attributes in the set
Q,. Notice that 0 <0!< 1 and that >7_, 8'=1 for each /. Passing to a sub-
sequence if necessary, we may assume that §,=1im,_, , 8/ exists for each ¢.
Renumbering if necessary, we may also assume that 8,,..., 0 are strictly
positive and 8, = --- =0;=0 for some K, ] <K<T.

We now define profiles ¢, and y/, by

dlw)=a; (2,)nB| for 1<K

P(w)=0 for w¢ {w,..,0g};
Ylo)=lo/'(R)nB| for 1<t<T;
Y{w)=0 for w¢{w,., 07}

(Notice that ¢,<y,.) It is easily checked that the points w,,.., @, the
numbers 6,..., 0, and the sequences {¢,} and {y,} satisfy the conditions of
Lemmas A and B. Hence,

. Alg) . AY)
lim = lim
t~o gl 1> Wl
and both these limits exist; call this common limit L. Fix an index /, so that
|L—A(8,)/14:lll <&/10 and |L — AW ,)/[¥,ll| <&/10 for every > 1,.
For each i, j let r; be the largest integer such that r;¢,<y;. In view of

Lemma A, we may choose an index 7>/, and an index J, >/, such that
(for M the individual marginal bound for the technology):

rillgl _& -1
T2 >(1 * IOM)

whenever J > J, (keeping I fixed).
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By assumption, #,>0 for each ¢ with 1<¢<K, so in particular
lot; 1 (2,n B))] > o0 as [ — oo for each ¢ with 1 << K. We may therefore
choose an integer J,; so that

la; ' (R2) N B 2 ¢fw,)=]a; '(2,) B

(for each ¢ with 1 <¢< K) whenever /> J,.

For each /> max(1, J,,J,), we now define a coalition S, N, in the
following way. For each ¢, 1<t<K, we consider all subsets A of
a7 {(2,)n B, with |4| =¢,(w,)=|a;!(2,)n B)|; there are of course only
finitely many such sets. Among all such sets, we let S} be any one for which
the aggregate payoff x,(A4) is as small as possible. Finally, we set
S,=UX_, S!. Notice that |S,| = ¢,/ <|B,|, so if we can show that

€
0,(S)) > x(S) + '2'|SI|’

or equivalently that

vaq(SI) x(S) ¢
— >4,
1S IS/ 2

we will have obtained a contradiction.

To see this, let us first estimate v,(S,)/|S,|. Our choice of the sets 2, and
our construction of S,, together with the facts that |S,| = ||¢,| and IZ 1>,
imply that

va,(Sz) CHIK:

TIS1 T e 10
_E

10 10

JAWY) & & e

"l "0 10 10

>L—

“ Bl 10 10 10 10
By assumption, v,(B,) > x/{B;)+¢|B)|, so we obtain

Ua,(sl) x(By)
ST~ 1B

We now estimate x/S,)/|S,|. By construction r;¢,<i, so that
ru¢p o) <yYlo,) for 1<t<K But ¢(0)=|S]=|Sne;(Q), and



LARGE GAMES 73

Vlw)=la; (R)INB|, so rylSi|=rylS;na;(Q)<|a;(2)n B for
1<t< K Using the fact that S} minimizes x,(A4) over all subsets 4 of
a;/(2,) with |.S¥| members, we obtain

K
x(B)= Y x(Bna;j'(RQ,)

K
2 Z rux[S7)

=rpx[S,).

Recalling that |S,|=|¢,| and |Bj=y,l, that I>J, (which gives an
estimate on r;) and that x,(B,) <v,(B,;)+¢|B/, and using our individual
marginal bound, we obtain:

xl(S1)<xl(Bl)
BY] \"11|51|
([ xAB) (Wil
- (ru ”¢I”)( |B/| )
x{B)) &
<(Ta N+ om)
va(B) | &
|B] 10

Combining this estimate with our estimate on v,(S,)/|S/| yields

xl(S1)<an(Sl)_68 £

IS4~ IS| 107 10

= Ual(Sl) _ €

IS 2

which is the contradiction we desire. This completes the proof of
Theorem 2. |

6. A PROBABILISTIC ESTIMATE

As with most calculations involving the Shapley value, ours depends on
a probabilistic estimate. The estimate we use is very simple, so we derive it
here.

We consider an urn which contains a total of ¢ balls, of which g are
green. We draw, at random and without replacement, a sample of size k
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(k < 1), and write & for the number of green balls in the sample. We want to
estimate the probability that

h k <
P B
where 7 is some predetermined parameter.

To obtain this-estimate, we simply follow Feller [6, p. 233]. The number
h is a random variable whose expected value is kg/t and whose variance is

Var(h)=kg(tt2— g) [1 _/::11] <kg(ttz— g)

Hence Chebyshev’s inequality yields

o [y ={)=orn (=72
g t t

Var(h)
~ e

kg(t—g)
t2’12g2

A
n’g

Equivalently

ok 1
rob(l——-—|< >>1__.
P g 7| " n’g

This is the estimate we shall need.

Note that this estimate is independent of ¢ (the total number of balls)
and of k (the sample size). Note too that for # fixed, this probability tends
to one as g (the number of green balls) tends to infinity.

7. THE POWER OF SMALL SYNDICATES

In this section we prove a general result about the Shapley value of
games. This result applies to all games, whether or not they are derived
from a given technology.

We consider the way in which the Shapley value of a game changes if we
allow a group of players to form a syndicate. We will show that, if the
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syndicate is small (in the sense that there are many near substitutes for
members of the syndicate), then the change in the Shapley value is also
small.

We consider games (N, v) which are not required to be superadditive. If
S is a nonempty subset of N, then by the syndicate game (N, vg) we mean
the game whose player set is Ng=(N\S)u {S} and whose characteristic
function is given by

vs(W)=o(W) if {S}ew,
vs(W)=o([Wn(Ms)JuS) if {Stew.

That is, (N, vg) is the game which results if we treat the syndicate S as an
indivisible unit. We want to compare Sh(vg, {S}) with 3,5 Sh(v, i); the
difference between these two numbers might be called the power of the
syndicate, i.c., the gain or loss resulting from formation of the syndicate.

We need some terminology. We will say that the positive number M is
an individual marginal bound for the game (N, v) if

(W o {j})—o(W)| <M

for each je N and each W< N. For y>0, we will say that players i, je N
are y-substitutes if

lo(W o {i})—o(W U {j}| <y
for every W< N\{i, j}. Our result on syndication is the following.

THEOREM 3. Let M and y be positive numbers and let s be a positive
integer. Then there is an integer r(M, y, s) with the following property:

If (N, v) is a game with an individual marginal bound of M, S is a
coalition of N with |S| <s, and for each player i in S there are at
least r(M, v, s) players not in S who are y-substitutes for i, then

Sh(vs, {S})— X Sh(v, i)| <B)ISI(IS] + 1)y.

ieS

We emphasize again that this result is independent of the framework of
technologies. It is an assertion about the Shapley value of every game. Thus
the number (M, y, s) depends on M, on y, and on s, but not on any
underlying technology—since there is not one. It is possible to give an
explicit bound for r(M, y, s), but it would be very messy.

Proof. We are going to obtain an estimate for |Sh(vs, {S})—
Yics Sh(v, )] in terms of the number of y-substitutes for members of S .and
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some other parameters. We will then show that this estimate can be
reduced to the one we want by judicious choice of these other parameters
provided the number of y-substitutes is large enough. If s=1 there is
nothing to prove (since vg=v); we consider first the case s=2.

We fix a game (N,v) and a coalition ScN with |S|=2. Write
S={a, b}, N*=N\S and n=|N|—1=|N*|+1=|Ng|. Let AcN* be a
set of y-substitutes for a, and let B< N* be a set of y-substitutes for b. We
may assume that |A4|=|B|=r (simply ignoring some y-substitutes if
necessary). Finally, we fix parameters p, 7 and { with0<p<1/2, 0 <1, and
0<{<l.

For the remainder of the proof it is convenient to write

AW, iy=v(Wu {i})—v(W)

for Wc N and ie N.
By definition,

=1
Shivs, {SN)=7 % e T [osWO {S)) —os(W)]

J=0(n—1)WcN‘

J VW=7

1 1 ,

2 L 7w T (W US)—o(W)]

oM7)
1

Py W§N‘ (WU {a b})—v(Wu {a})]
e
Y [owu{ah)—o(m)]

;J=o("—1> We N

J |\Wi=J

L T AW {a),b)

J=0 W N

e

+- _— A(W, a).
h Jgo <n - 1) WCZN"
g Jiwi=y

Let us write Q for this last double sum and P for the next to last. We are
going to estimate |Sh(v, @) — Q| and |Sk(v, b) — P).

As a guide to the intuition, we point out that Q is itself the Shapley value
for player a in the game (N, 5), where N=N\{b} and &(W)=uv(W) for
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each W< N=N\{b}. Since B consists of y-substitutes for b, it is natural to
expect that Q= Sh(p, a) should be close to Sh(v,a) if |B|=r is large.
Verifying that this is so, however, takes quite a lot of work.

By definition,

Sh(v, a)=——: % Y AW, a)
1%, ”) We NMia)
g W=7
Write
17t 1
E=- Z —_— Z A(W, a)

n,_o ”) We M{a}
J |W|=J

Using the individual marginal bound of M, we see that

M 2
|E— Sh(v, @) <2 <22 (1)

Now, we want to estimate |E — Q}. Note two main differences between the
expression for E and the expression for Q: different coefficients, and the
presence of coalitions which contain b. We are going to approximate terms
involving coalitions which contain b by terms not involving coalitions
which contain b; this will also have the effect of “correcting” the
discrepancy in the coefficients.

We first introduce. some sets of coalitions. For each J and %, and let
I'(J, k) be the set of coalitions W < N\{a} for which |W|=J, |Wn B|=k
and b¢ W; we let I'y(J, k) be the set of coalitions W< N\{a} for which
|Wi=J, |WnBl=k and be W, and let I',(J)=;_o Ts(J, k).

We now use these sets to break up the expressions for E and Q. Set

EJ. k)= Y AW, a),
Wel(Jk)
Eb(']’ k)= Z A(W9 a),

We Iy(J k)

B =—c ¥ [EU. k) + Es(J, k)],

bR

o) =—— ¥ EU.K).

()"

and
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Notice that

E_l "}:l E(J)

J=0

and that

L=
=; § o).

Thus, we want to estimate |E(J)— Q(J)| for each J.

The estimate we use depends on the size of J. If (J—1)<p(n—1) or
(J—1)=(1—p)n—1) we use the obvious estimate given to us by the
individual marginal bound:

|E() - Q()) <2M. (2)

If p(n—1)< (J—1)< (1 —p)(n—1), we need to be more careful. Let us
fix such a J, and let I be the set of indices k for which

k+1 J

r—k n-—J

<71

(recall that t was one of our initial fixed parameters); let I’ be the com-
plementary set of indices.

Fix an index kel For Werl(J, k) and ce B\(Wn B), write W, =
(W\{b})u {c}. The fact that b and c are y-substitutes yields that

|4(W, a) — A(W., @)l <2y.

Hence if we average over the r —k elements of B\(W n B), we obtain

A(W, a)——l— Y AW, a)|<2y.
r—k .comwnn

Notice that W was chosen to be in I',(J, k) but that each W_ belongs to

I'(J,k+1). Now, as W runs over all elements of I',(J, k), the sets W_ run

over all elements of I'(J, k+ 1), but each element of I'(J, K+ 1) occurs

exactly k+ 1 times (because there are k+ 1 elements which might have

occurred as replacements for b). Hence if we sum over I',(J, k), we obtain

1
E,(J, k)— E—t—E(J k+ 1) <29y, k).
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Combining this with the fact that &k is in [ yields

J
E,(J, k)-——mE(J,k-F NS, k)| +|E(J, k+ 1)

S| 0 k) +2M | T(Jk+1).  (3)
On the other hand, for indices k ¢ I we certainly have
|Eo(J, k)| <2M|Ty(J, k)| (4)
and \
|E(J, k)| <2M|I'(J, k). (5)

The next step is to show that most of the coalitions in {J§_o Is(J, k)
actually belong to Ui, [,(J, k). Note first that if k/r=(J—1)/(n—1),
then direct calculation gives

k+1_J—1+ 1
r—k n-J < (J— 1))
r{l1-—
n—1

Since we have taken J—1 in the range p(n—1)<(J—1)<(1—p)(n—1)
and p is fixed, the second term on the right-hand side of Eq. (6) is certainly
less than 1/3 if r is sufficiently large. Since n > r, the first term on the right-
hand side of (6) differs from J/(n - J) by less than t/3 if r (and hence n) is
large. Hence,

(6)

k+1 J
P — <2t/3

provided that r is large and k/r=(J—1)/(n—1). Thus,
k+1 J

r—k n—J

<t (7)

provided that r is large and that

is sufficiently small; if (7) holds, then ke L

We can now use our probabilistic estimate from Section 6 in the follow-
ing way. Choosing at random a coalition W in I',(J) is the same thing as
choosing at random a set of J— 1 elements from N\{q, b}, and then adding
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the element b to this set. If kK =|W N B|, the estimate of Section 7 tells us

that with probability at least 1 —{ (recall that { is the third of our fixed
parameters), the quantity

k J-1
lr n—1

will be very small, provided only that r is sufficiently large. In other words,

U) 1y, k) (8)

k=0

U M, k)| <¢

kel

provided that r is large.
We now begin to estimate |E(J)—Q(J)| for p(n—1)<(J—1)<
(1—p)(n—1). We write

A= % LB K+ B )T+ 8 TBUL K+ B )T 9)
kel kel
<J) (J)

Combining the inequalities (4), (5), and (8), we see that the second of these
sums is small; to be precise,

E(J)=

](,1,—> Y LEU, k) + E,(J, k)] | <4m{. (10)
kel
J

We can use (3) to obtain an approximate expression for the first sum in

9),

L s (BUL k) + B0, 0]
n kel
(,)

~

1 J

- E,[E(J’k)+n—JE(J’k+l)]’ (11)
©)
with an error not exceeding 2y + 2M7. Notice that in the right-hand sum of
(11), every one of the terms E(J, k + 1) appears twice, with the exception of
the term corresponding to the smallest value k, of £ which is in I: the term
E(J, k+1) appears the first time with a coefficient of J/(n—J) and a

second time with a coefficient of 1. Hence we can rewrite the right-hand
side of (11) as
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(Tl)kz [E(J K+ B, k+1)]
J
=(I’5 ) (,,TJJ )E(J k+1)+<1) EU k) (12)
") ;

Combining (5) with the same probabilistic estimate we used before, we can
see that the last of these terms can be made small:

1

n

J
if r is large.

We now point out a very convenient identity:

E(J, ko) <2M(, (13)

6(#“)7’111). | (14)

J

If we plug this identity into (12), and combine (9) with the estimates (10),
(11), and (13), we conclude that

E(J)~ Y E(J,k+1), (15)

1
(n > kel
J k 3 ko

with an error not exceeding 4M{ + 2y +2Mt+ 2M{. But the right-hand
side of (15) is just part of the expression for Q(J); the terms which are mis-
sing are just the ones for which k € I, and just as before we can see that the
sum of the missing terms does not exceed 4M(, for large r.

To summarize, we have shown that

|E(J)— Q(J)} < 10M{ + 2M1 + 2y, (16) .

provided that p(n— 1)< (J— 1) <(l—p)(n—1) and r is large. Recall from
(2) that

|E(J)— Q) <2M
if(J-1)<pn—1)or (J—-1)=(1—p)n-1).
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In order to estimate |E— Q|, we need only add all these estimates and
divide by n. This yields

1 .
E-QI SZ [2pnM + n(10M{ + 2M1 + 2y)]
= M(2p + 10 +21) +2y.
Combining this with (1) gives us the estimate we are after:

M
|Sh(v, a)— Q| < M(2p +10{ +21) + 2y +T,

for r sufficiently large. It is now clear that we need not be very careful in
our choice of the parameters p, 1, and {. If we simply choose each of them
very small, we obtain

ISh(U, a) - QI < 3%

provided that r is sufficiently large. This is the desired estimate for Q.

The intuition underlying our estimate for P is similar to the intuition
underlying our estimate for Q. We want to see that P is nearly the Shapley
value for player b in the game (N ¢), where N=N\{a} and 5(W)= (W)
for each W < N\{a}. Since the preceding argument, with the roles of a and
b reversed, shows that |Sh(v, b) — Sh(v, b)| < 3y if  is large, this will give us
the estimate we need.

Our previous argument was based on the idea of systematically replacing
every term which involved a coalition containing b by terms which do not
involve coalitions containing 5. This time, we want to systematically
replace every term involving a coalition containing a by terms which do
not involve coalitions containing a. The twist is that all these terms occur
in the expression for P and not in the expression for Sh(s, b). The terms we
seek to replace are of the form 4(Wwu {a}, b), and following the same
procedure as before, we obtain the approximation

A(Wu{a}, b)y~A(Wu {d}, b),

for deA\(WnA). Notice that Wn{d} is a coalition in
N\{b}=MN\{a, b}, and |Wu {d}| = |W|+ 1. Thus if we follow the same
averaging procedure as before, the terms in the expression for P
corresponding to coalitions W of size J become terms in the expression for
Sh(v, b) corresponding to coalitions WU {d} of size J+ 1. The averaging
procedure also gives us an extra factor which (for most of the terms) is
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nearly equal to (J+1)/(n—1—J). This extra factor is just what we need,
since we can then use, instead of the identity (14), the identity

1 J+1 \ 1
n—N\\n—1-J) (n—1Y
J J+1
After carrying out the same sort of approximations as before, we obtain

that

| P— Sh(p, b)| <3y,

provided that r is sufficiently large. Since, as we have already noted, the
first argument (with the roles of a and b reversed) |Sh(v, b) — Sh(v, b)I <3y,
we conclude that

| P — Sh(v, b)| < 67,

if r sufficiently large. Combining our estimates for P and Q gives

|Sh(vs, {S})— Sh(v, a) — Sh(v, b)| = | P+ Q — Sh(v, a) — Sh(v, b)|
<%,

provided that r is sufficiently large. This is the estimate we want, so the
proof in the case | S| =s=2 is complete.

Finally, we come to the general case. Let |S|<s and write S=
{ay,.., a5 }. We write, as before,

Sh(vs, {S})=Pl+ et +P|S|‘

Just as above, we find that |Pg—Sh(v,a5)| <3y, that
|P\sj_1— Sh(v, ag_,)| <6y, and so forth. Summing yields

Shios, {S)— 3 Shio, a| <2LEUSEDY,

provided that r (the number of y-substitutes for members of S) is suf-
ficiently large. This is the estimate we needed, so the proof is complete. ||

Although we shall have no need of it, we point out that a similar
argument can be used to show that for i ¢ S we also have

31S1(]S]+1

(Sh(os, 1)~ Shiv, ) < 2L2LTEDT,

provided that the number of y-substitutes for members of S is sufficiently
large.
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7. PROOF OF THEOREM 1

It is now very easy to combine Theorem 2 of Section 5 and Theorem 3 of
Section 7 to give a proof of Theorem 1. ‘

We are given a technology (£, 4) and a positive number ¢. Let I(¢) be
the integer by Theorem 2. Set

&
7=3(1(a)+ 1y

and choose a positive number 6(¢) > 0 such that for each feP(2),

| A + X)) = A+ X))l <7

whenever w, and w, belong to 2 and dist(w,, w,) < d(e). Let r(M, y, l(e))
be the integer given by Theorem 3. Finally set n(g) = r(M, v, I(e)) + l(e).
Now suppose we are given a game (N, v,) derived from (2, A4) and that
for each player ie N there are at least n(¢) distinct players j,,..., j,) such
that dist(a(i), a(j,)) < d(e) for 1<k<n(e). We must show that Sh(v,)
belongs to the individually rational e-core of (N, v,). Certainly, Sh(v,) is
feasible, Pareto optimal and individually rational. If Sh(v,) were not in the

“e-core, we could, by Theorem 2, find a coalition S < N such that |S| <I(e)

and »

T Sh(v,, 1) <v,(S)—2]S].

ieS 2
On the other hand, our choice of 6(¢) guarantees that each member of S
has at least n(¢) y-substitutes in N; our choice of n(e) guarantees that at
least r(M,y,1(e)) of these y-substitutes do not belong to S. Hence
Theorem 3 tells us that ’

31S1(S1 + 1)y

%, Sh(vs, 1) > Sh((o,)s, {8}) ="

ieS
On the other hand, individual rationality of the Shapley value for the game
(v,)s guarantees that Sh((v,)s, {S}) = (v,)5({S}) = v.(S). Combining this
fact with the previous inequality and the definition of y yields

Y. Sh(v,, )2 0,(S) = ISI.
ieS 2
which is a contradiction. We conclude that Sh(v,) indeed belongs to the

individually rational e-core of (N, v,), as asserted. This completes the proof
of Theorem 1. ||
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It is of interest to obtain good estimates on d(¢) and n(¢), in terms of cer-
tain natural parameters of the technology (£, 4). The chief obstacle to
doing so is that the integer /(¢) given by Theorem 2 depends on the
technology in a way that seems difficult to quantify. If we think of /(¢) as
known, however,® it is not hard to obtain an estimate for n(¢). Simply
keeping track of the various parameters in the proofs of Theorem 3 and
Theorem 1 gives an estimate for n(¢) on the order of a constant times
(M/¢)3(I())>.° The number §(¢) of course, depends only on the modulus of
continuity of A.

9. LIMITING BEHAVIOR

The example presented in Section 4 shows that the Shapley value of a
large game, while in the individually rational e-core, need not be close to
any point in the core (even if the core is not empty). The same example
also suggests that the Shapley value should be close, not to the core of the
large finite game, but to the core of a limiting nonatomic game. The pur-
pose of this section is to show that this is indeed the case. In fact, we show
quite a lot more: the individually rational e-cores of a sequence of games
converge to the core of the limit game. To make this precise we require
some preliminary discussion.

We will restrict our attention to the case where Q2 is a finite set, say
Q={w,,.,ws} so that we will speak of types. (Similar results could
undoubtedly be established in more general contexts, but would probably
be much more complicated, and lose much of their intuitive flavor.)

To define a nonatomic limiting game, we fix strictly positive'® real num-
bers 8,,.., 8, with Y 8,=1, and disjoint intervals I,,..., I, on the real line
for which length (I,)=86,. Set I=1{J I,, let # be the family of Borel subsets
of I, and let u be the restriction to I of Lebesgue measure. (The inter-
pretation we have in mind is that 7 represents a continuum of players of
which the fraction 6, = u(I,) are of type . The family # of all Borel subsets
if I is the family of admissible coalitions.)

To define a nonatomic game on /, in the sense of Aumann and
Shapley [13], we must define a set function 4 on # which is of bounded
variation. To this end, let B be an element of &. If u(B)=0, we define
A(B)=0. Otherwise, we write B,=u(BnI,)/u(B) for each t; note that

8 That is, if we regard /(¢) as a known parameter of the technology.

 This may be compared with the estimate obtained by Mas-Colell, which is of the same
order.

10 The case in which some of the 8,’s are zero can be treated by restricting attention to a
subset of Q.




86 WOODERS AND ZAME

B.=0 and that 3 ,= 1. Choose a sequence {f; } of profiles on 2 such that
|l fell = oo and fi (/I fill = B, for each t. We then define

A
A

(In view of Lemma 2, this limit exists and is independent of the particular
sequence {f,} of divisors we choose.) To see that 1 is of bounded
variation, we note that 0 < A(f)/||f|| < M for any divisor f (where M is the
individual marginal bound for the technology (£, 4)) so that
0<A(B)< Mu(B). (The construction we have given corresponds to the
usual “fractionating process” for constructing nonatomic economies. The
limit lim,_, , A(f,)/I fll is to be interpreted as the limiting per-capita
payoff to a coalition with a given distribution of types, so A(B) is the
limiting payoff, normalized relative to the number of players.)

Recall that the core of A consists of all nonnegative, finitely-additive set
functions o: # — R such that ¢(I) = A(I) and ¢(B) > A(B) for each Be &. (If
o is in the core, we may interpret o(/,) as the total (normalized) payoff to
the set of players of type ¢.) It is a useful fact that every elements of the core
treats players of the same type equally.

1) =( ) uis)

LemMa C. Let o belong to the core of A. Then for each t and each Borel
subset A of I,.

a(A)=o(l,) u(4)/ul,).

Proof. Let us first perform a preliminary calculation. Suppose that B is
a Borel subset of I such that u(Bn I,)/u(B)= u(l,) =6, for each ¢ (so that B
has the same relative distribution as I); write B’ = I\ B. The definition of 2
implies that

A(B) = A(I) u(B),
A(B') = A1) u(B').
Since o is in the core of A, we obtain
o(B) = A(B) = M) u(B),
o(B’) =2 A(B')= A1) u(B’).
Additivity of ¢ and u imply that
a(I)=0(B)+a(B') = MI).
Since a(I) = A(I), we conclude that o(B) = A(B) and ¢(B’) = A(B’).
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Now suppose that 4,, A, are subsets of I, with u(A4,)= u(A4,); we claim
that a(4,)=0(A4,). To see this, we write p=pu(A4,)/0,=u(4,)/0,, and
choose a subset C of NI, such that u(Cn1,)/0,=p for each s#t Our
preliminary calculation implies that

o(4, v C)=A4,v C)= ) (4,0 C),
d(A, 0 C)=MA,u C)=A(I) u(4,v C).

Since pu(A4, v C)=u(A4, v C), we conclude that a(4, u C)=0a(4,u C), and
additivity of ¢ implies that a(4,)=0(4,).

Finally, let 4 be a Borel subset of I,, and let m be a positive integer.
There is a unique integer r such that

We may then choose disjoint Borel subsets E,,.., E,, of I, such that
UE;=1,, wE)=86,/m for each i, J:_, E,.c AcJ);Z} E,. Our previous
calculations, together with additivitiy of ¢ yield that o(E;)=0a(l,)/m for
each i, and hence that S

ro(I,)m<a(A)<(r+1)o(l,)/m.

Letting m tend to infinity now yields the desired result. |

For each ¢ in the core of A, define 6 e R” by (¢) = 6(1,)/u(1,). In view of
Lemma C, we can unambiguously interpret 6(¢) as the per-capita payoff to
players of type . Let

C(4) = {G: g is in the core of 1},

so that C(4) is a subset of R7,

We now fix a sequence {(N,, v,,)} of games derived from the technology
(£, A). We assume that |N,| — oo and that a; (w,)/| N — 8, for each ¢
there is also no loss of generality in assuming that «; (w,)> 0 for each k
and t. We view the nonatomic game A as a (normalized) limit of the games
(N, v,,). For ¢>0 we will say that a payoff x in the individually rational
g-core of (N,,v,) is an equal-treatment payoff if x(i)=x(j) whenever
o (i) = a,(J) (so that players of the same type receive the same payoff). For
such an x, we define xe RT by x(z) = x(i) for any ie N, with a(i)=1t; we
write C,(N, v,,) for the set of such vectors, so that C,(N,, v.) is a subset of
R”. Of course, for xe C,(N,, v;), we may interpret x(¢) as the per-capita
payoff to players of type ¢. Evidently, then, to show that the sets C,(N,, v,,
and C(A) are close is to show that, in a natural sense, the individually
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rational e-core of (N, v,) (and the Shapley value in particular) is close to
the core of A; this is what we are going to do. We use the Hausdorff dis-
tance between sets as the measure of closeness; for information about the
Hausdorff distance and the lim sup and lim inf of a sequence of sets, we
refer to Hildenbrand [8].

THEOREM 4. Given 6,> 0 and &,> 0 there is an &, with 0 < ¢, <&, and an
integer k, such that

diSt(Cel(Nkﬁ Uak)’ C_‘('l)) < 60

Jor every k = k,. Equivalently,

C(A)= () lim sup Cy(N,, v,,)

e>0 k— o

= () liminf C,(N,, v,,

e>0 k-
In particular, if { ,;= Sh(N,, v,,), then
klim dist({,, C(4))=0.

Proof. We write C¥=C,(N,, v,,). Note that each C¥ is a compact set.
Moreover, if x e C¥, then for each ¢,

M|N,|

¥ —1
x(1) S0l (Ni)/ | o)) < S @)
Since [N/l (w,)| - 6,, we conclude that the sets C* are in fact
uniformly bounded. We have already noted that, given ¢ >0, the sets C¥
are nonempty for sufficiently large k. It follows then that
lim sup, _, ,, C¥# ¥ for each ¢>0. Since C* = C* whenever ¢ < ¢, we also
have that lim sup C% < lim sup C* whenever &' <e. Thus {lim sup C¥} is a
nested family of compact sets, and in particular, ), o lim sup C* # .

The next step is to show that (),,,limsup Cxc C(A). Let
X€(\esolimsup C¥; then xelimsup C* for each ¢>0, so there is an
increasing sequence {k,} of positive integers, a decreasing sequence {¢,} of
positive numbers tending to zero, and a sequence {%,} converging to x
with x, e C* for each n. We claim that ¥ is in C(A).

To see this, set a=3Y7_, %(¢) u,; we need to show that ¢ belongs to the
core of A. First of all, note that
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T LA

6(1)— > X(1) uAl)

t=1

- u[v]ﬂ ||M~;

)?t)O

(llm £.() (w Ia?;:m)

_ (fn(tna;,‘(w.n)

1"“’°° Nl .
i 2 Ea0) g (@)
n- o |V, |
e P
now [Nyl
= A(I).

Thus o is feasible. If ¢ were not in the core we could find a Borel set B for
which A(B)> a(B); hence there would be a positive number p such that

@ a(B)
4(B)” u(B)

Choose coalitions S, = N, such that |S,| - co and

o5 @) S| mBAT)
15, u(B)

for each 1. The definition of A yields that

MB)_ V4 (S0)
WB) n—w IS,

so we have

v%(Sn)> Erj X (D)o (@) S,
S, 1S,

t=1

p
*32

for n large. If we write x, for the equal-treatment payoff in the ¢,-core of
(Ny,» vy, ) which gives rise to X, then our last inequality implies that

02, (82)> %,(S,) + 515,
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for large n. However, since ¢, — 0, this contradicts the fact that x, is in the
g,-core of (Ny,, v,, ) for large n. We conclude that ¢ is in the core of 4 and
that x belongs to C(), as asserted. Thus (), o lim sup C¥ C(A); note that
in particular, C(1) # &.

The next step is to show that C(4) = (1, lim inf C*. Given 6 € C(4) and
an £>0, we must therefore construct, for each large k, a vector X, €Ck
such that x, » &. To this end, define, for each k, a vector y,€ R by
y(i)=G(a,(i)). We will show that a small perturbation of y, is in the
individually rational e-core of (N, v,,)- :

It is convenient and involves no loss of generality to assume that our
games are zero-normalized, so that v, ({i})=0 for each k and i.

Write 6 =Y 6(¢) u,, so that ¢ is in the core of 1. By definition,

_n Uczk(Nk)
a(I)—hm————lNkI .
Since
T
YN =Y. yl)= Y, (1)l (@)l
t=1
and

Iak_l(wt)l/lNkl - 0[ = ”(11)9

we conclude that

Vi(Ny)
—_—— 0 1)’
7
and
vak(Nk) -
Vi(Ny)
Thus if we set
_ vak(Nk)

2= y ,
T YN TE

we obtain a feasible, Pareto optimal, individually rational equal-treatment
payoff for the game (N,, v,,), and clearly z, —» . We need to see that z, is
in the e-core of (N, v,,) for k large. If this were not so then for each k we
would find a coalition S, = N, such that

vak(Sk) Z(Sk)
—_— + &.
[Skl | Sl
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Passing to a subsequence if necessary, we may assume that
B, =lim, _, |7 (w,) N Skl/|Skl exists for each . Let B be any Borel subset
of I such that u(Bn I1,)/u(B)= B, for each 1. Then

MB) L 050
WB) IS

On the other hand, the equal-treatment nature of z, and the fact that
Z, — & imply that
B
o ( ) im zk(Sk).
W(B) k—w |Si

Hence
A(B) > a(B) + eu(B)

which contradicts the fact that ¢ is in the core of A. We conclude that
z, is in the e-core of (N,,uv,) for k sufficiently large. Hence C(1)c
Ne o lim inf C. '

We have now shown that

M limsup C¥c C(A)c () lim inf Ck.

e>0 k— o e>0 k>

Since lim sup C* > lim inf C* for every ¢, it follows that
() lim sup C¥ = C(A) = (") lim inf C¥.

The first statement of the Theorem is an easy consequence of this fact.
To see this fix §,> 0, £,>0, and let U be the §,-neighborhood of C(A); i.e.,

U= {jeR:dist(y, C(4))<do}.

Since C(A)={)limsup C*, we can find an ¢,, 0<eg, <g,, such that
U>limsup C¥. Hence U= C¥, for all sufficiently large k. Writing U, for
the 60-ne1ghborhood of C%, we need to show that C(1) < U, for all suf-
ficiently large k. If this were not so we could find a sequence of integers
{k,} tending to infinity and a sequence {G,} in C(4) such that
dist(G,, C¥r) >, for each n. Passing to a subsequence if necessary, we may
assume that 6, — 6. But then dist(5, C¥) > 34, for k, large, so that ¢ would
be a point of C(/l) which was not in hm inf C¥ . This is a contradiction, so
we must have C(4) < U, for all sufficiently large k. In other words

dist(C*, C(4)) < &6

for all sufficiently large k, as desired.
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The final assertion, about the Shapley value, is an immediate
consequence of this distance estimate and Theorem 1, so the proof is
complete. |

We remark that a similar argument may be used to show that, for every
¢>0, lim inf CY =lim sup C¥; this set may be interpreted as representing
the set of equal-treatment payoffs in the e-core of A. (Of course, this is not
true if ¢ =0, as the example in Section 4 shows.) We shall not go into the
details here.

It is tempting to suppose that the (per-capita normalized) Shapley values
of the games (N, v,,) converge to the asymptotic Shapley value of the non-
-atomic game A. Unfortunately, 4 need not have an asymptotic Shapley
value (see the “three-handed glove” market in Aumann and Shapley [3],
for instance). Perhaps such a result could be proved using the more general
value of Mertens [12].

Note added in proof. Since this paper was accepted, we have obtained analogous results for
NTU games, Wooders and Zame, “NTU values of large games,” University of Toronto,
Department of Economics Working Paper (forthcoming).
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