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We estabIish that Cor à broad class îÑ large games with sidepayments, Cair out-
comes are nearly stabIe. More precisely, the Shapley value îÑ à large game is in the
e-core and å is very small iC the game is very large. ÒÜå prooC uses two other results
îÑ independent interest: Cor large games the power îÑ improvement is concentrated
in small coalitions, and the Shapley value îÑ à small syndicate acting together is

-: nearly the sum îÑ the Shapley values which accrue to the members acting alone.
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1. INTRODUCTION

Èuhn and Tucker [9] posed, as one of à list of important problems for
study, "to establish significant asymptotic properties of n-person games, for
large n." This paper takes à step in that direction.

We establish that for à broad class of large games, fair outcomes are
nearly stable. Moreover, the larger the game, the more nearly stable is the
fair outcome. In more precise terms, the Shapley value of à large game is in
the å-ñîòå, and å is very small if the game is very large. ÒÜå framework we
use is that of games in characteristic function form with sidepayments. This
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framework ñàï acommodate diverse economic models with money,
inclèding private goods exchange economies (with divisible and indivisible
goods), coalition-prodèction economies, economies with local pèblic
goods, and economies with clèb goods.

At the heart of this paper are two main ideas concerning the role of small
coalitions which we think are of interest in themselves. ÒÜå first of these is
that, for large games, the power of improvement is concentrated in small
coalitions. Roèghly speaking, this means that if an allocation ñàï Üå
improved èpon at àll, then it ñàï Üå improved èpon Üó à small coalition. À
related idea is familiar in the context of private goods economies (c.f., Mas-
Colell [10]) and appears implicitly in other economic models (c.f., Shèbik
and Wooders [17,18] îï economies with local pèblic goods and îï
coalition prodèCtion). In the context of finite games, this idea has been
èsed implicitly Üó Wooders [19] and Wooders and Zame [20], to show
nonemptiness of I:-cores, bèt to the best of oèr knowledge, the present
paper is the first place where it is given an explicit statement in the strong
form herein. ÒÜå second of these main ideas is that, in large games, the
Shapley valèe cannot Üå significantly affected Üó the formation of à small
syndicate. That is, the Shapley valèe which woèld accrèe to the syndicate
acting together is very nearly the sèm of the Shapley valèes which accrèe
to the members acting alone.

ÒÜå convergence of the Shapley valèe to the competitive payoff (and
hence to the core) for private goods exchange economies was sèggested Üó
Shèbik, and first demonstrated Üó Shapley [14] in the context of
replication economies with money. It has sèbseqèently been extended Üó
Shapley and Shèbik [16], Champsaèr [4], Mas-Colell [11], Cheng [5],
and others.! Some of these extensions treat the case of economies withoèt
money, bèt they are àll restricted to the context of private goods exchange
economies2 with divisible goods and concave, monotone ètility fènction.
Moreover, they àll treat either replicated seqèences of economies, or con-
vergent seqèences of economies.3 This kind of private goods framework,
however, rèles oèt òàïó natèral economic phenomena, sèch as indivisible
goods, nonmonotonic or nonconcave ètility fènctions, general prodèction,
local pèblic goods, or clèb goods. Oèr framework is broad enoègh to
encompass àll these sitèations (in the presence of money4). Moreover, oèr

1 This list is not intended to üå complete.
2 Strictly speaking, Champsaur allows Cor production, but only îÑ à restricted kind (additive

production ).
3 ÒÜå work îÑ Àèmànn and Shapley [3], Àèmànn [2], Hart [7], and others îï values îÑ

economies with à continuum îÑ agents is îÑ à somewhat dilTerent nature since it begins with à

limit continuum åñînîmó.
4 Without mînåó, such economic settings màó üå modelled as games without sidepayments.

In that Cramework, the analog îÑ the Shapley value is the NTU value (or ).-transCer value).
(See note added in prooC.)
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framework does not require replicated economies or convergent sequences
of economies.

Òî modellarge games we introduce the notion of à "technology" (to Üå
understood in à broad sense). À technology encompasses all possible
opportunities available to any conceivable group of agents in society. More
specifically, à technology consists of à space .Q of possible attributes of
agents, and à mapping À which specifies the maximum utility obtainable
Üó any group of agents, given the attributes of its members. We make
natural assumptions of compactness of the space .Q of attributes, and
superadditivity, continuity, and marginal boundedness of the mapping À. À
game is determined from such à technology Üó specifying à finite set of
players, and the attributes of åàñÜ player. (In à private goods economy, for
example, we would specify, for åàñÜ agent, an initial endowment and à
utility function.)

ÒÜå stability concept we employ is the individually rational 6-core. À
payotT is in this 6-core if it is feasible, Pareto optimal, individually rational,
and has the property that ïî coalition ñàï improve upon it Üó more than 6
for åàñÜ of its members.

Our main result shows that given an 6> Î, any game, derived from such
à technology, which is sufficiently large (in the sense of having òàïó
players whose attributes are sufficiently close) has the property that the
Shapley value (à fair outcome) is in the individually rational6-core (the set
of nearly stable outcomes).

In the special case of private goods exchange economies with divisible
goods and money (but allowing for nonconcave and nonmonotone utility
functions), such 6-core payotTs ñàï Üå "approximately decentralized" Üó
prices (in the sense of Anderson [1]). In this setting, therefore, our result
implies that the Shapley value is an approximately competitive payotT (if
the economy is sufficiently large). We stress, however, that this is à very
special case of our result.

This work is-in part-an outgrowth of an earlier paper (Wooders and
Zame [20]), in which the technology framework used herein was
established. Although there is an overlap of ideas between the two papers
the thrust of the present paper is quite ditTerent. In particular, the present
paper òàó Üå read quite independently.

ÒÜå remainder of the paper is organized in the following way. We collect
general information about game theory in Section 2, and our notion of
technologies is described in Section 3. In Section 4 we give à precise
statement of our main result and some comments îï its meaning, and
decribe the two main ideas of its proof. ÒÜå proof itself is divided into four
sections: Section 5 is devoted to the first main idea (the blocking power of
small coalitions), Section 6 contains à simple probabilistic estimate, Sec-
tion 7 is devoted to the second main idea (the power ofsmaU syndicates),
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and the proof is completed in Section 8. Finally, Section 9 relates the
f,-cores of à sequence of games to the core of à nonatomic limit game.

2. GAMES

Âó à gaòe (in characteristic function form, with sidepayments) we òåàn
à pair (N, v) where N is à finite set (the set ofp/ayers) and v is à function
(the characteristic fuïctioï) from the set 2N of subsets of N to the set ~ + of
nonnegative real numbers, with the property that v(e;) = î. We usually
refer to subsets S of N as coa/itioïs; the number v(S) is the worth of S. If
the player set N is understood, we frequently refer to v itself as the game.
We say that v is superadditive if for àll disjoint subsets S, S' of N we have

v(S u S');;::: v(S) + v(S').

Âó à payofffor (N, v) we òåàn à vector õ in ~N; it is convenient to use
functional notation, so for i Å N, x(i) is the ith component of õ. We say that
õ is feasible if x(N) ~ v(N) (where x(S) = LiE S x(i) for åàñÜ S ñ N).

For f,;;::: î, à feasible payoff õ is in the f,-core of (N, v) if

(à) x(N) = v(N) (Pareto optiòa/ity);

(Ü) x(S);;::: v(S) -f, ISI for àll subsets S of N.

(We use ISI to denote the number of elements of the set S.) We say õ is in
the iïdividually ratioïa/ f,-core if it is in the f,-core and in addition

(ñ) õ( i) ;;::: v( { i}) for àll i Å N (iïdividually ratioïa/ity).

When f, = î, the f,-core (which coincides with the individually rational
f,-core) is simply the ñîãå.

Less formally, à feasible, Pareto optimal payoff õ belongs to the f,-core of
(N, v) if ïî group of players ñàï guarantee for themselves à payoff which
åàñÜ of them finds better than õ Üó more than f,. As Shapley and
Shubik [15] point out, such à payoff ñàï Üå interpreted as stable if players
are nearly optimizing, or satisficing, or if there is an organizational or ñîò-
municational cost to formation of coalitions (proportional to the size of the

coalition).
ÒÜå Shap/ey va/ue Sh(v) of the game (N, v) is the payoff whose ith ñîò-

ponent is given Üó

1 INI- 1 1
Sh(v,i)=- I N I L (I NI -l ) L. [v(Su{i})-v(S)]

J-O Sc:N\{I}
J ISI-J
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In other words, Sh(v, i) is player z"s average marginal contribution to
coalitions in N. ÒÜå Shapley value is à feasible, Pareto optimal and
individually rational payofT. It is frequently interpreted as representing à
"fair" payofT since it yields to åàñÜ player his expected contribution. It ñàï
also Üå given various other interpretations (as à óîn Neumann-
Morgenstern utility function for example, see Roth [13]).

3. TECHNOLOGIES

We want to formalize the notion of à large game for which the worth of
à coalition depends in à continuous fashion îï the attributes of its
members. Òî do this, we introduce the notion of à technology.5

Let Q Üå à compact metric space. Âó à profile îï Q we òåàn à function f
from Q to the set 7L + of nonnegative integers for which the support of f,

support(/) = {wEQ:f(w):;z!:O},

is finite. We denote the set of profiles îï Q Üó P(Q). Note that the sum of
profiles (defined pointwise) is à profile, and that the product of à profile
with à nonnegative integer is à profile. We write Î for the profile which is
identically zero. We write f ~ g if f(w) ~ g(w) for åàñÜ w Å î. For øî à
point of Î, we write Õøî for the profile given Üó

õøî(w) =0 if w:;z!:wo;

Õøî(Wî) = 1.

Âó the ïorm of à profile f we òåàn

IIfll= L f(w).
øåè

(Notice that this is à finite sum, since f has finite support.)
In essence, à profile is simply àn (unordered) list of elements of Î, with

åàñÜ element w appearing as òàïó times as its multiplicity f( ø).
Âó à techïology we òåàn à pair (Î, À) where Q is à compact metric

space (the space of attributes) and À: Ð(é) -+ ~+ is à function with the

following properties:
(i) À(Î) = î;

(ii) À(! + g) ~ A(f) + A(g) (superadditivity);

5 In Wooders and Zame [20] the term "pre-game with attributes" was used; the term

"technology" was suggested Üó Ó. Kannai, and seems òîãå descriptive.
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(iii) there is à constant Ì such that À(! + õø):!i:; À(Ë + ì for åàñÜ
ØÅ,Q,jÅÐ(,Q) (we say Ì is àn iïdividua/ margiïa/ bouïd);

(iv) for every â > Î there is à ä > Î such that

IA(j + õøl) + À(! + ÕØ2)1 < â

whenever j Å Ð(é) and ø 1, Ø2 Åé with dist( ø 1 , Ø2) < ä (coïtiïuity).

ÒÜå interpretation we have in mind is that à technology encompasses all
the economic possibilities for every conceivable group of players. À point of
,Q represents à complete description of the relevant attributes of players
(endowment, utility function, etc.). À profile j represents à group of players
of whom j( ø) àñå described Üó the attribute ø; the total number of players
in the group is just 11/11. ÒÜå number À(Ë represents the maximal possible
payofT the members of this groups could achieve (using their own resour-
ces) Üó cooperation. ÒÜå requirements that À (Î) = Î means that the group
of ïî players ñàï achieve nothing. Superadditivity has its usual inter-
pretation: înå of the possibilities îðån to the group represented Üó j + g is
to split into the groups represented Üó j and Üó g and share the proceeds.
(Notice that we do not require the profiles f, g to have disjoint supports.
ÒÜå groups of players represented Üó the profiles f, g will have ïî players
in ñîòòîn in ànó case; to require that the profiles f, g have disjoint sup-
ports would Üå to require that these groups have ïî types of players in
ñîòòîn.) ÒÜå existence of àn individual marginal bound simply means
that there àñå ïî players whose (potential) contributions to society àñå
arbitrarily large. Continuity of À means that players with similar attributes
àñå good substitutes for åàñÜ other.

If ,Q is finite, we frequently refer to its elements as types; players of the
same type àñå exact substitutes. (Notice that continuity of À is automatic in
this case.)

Òî derive à game from the technology (é, À), we specify à finite set N
and à function (Õ: N -+!} (àn attribute juïctioï). We associate with åàñÜ
subset S of N à profile prof ((Õ I S) given Üó

prof((X1 S)(ø)= 1(Õ-l(ø)nSI;

i.e., prof( (Õ 1 S)( ø) is the number of players in S possessing the attribute ø.
We then define the characteristic function v,,: 2N-+ ~+ Üó

v,,(S) = À (prof((X 1 S».

Thus, the worth of à coalition S in à derived game is determined Üó the
technology and depends îï the attributes of the players in the coalition. It
is easily checked that (N, v,,) is à superadditive game.
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40 ÒÍÅ SHAPLEY V ALUE AND ÒÍÅ e-CoRE

Having described the Cramework, we ñàï now state oèr main resèlto If
the space Q îÑ attribètes is finite (and so consists îÑ à finite nèmber îÑ
types), it seems natèral to think îÑ à game as large iC it has òàïó players îÑ
åàñÜ type; thès åàñÜ player has òàïó exact sèbstitèteso If Q is not finite, it
thès seems natèral to think îÑ à game as large iC åàñÜ player has òàïó near
sèbstitèteso

THEOREM 10 Let (Q, À) Üå à techn%gyo For each â> Î there is à ïèò-
Üåã <5( â) > î and àï integer ï( â) with the foZlowing property:

/! (N, v~) is à game derivedfrom the techn%gy (Q, À), andfor
each ð/àóå, i in N there exist ï(â) distinct p/ayers j, '000' jï(e) in N
such that dist(cx(i), CX(jk)) < <5(â) for each k = 1'.00' ï(â), then the
Shap/ey va/ue î! (N, v~) is in the individuaZly rationa/ â-ñîãå î!

(N, v~).

À nèmber îÑ remarks are in ordero Most importantly, we stress that îèã
resu/t is va/id for games and not simply Cor private goods exchange
economieso ÒÜå case îÑ private goods exchange economies (with òînåó) is
covered Üó oèr Cramework, bèt is à very special caseo

Continèity îÑ À assères ès that players whose attribètes are close
together are close sèbstitètes. ÒÜå parameter <5(â) is thès à measère îÑ how
close these sèbstitètes mèst Üå.

For the remainder îÑ oèr remarks, we will, Cor ease îÑ exposition, assème
that the attribète space Q is finite and speak îÑ typeso

We stress that oèr resèlt asserts that the Shapley valèe is in the B-core
whenever there are enoègh players îÑ åàñÜ type; we do not need to know
anything at all aboèt the relative proportions îÑ players îÑ åàñÜ type. Âó
contrast, all the extant valèe convergence resèlts Cor private goods
exchange economies treat convergent seqèences îÑ economies, or seqèences
îÑ replica economies, so that the relative proportions îÑ players îÑ åàñÜ
type play à crècial role.6 Seqèences îÑ replica games are also îÑ interest to
ès (we discèss them in Section 9) bèt oèr rnain resèlt is rnèñÜ more

general.
It is irnportant that the garne have enoègh players îÑ åàñÜ type (or at

least îÑ åàñÜ type which is represented at all)o It will not sèffice rnerely to
have enoègh players in total; Exarnple 2 îÑ Wooders and Zarne [20] shows
that this weaker condition does not gèarantee that there is ànó payoff at all
in the individèally rational B-core.

6 Of course, these value convergence theorems also assert the convergence of the value to

the competitive equilibrium, which is meaningless in our framework.
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We note that the Shapley value màó üå in the B-core and yet not Üå close
to any point in the core. ÒÜå most obvious reason for this is that the core
màó Üå empty. However, the Shapley value need not Üå close to the core
even if the core is not empty, as the following simple example illustrates.

EXAMPLE (ÒÍÅ MARKET FOR GLOVES). ÒÜå attribute space Q consists of
two points, Q = {L, R}. Every profile f îï Q màó then Üå written uniquely
in the formf = ïLXL + ïRXR; define A(ïLXL + ïRXR) = min(ïL, ïR). (This is

the market for (indivisible) gloves. Agents of type L own one left glove;
agents of type R own one right glove. ÒÜå value of à pair of gloves is one
dollar; odd gloves and fractional combinations are valueless. Money is per-
fectly divisible and freely transferable.) If we consider à derived game
(N, v,,) with k players of type L and k + 1 players of type R, we see that the
core of (N, v,,) consists of the unique payofT for which the players of type L
åàñÜ receive one dollar, while the players of type R receive nothing. ÒÜå
Shapley value, îï the other hand, shares the total payofT of k dollars more
evenly, with players of type L receiving only à slightly higher payofT then
players of type R. (See Shapley and Shubik [16] for à detailed numerical

discussion of this example.)

Notice that in this example, if we let k tend to infinity and imagine the
limiting continuum market, the imbalance between left and right gloves
disappears. In the limit, the Shapley value divides the total payofT equally
between players of type L and type R; this payofT is indeed in the core of
the limiting continuum market. We will pursue this idea in Section 9.

Finally, we want to make some remarks about the proof. ÒÜå usual
proofs of value convergence theorems for private goods exchange
economies depend of course îï the special structure: divisible goods, con-
cave utility functions, etc. At the heart of all such proofs is the idea that the
marginal contribution of à player to à large coalition depends essentially
only îï the approximate distribution of types within the coalition. ÒÜå law
of large numbers guarantees that, for most large coalitions, the distribution
of types within the coalition is approximately the same as in the economy
as à whole. Thus, the Shapley value for åàñÜ player is approximately the
same as his marginal contribution to the entire economy, which is his

competitive payofT.7
Such an approach cannot work for games in general, since à player's

marginal contribution to à coalition tt1ay depend very critically îï the
precise make-up of the coalition. This is the case, for instance, in the glove
market, and will commonly Üå the case whenever we are modelling
indivisible goods, or coalition-production, or club goods, etc. Our

approach is quite difTerent.

7 This discussion is over-simplified, but we think it captures the essential idea.
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At the heart of our proof àñå two ideaso ÒÜå first of these ideas is that,
åóån in large games, the bIocking power is concentrated in small coalitionso
À little more formally: if the feasibIe, Pareto optimal payoff õ is not in the
e-core of à game derived from the given technology, so that there is à
coalition S with v(S) > x(S) + å ISI, then there is à small coalition S' with
v(S') > x(S') +!å IS'lo ÒÜå second idea is that, in à large game, ïî small
group ñàï profit Üó forming à syndicate (ioeo, àn à priori coalition)o More
formally, the Shapley value which would accure to à group if they agreed
to act as à single unit is very nearly the sum of their individual Shapley
valueso

Our results îï the bIocking power of small coalitions àñå in Section 50
Section 6 contains à probabilistic estimate which is used in Section 7, where
we discuss the power of syndicates. ÒÜå proof of Theorem 1 is given in Sec-
tion 8; it follows quite easily from the two basic ideaso We also discuss the
question of estimating the parameters ä(å) and ï(å)î

50 ÒÍÅ POWER OF SMALL COALITIONS

Throughout this section, we fix à technology (é, À). Our goal is to show
that for games derived from this technology the bIocking power is ñînñån-
trated in small coalition. ÒÜå precise statement is as follows:

ÒÈÅÎRÅÌ 2. For each å> Î, there is àï integer /( å) with the following
property:

If (N, Va) is àïó gaòe derived froò the techn%gy (é, À) and
õ Å RN is à feasible, Pareto optiòa/ payoff which is ïî! in the å-
ñîãå of(N, va), then there is à coa/ition Sc N such that ISI ~ /(å)
and va(S) > x(S) + (å/2) ISlo

Informally: for ànó derived game, ànó (feasibIe, Pareto optimal)
allocation which ñàï Üå e-improved èðîn Üó ànó coalition whatsoever, ñàï
Üå (e/2)-improved èðîn à small coalitiono

Before beginning the proof of Theorem 2, it is useful to isolate two lem-
maso ÒÜå first is à combinatorial lemma which will üå used several times.

LEMMA Àî Let w 1"'0' W ê Üå distinct points in Q and /å! 01,000, Î ê Üå
strict/y positive ãåà/ nuòbers whose suò is îïåî Let {ô i} and {I/I i} Üå sequen-
ces ofprofi/es in Ð(é) such that:

(à) Ôi(W) =0 for each i and each wô {ø.,..., øê} (ïî restriction is
òade for 1/1);

(Ü) limi-îîIIÔill=limi-îî Ill/Iill= +00;

I
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(ñ) limi-oo (Ôi(Wk)/lfÔill) = limj_oo(l/Ij(wk)/lIl/Ijll) = ()k for each k,

1 ~ k ~ Êî

For each i, j lå! r ij Üå the largest iïteger such that r ijÔi ~ 1/1 j' Theï

)im lim sup (rijIlÔill/lIl/ljll) = )im li~ inf (rijIlÔill/III/I;II) = 1.
'-00 J-OO '-00 J-OO

Proof For åàñÜ i, j the integer rij is characterized Üó the inequalities

rijÔ(Wk)~l/Ij(Wk) foreachk;

(rij + 1) Ôi(W') > 1/1 j(w,) for some 1.

We now fix an arbitrary real number ð with 0< ð < 1. Âó (ñ) àÜîóå and
the fact that åàñÜ ()k is strictly positive, we ñàï find integers io and h such

that for i~ io and j~ h,

(1 -ð) ()k ~ Ôi(Wk)/IIÔilf ~ (1 + ð) ()k

(1 -ð) ()k ~ 1/1 j(Wk)/UI/I jll ~ (1 + ð) ()k

for åàñÜ k. Combining these inequalities with those which characterize r ij

and simplifying yields

~~-1~r..~~~1 + ð IIÔill '] 1- ð lI;ill

or equivalently

~-M!~r..M!~~
1+ð IIl/Ijll IJlIl/ljll 1-ð

provided that i ~ io and j ~ h î If we let j tend to infinity (holding i fixed)
and recall that IIl/Ijll tends to infinity, we obtain

1~P~ l o Onf IIÔill -

1 "" lòl rij- II"' 11+ð )-00 'l'j

~ l ' ì!
"" l~s~prijlll/ljll

1+ð
~-

1-ð

for åàñÜ i ~ io. Letting our arbitrary ð tend to zero, so that io tends to

infinity, yields the desired result. I
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ÒÜå nex.t lemma provides us wi.th some informa.tion abou.t payoffs for
sequences of profiles wi.th à given limi.ting dis.tribu.tion. (No.te carefully .the
difference in assump.tions be.tween Lemma À and Lemma Â.)

LEMMA Â. Let Øl,"', øò Üå distinct points in .Q and let (}l,"', (}ò Üå ïîï-
negative real numbers whose sum is îïå. Let {/;} Üå à sequence î/ profiles in
Ð(é) such that lim;- 00 II/JI = +00 and lim;- 00 (/;(øt)/II/;II) = (}t/or each (.

Then lim;_oo (A(/;)/II/;II) exists. Moreover, this limit is independent î/ the
sequence {/;} and depends only îï the points Øl,"', øò and the numbers
() 1 ,..., () ò'

Proof Af.ter renumbering if necessary, we màó assume .that (}l,"', (}ê àñå
strictly positive and that () ê + 1 = ...= () ò = Î for some Ê, 1 ~ Ê ~ Ò. Define

à new sequence of profiles {ô;} Üó

Ô;(Øk)=/;(Øk) for l~k~K-l,

K-l
ô;(øê) = 11/;11- L /;(øk),

k=l

ô;(ø)=Î if øô {øl""" øê},

It is evident that the points Ø1 ,..., ø ê, the numbers () 1 ,..., () ê and the
sequence {Ôi} satisfy à" the conditions of Lemma À (i.e., take l/Ii=Ôi)' For
åàñÜ i,j let rij Üå the largest integer such that rijÔi~ôj' We àñå first going
to show that lim(À(Ôi)/IIÔ;II) exists.

Note that if Ì is an individual marginal bound for the technology
(é, À) then

î~À(Ôi)~ ì f ü.
î Wî oreac 1.I 

Âåïñå lim inf(À(Ô;)/IIÔill) and lim suð(À(Ô;)/IIÔill) both exist, and

lim inf(À(Ôi)/IIÔ;II) ~ lim suð(À(Ôi)/IIÔJI).

Òî see .that the reverse inequality holds we note .that since r ijÔi ~ ôj, the
superadditivity of À yields

À(ôj) ~ À(rijÔi) ~ rijÀ(Ôi)

and Üånñå that

À(ôj) ~ À(ÔJ ( rijIlÔill )( À(Ô;)
)W rijW= W W

.-
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for each ;, j. Let â Üå à small positive number. In view of Lemma À and the
definition of lim sup, we ñàï find an index ;0 such that

(~~ )(~ )~I. P ~- IIôfil IIÔioll r 1ò su IIÔill å

for every index j greater than some jo (which depends îï ;0). Îï the other
hand, we ñàï; Üó the definition of lim inf, find an index jl ;:?1; jo for which

À(Ôï) 1.. f À(ôj)
1"i;:iI ~ 1ò m Ù + Â.

Combining these inequalities yields that

1.. f À(ôj) 1.À(Ôi)
lòø ù+å;:?1; lmsuðø-â.

Since Â was arbitrary, we conclude that lim inf(À(ôj)/lIôjll);:?1;
lim suð(À(Ôi)/IIÔill) and hence that L = lim(À(Ôi)/IIÔill) exists.

Returning to our original sequence {!i} of profiles, we want to show that
L = lim(A(h)/llhll). Òî see this, note that IIhll = IIÔil1 and that our
individual marginal bound and the definition of Ôi yi~ld:

I~-~ I= IÀ(h)-À(ÔJI
IIhll IIÔill IIhll

~ 2MLf=1 h(Wk)- Ujill
~ IIhll.

Since (Lh(Wk) -lIhll)/lIhll tends to zero (as ; tends to infinity), we con-
clude that limi- 00 (A(h)/lIhll) = limi- 00 (À(Ôi)/IIÔill) = L.

Finally, to show that this limit L is independent of the sequence ifi}' let
{gi} Üå another such sequence. Define à sequence {hi} Üó h2i=h
and h2i+l = gi. Âó the above argument, lim(A(hi)/llhill) exists. Since à"
subsequences of à convergent sequence converge to the same limit, we
conclude that L =lim(A(h)/1Ihll) = lim(A(gi)/1I gill), as asserted. This
completes the proof. I

With these two lemmas in hand, we ñàï now give the proof of
Theorem 2.

Ðãîî! î! Theoreò 2. Suppose the conclusion were not so. Then we
could find, for each integer 1, à finite set Nz, an attribute function
cxz:Nz-',Q, à vector XzE~NI, and à subset Â! of Nz with the following

properties:
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(à) x,(N,) = v~/(N,);

(Ü) v~/(B,»x,(B,)+8IB,I,
(ñ) if v~/(S) > x,(S) + 8ISI/2, then ISI > /.

In order to obtain à contradiction, we are going to construct small
representative subcoalitions S, of Â, for which v~/(S/)/IS,1 is approximately
v~/(B/)/IB/1 and x/(S/)/IS/1 is (almost) less than x/(B/)/IBA.

We begin Üó choosing à ä>Î such that if Øl, Ø2Å,Q and
dist(ø1, Ø2) < ä then IA(j + ÕØI) -À(! + ÕØ2)1 < 8/10 for each profile j
(continuity of À). We then use compactness of,Q to write ,Q as the disjoint
union of à finite number of nonempty subsets ,Q 1 ,..., ,Q ò, each of diameter
less than ä. For each (, choose and fix à point ØtÅ,Qt.

For each / and (, set

e~= ItX,-l(,Qt)nBA/B/

so that (J~is the relative proportion of players in Â/ with attributes in the set
,Qt. Notice that Î ~ e~ ~ 1 and that Li= 1 e~ = 1 for each /. Passing to à sub-
sequence if necessary, we màó assume that °t = lim/- 00 O~ exists for each (.

Renumbering if necessary, we màó also assume that (J 1 ,..., Î ê are strictly
positive and (JK+l = ...= Îò=Î for some Ê, 1 ~K~ Ò.

We now define profiles Ô/ and "'/ Üó

Ô,(øt)=ltX/-l(,Qt)nÂÀ for l~t~K;

Ô /( ø ) = î for ø Ô {ø 1 ,..., Ø ê };

"'/(øt)=ltX/~'(,Qt)nÂÀ for l~t~T;

"'/(ø) =0 for øÔ{Øl"..'ØÒ}'

(Notice that Ô/~"'/.) It is easily checked that the points Øl,"',Øò, the
numbers Î"..., (JTand the sequences {Ô/} and {"'/} satisfy the conditions of
Lemmas À and Â. Hence,

lim ~= lim ~
/-00 IIÔ/II /-00 11"'/11

and both these limits exist; call this common limit L. Fix an index /0 so that
IL-À(Ô/)/IIÔÀII <8/10 and IL-A("'/)/II"'/III <8/10 for every /;;:!:/î.

For each i,j let rij Üå the largest integer such that rijÔi~"'j' In view of
Lemma À, we màó choose an index I;;:!: /0 and an index Jo;;:!: /0 such that
(for Ì the individual marginal bound for the technology):

~~> (1 +~
) -l

11 "'JII 10Ì

whenever J;;:!:Jo (keeping 1 fixed).
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Âó assumption, f} / > Î for åàñÜ t with 1 ~ t ~ Ê, so in particular
Icx/-1(.Q/nB/)I-+ (Õ) as /-+ (Õ) for åàñÜ t with 1 ~ t~K. We òàó therefore
choose àn integer J 1 so that

ICX/-l(.Q/)nB/1 ~Ô/(w/)= ICXi1(.Q/)nB/1

(for åàñÜ t with 1 ~ t ~ Ê) whenever / ~ J 1.
For åàñÜ /~max(I,JO,J1), we now define à coalition S/cNi in the

following way. For åàñÜ t, 1 ~ t ~ Ê, we consider all subsets À of
cx/-I(.Q/)nB/ with IÀI=Ô/(w/)=IÑÕi1(.Q/)nÂJI; there are of course only
finitely òàïó such sets. Among all such sets, we let S; Üå ànó înå for which
the aggregate payoff õ/(À) is as small as possible. Finally, we set
S/= U~~ 1 S;. Notice that ISIi = IIÔ/II ~ IB/I, so if we ñàï show that

6

V~I(S/»x/(S/)+2ISIi,

or equivalently that

V~I(S/) X/(S/) 6
-Ò8Ã > 1ST + 2'

we will Üàóå obtained à contradiction.
Òî see this, let us first estimate V~I(S/)/ISIi. Our choice of the sets é/ and

our construction of S/, together with the facts that ISIi = IIÔ/II and /~ I~ /0

imply that

V~I(S/) À(ô/) 6
-~---ISIi r IIÔ/II 10

6 6
>L 10 10

À(I/I/) 6 6 6

>1";fri-þ-þ-þ

V~I(B/) 6 6 6 6
~ r IBIi 10 10 10 10'

Âó assumption, v~I(B/) > Õ/(Â/) + 61ÂIi, so we obtain

V~I(S/) õ/(â/) 66

-Ò8Ã>~+þ'
We now estimate x/(S/)/ISIi. Âó construction rI/Ô/~ 1/1/ so that

rIlÔ/(w/)~I/I/(w/) for 1~t~K. But Ô/(w/)=IS;1 = IS/ncx/-I(.Q/)I, and
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1/I,(øt) = ItX,-l(Dt)n H,I, so r//IS;1 = r//IS,n tX,-l(Dt)1 ~ ItX,-l(Dt) n H,I for
1 ~ t ~ Ê. U sing the fact that S; minimizes Õ ,( À) over à" subsets À of
tX,-'(Dt) with IS;I members, we obtain

ê

x,(H,)~ L õ,(Í,nà,-l(é,))
(~1

ê
~ L r//x,(S;)

(~1

= r//x,(S,).

Recalling that IS,I = IIÔ/II ànä IH,I = 111/1,11, that I~Jo (which gives àn
estimate îï Ã//) ànä that Õà,(Í') < Va,(H,)+8IHA, ànä using our individual
marginal bound, we obtain:

x,(S,) õ,(Í,)-~- ~
ISA r//ISA

( õÀÍ/) )(III/IAI)=~Ù

(õ,(Í,) )( 8 )~ ~ l+þì

va,(H,) 8

<-ÒÂÒ+þ'

Combining this estimate with our estimate îï v2/(S,)/ISA yields

x,(S,) v2,(S,) 68 8

"1ST <1""S-;I-þ +þ
Va,(S,) 8

~---
ISA 2'

which is the contradiction we desire. This completes the proof of
Theorem 2. I

6. À PROBABILISTIC ESTIMATE

As with most calculations involving the Shapley value, ours depends îï
à probabilistic estimate. ÒÜå estimate we use is very simple, so we derive it
here.

We consider àn urn which contains à total of t balls, of which g are
green. We draw, at random ànä without replacement, à sample of size k
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(k ~ [), and write h for the number of green balls in the sample. We want to
estimate the probability that

I~-~I < '1,

where '1 is some predetermined parameter.
Òî obtain this .estimate, we simply follow Feller [6, ð. 233]. ÒÜå number

h is à random variable whose expected value is kgft and whose variance is

Var(h) =kg(t- g)[1-~ J<~i.:=!l
[2 t -1 [2

Íånñå Chebyshev's inequality yields

prob (I~-~I ~'1) =prob (lh-~1 ~'1g)

Var(h)<
('1g)2

kg(t -g)<
t2172g2

1
<-ã.

'1g

Equivalently

prob (I ~-~I < 17) > l--Ó-.
g t 172g

This is the estimate we shall need.
Note that this estimate is independent of t (the total number of balls)

and of k (the sample size). Note too that for '1 fixed, this probability tends
to înå as g (the number of green balls) tends to infinity.

7. ÒÍÅ POWER OF SMALL SYNDICATES

In this section we prove à general result about the Shapley value of
games. This result applies to all games, whether or not they are derived

from à given technology.
We consider the way in which the Shapley value of à game changes if we

allow à group of players to form à syndicate. We will show that, if the
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syndicate is small (in the sense that there àãå òàïó near substitutes for
members of the syndicate), then the change in the Shapley value is also
small.

We consider games (N, v) which àãå not required to Üå superadditive. If
S is à nonempty subset of N, then Üó the syndicate game (N s, vs) we òåàn
the game whose player set is N s = (N\S) u {S} and whose characteristic
function is giv~ Üó

vs(W)=v(W) if {S}ô W,

vs(W)=v([Wï (N\s)] uS) if {S}E W.

That is, (N s, vs) is the game which results if we treat the syndicate S as àn
indivisible unit. We want to compare Sh(vs, {S}) with LieSSh(v, i); the
difference between these two numbers might Üå called the power of the
syndicate, i.e., the gain or loss resulting from formation of the syndicate.

We need some terminology. We will say that the positive number Ì is
àn individua/ margina/ bound for the game (N, v) if

Iv(Wu {j})-v(W)1 ~M

for åàñÜ j Å N and åàñÜ W ñ N. For )1 > Î, we will say that players i, j Å N
àãå )I-substitutes if

Iv(Wu {i})-v(Wu {j}1 <)1

for every W ñ N\ {i, j}. Our result îï syndication is the following.

ÒÈÅÎRÅÌ 3. Let Ì and )1 Üå positive numbers and /et s Üå à positive
integer. Then there is àï integer '(Ì,)I, s) with the fo//owing property:

/! (N, v) is à game with àï individua/ margina/ bound î! Ì, S is à
coa/ition î! N with I SI ~ s, and for each ð/àóå, i in S there àãå at
/east ,(Ì,)I, s) p/ayers not in S who àãå )I-substitutes for i, theï

I Sh(Vs, {S})-.L Sh(V,i) I ~(~)ISI(ISI+l))I.
/eS

We emphasize again that this result is independent of the framework of
technologies. It is àn assertion about the Shapley value of every game. Thus
the number '(Ì,)I, s) depends îï Ì, îï )1, and îï s, but not îï ànó
underlying technology-since there is not înå. It is possible to give àn
explicit bound for ,(Ì,)I, s), but it would Üå very messy.

Ðãîî! We àãå going to obtain àn estimate for ISh(vs, {S})-
LieS Sh(v, i)1 in terms of the number of )I-substitutes for members of Sand
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some other parameters. We will then show that this estimate ñàï Üå
reduced to the one we want Üó judicious choice of these other parameters
provided the number of y-substitutes is large enough. If s = 1 there is
nothing to prove (since v s = v); we consider first the case s = 2.

We fix à game (N, v) and à coalition ScN with ISI =2. Write
S={a,b}, N*=N\S and n=INI-l=IN*I+l=INsl. Let AcN* Üå à
set of y-substitutes for à, and let Â ñ N* Üå à set of y-sul'>stitutes for Ü. We
màó assume that IAI = IBI =, (simply ignoring some y-substitutes if
necessary). Finally, we fix parameters ð, t and ( with 0< ð < 1/2, 0< ò, and
0< « 1.

For the remainder of the proof it is convenient to write

LJ(W, i)=v(Wu {i})-v(W)

for WcN and iEN.
Âó definition,

1"-'-1 1
Sh(vs,{S})=- L ( - 1) L [vs(Wu{S})-vs(W)] n J=O n WcN*

J,wl=J

1"-1 1=- L L [v(Wu S)-v(W)]
n J=O (n -1 ) WcN*

J IWI=J

1"-1 1
=- L () L [v(Wu {à, b})-v(Wu {à})]

nJ=o n-l WcN*
J IWI=J

1"-1 1
+- L ( - 1) L [v(Wu {à})- v(W)]

n J=O n WcN*
J IWI~J

1"-1 1=- L ( ) L LJ(Wu {à}, Ü)
nJ=o n-l WcN*

J IWI=J

1"-1 1
+- L ( ) L LJ(W, à).

nJ=o n-l WcN*
J IWI=J

Let us write Q for this last doub1e sum and Ð for the next to last. We are
going to estimate ISh(v, à) -QI and ISh(v, Ü) -PI.

As à guide to the intuition, we point out that Q is itself the Shapley value
for player à in the game (É, Â), where N = N\ {Ü} and Â( W) = v( W) for
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åàñÜ W ñ N = N\ {Ü}. Since Â consists of y-substitutes for Ü, it is natural to
expect that Q = Sh( Á, à) should Üå close to Sh( v, à) if I BI = r is large.

Verifying that this is so, however, takes quite à lot of work.

Âó definition,
1 n 1

Sh(v, a)=~ L -( ) L I1(W, à). ï + J=O ï Wc=N\{a)

J IWI=J
r

Write
1 n-l 1

Å=- L -( ) L I1(W, à)ï J=O ï Wc=N\{a)
J IWI-J

Using the individual marginal bound of Ì, we see that

2Ì 2Ì
IE-Sh(v,a)I:!;;-<-. (1)

ï r

Now, we want to estimate IE -QI. Note two main differences between the
expression for Å and the expression for Q: different coefficients, and the
presence of coalitions which contain Ü. We àñå going to approximate terms
involving coalitions which contain Ü Üó terms not involving coalitions
which contain Ü; this will also Üàóå the effect of "correcting" the
discrepancy in the coefficients.

We first introduce some sets of coalitions. For åàñÜ J and k, and let
r(J, k) Üå the set of coalitions W ñ N\ {à} for which I WI = J, I W (") ÂI = k
and Ü Ô W; we let Ã b(J, k) Üå the set of coalitions W ñ N\ {à} for which
I WI = J, I W (") ÂI = k and Ü Å W, and let Ã b(J) = Uk=O ã b(J, k).

We now use these sets to break up the expressions for Å and Q. Set

E(J,k)= L I1(W,a),
Wer(J,k)

Eb(J, k) = L I1( W, à),
Werh(J,k)

1 r
E(J) =Q k~O [E(J, k) + Eb(J, k)],

and
1 r

Q(J)=~k~oE(J,k).



~

78 WOODERS AND ZAME

Notice that

1 ï-l
Å=- L E(J)

ï J=O

and that

1 ï-l
Q=- L Q(J).

ï J=O

Thès, we want to estimate IE(J) -Q(J)I for åàñÜ J.
ÒÜå estimate we èse depends îï the size îÑ J. If (J -1) ~ ð(ï -1) or

(J -1 ) ~ (1 -ð )( ï -1) we èse the obvioès estimate given to ès Üó the
individèal marginal boènd:

IE(J) -Q(J)I ~ 2Ì. (2)

If ð(ï -1) < (J -1) < (1 -ð )(ï -1), we need to Üå more careCèl. Let us
fix sèch à J, and let [ Üå the set îñ indices k Cor which

I k+l J I---<t
r-k n-J

(recall that t was înå îÑ oèr initial fixed parameters); let [' Üå the ñîm-
plementary set îÑ indices.

Fix àn index k Å [. For W Å Ã b(J, k) and ñ Å Â\( W Ã'\ Â), write W Ñ =

(W\ {Ü } ) u {ñ}. ÒÜå Cact that Ü and ñ are y-sèbstitètes yields that

1i1(W, a)-i1(Wc, a)1 ~2y.

Íånñå iC we average over the r -k elements îÑ Â\( W Ã'\ Â), we obtain

1 i1(w,a)-~ L i1(Wc,a) I ~2Y,
r ceB\(WnB)

Notice that W was chosen to Üå in Ã b(J, k) bèt that åàñÜ W Ñ belongs to
r(J, k + 1). Now, as W rèns over all elements îÑ Ã b(J, k), the sets W Ñ rèn
over all elements îÑ r(J, k + 1), bèt åàñÜ element îÑ r(J, k + 1) occèrs
exactly k + 1 times (becaèse there are k + 1 elements which might Üàóå
occèrred as replacements Cor Ü). Íånñå iC we sèm over Ã b(J, k), we obtain

I k+l
IEb(J,k)-~E(J,k+l) ~2ylrb(J,k)l.
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Combining this with the fact that k is in 1 yields

1 Eb(J, k)-;bE(J, k+ 1)1 ~2ylr b(J, k)1 + TIE(J, k+ 1)1

~ 2ylr b(J, k)1 + 2Ìò Ir(J, k + 1)1. (3)

Îï the other hand, for indices k Ô 1 we certainly Üàóå

IEb(J,k)I~2Mlrb(J,k)1 (4)

and

IE(J, k)1 ~2Mlr(J, k)l. (5)

ÒÜå next step is to show that most of the coalitions in Uk=O ã b(J, k)
actually belong to Uke 1 Ã b(J, k). Note first that if k/r = (] -1 )/(ï -1),
then direct calculation gives

~ =..!.=..!+ 1. (6)
r-k ï-] '( 1-(~))

Since we Üàóå taken J-l in the range p(n-l)«J-l)«I-p)(n-l)
and ð is fixed, the second term îï the right-hand side of Eq. (6) is certainly
less than ò/3 if r is sufficiently large. Since ï ~ ã, the first term îï the right-
hand side of (6) differs from J/(n-J) Üó less than ò/3 ifr (and Üånñå ï) is
large. Íånñå,

1"+1 J
I---<2ò/3r-k ï-]

provided that r is large and k/r = (] -1 )/(ï -1). Thus,

Ik+ 1 J
1---<ò (7)

r-k ï-]

provided that r is large and that

I~ -..!.=..!
Ir ï-l

is sufficiently small; if (7) holds, then k Å 1.
We ñàï now use our probabilistic estimate from Section 6 in the follow-

ing way. Choosing at random à coalition W in Ã b(J) is the same thing as
choosing at random à set of J -1 elements from N\ {à, Ü }, and then adding
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the element Ü to this set. If k = I W Ã'\ BI, the estimate of Section 7 tells us
that with probability at least 1 -, (recall that , is the third of our fixed
parameters), the quantity

'~-~ Ir n-1

will Üå very small, provided only that r is sufficiently large. In other words,

I Urb(J,k) I~' I Urb(J,k) 1 (8)
ker k-O

provided that r is large.
We now begin to estimate IE(J) -Q(J)I for ð(n -1) < (] -1) <

(1-ð)(n-1). We write

1 1
E(J)=- ( ) L [E(J,k)+Eb(J,k)]+- ( ) L [E(J,k)+Eb(J,k)]. (9)

n kel ï ker

J J

Combining the inequalities (4), (5), and (8), we see that the second ofthese
sums is small; to Üå precise,

1-(1) L [E(J,k)tEb(!,k)] 1 ~4ò( (10)
ï ker

J

We ñàï use (3) to obtain àn approximate expression for the first sum in
(9),

1-( ) L [E(J,k)+Eb(J,k)] ï kel

J

1 ~ [ J ]~~kL:1 E(J,k)+n=/E(J,k+1) , (11)

with àn error not exceeding 2ó + 2Ì.. Notice that in the right-hand sum of
(11), every înå of the terms E(J, k + 1) appears twice, with the exception of
the term corresponding to the smallest value ko of k which is in 1: the term
E(J, k + 1) appears the first time with à coefIicient of Jj(n -J) and à
second time with à coefficient of 1. Íånñå we ñàï rewrite the right-hand
side of (11) as
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1 [ J
]Qk~/ E(J,k)+;;-=-]E(J,k+1)1

1 ( J ) 1
r =-( ï ) k~/ ;;-=-]+1 E(J,k+1)+- (n )E(J,kO)' (12): 

J k..ko Jl 

Combining (5) with the same probabilistic estimate we used before, we ñàï

see that the last of these terms ñàï Üå made small:

1
QE(J,ko) :::;;2Ì', (13)

if r is large.
We now point out à very convenient identity:

1 ( J ) 1
Q ;;-=-]+1 =~: (14)

If we plug this identity into (12), and combine (9) with the estimates (10),
(11), and (13), we conclude that

E(J) ~ ( ~ 1) L E(J, k + 1), (15)
ï kE/

J k..ko

with àn error not exceeding 4Ì' + 2ó + 2Ì. + 2Ì'. But the right-hand
side of (15) is just part of the expression for Q(J); the terms which are mis-
sing are just the ones for which k Å [', and just as before we ñàï see that the
sum of the missing terms does not exceed 4Ì', for large r.

Òî summarize, we Üàóå shown that

IE(J) -Q(J)I :::;; 10Ì' + 2Ì. + 2ó, (16)

provided that ð(ï -1) < (J -1) < (1- ð )(ï ~ 1) and r is large. Recall from
(2) that

IE(J) -Q(J)I :::;; 2Ì

if(J-1):::;;p(n-1) or (J-1)~(1-p)(n-1).
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In order to estimate IE -QI, we need only add à" these estimates and
divide Üó ï. This yields

1
IE -QI ~- [2ðïÌ + ï(10Ì( + 2Ì. + 2ó)]

ï

= Ì(2ð + 10( + 2.) + 2ó.

Combining this with (1) gives us the estimate we are after:

2Ì
ISh(v, a)-QI~M(2p+10(+2.)+2y+-,

r

for r sufficiently large. It is now clear that we need not Üå very careful in
our choice îÑ the parameters ð, ., and (. If we simply choose åàñÜ îÑ them
very small, we obtain

ISh(v,à)-QI~Çó,

provided that r is sufficiently large. This is the desired estimate for Q.
ÒÜå intuition underlying our estimate for Ð is similar to the intuition

underlying our estimate for Q. W~ want to see_that Ð is nearly the Shapley
value for player Ü in the game (N v), where N = N\ {à} and v( W) = v( W)
for åàñÜ W ñ N\ {à}. Since the preceding argument, with the roles îÑ à and
Ü reversed, shows that I Sh( v, Ü) -Sh( v, Ü) I ~ Çó if r is large, this will give us
the estimate we need.

Our previous argument was based îï the idea îÑ systematically replacing
every term which involved à coalition containing Ü Üó terms which do not
involve coalitions containing Ü. This time, we want to systematically
replace every term involving à coalition containing à Üó terms which do
not involve coalitions containing à. ÒÜå twist is that à" these terms occur
in the expression for Ð and not in the expression for Sh( v, Ü). ÒÜå terms we
seek to replace are îÑ the form À ( W u {à}, Ü), and following the same
procedure as before, we obtain the approximation

A(Wu {à}, Ü) ~ A(Wu {d}, Ü),

for d Å À\ ( W ïÀ). Notice that W ï {d} is à coalition in
iY\ {Ü} = N\ {à, Ü}, and I Wu {d}1 = I WI + 1. Thus if we follow the same
averaging procedure as before, the terms in the expression for Ð
corresponding to coalitions W îÑ size J Üåñîmå terms in the expression for
Sh(v, Ü) corresponding to coalitions Wu {d} îÑ size J+ 1. ÒÜå averaging
procedure also gives us àn extra factor which (for most of the terms) is
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nearly equal to () + 1 )/(ï -1 -J). This extra factor is just what we need,
since we ñàï then use, instead of the identity (14), the identity

1 ( J+1 ) 1~ ï-1-) =~.
After carrying out the same sort of approximations as before, we obtain
that

IÐ-Sh(v,Ü)I~Çó,

provided that r is sufficiently large. Since, as we Üàóå already noted, the
first argument (with the roles of à and Ü reversed) I Sh( v, Ü) -Sh( v, Ü)I ~ Çó,
we conclude that

IP-Sh(v, b)1 ~6y,

if r sufficiently large. Combining our estimates for Ð and Q gives

ISh(vs, {S})- Sh(v, à) -Sh(v, Ü)I = IP+ Q- Sh(v, à)- Sh(v, Ü)I

~9y,

provided that r is sufficiently large. This is the estimate we want, so the
proof in the case ISI = s = 2 is complete.

Finally, we ñîòå to the general case. Let ISI~s and write S=
{al"'" aISI}' We write, as before,

Sh(vs, {S})=P1+ ...+Pjsl'

Just as àÜîóå, we find that IPlsl -Sh(v, as)1 ~ Çó, that
IP,SI-1 -Sh(v, as-l)1 ~ 6ó, and so forth. Summing yields

I ISI I ÇISI(ISI+1)ó Sh(vs, {S})-i~ISh(v,ai) ~ 2 '

provided that r (the number of y-substitutes for members of S) is suf-
ficiently large. This is the estimate we needed, so the proof is complete. I

Although we shall Üàóå ïî need of it, we point out that à similar
argument ñàï Üå used to show that for i Ô S we also Üàóå

ISh(vs, i)-Sh(v, i)1 <~~j~l~_!h,

provided that the number of y-substitutes for members of S is sufficiently

large.
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7. PROOF OF THEOREM 1

It is now very easy to combine Theorem 2 of Section 5 and Theorem 3 of
Section 7 to give à proof of Theorem 1.

We are given à technology (é,À) and à positive nèmber å. Let /(å) Üå
the integer Üó Theorem 2: Set

å

: 1=3(/(å)+I)'
! ,

11 and choose à positive nèmber ä(å»Î sèch that for eachjEP(Q),
1:
!:

1 À(! + Xrol) -À(! + Xro2)1 < 1

whenever Øl and Ø2 belong to Q and dist(Ø1'Ø2)<ä(å). Let ,(Ì,ó,/(å))
üå the integer given Üó Theorem 3. Finally set ï(å) = ,(Ì, ó, /(å)) + /(å).

Now sèppose we are given à game(N, V,,) derived from (é, À) and that
for åàñÜ player i Å N there are at least ï( å) distinct players j 1"", j ï(.) sèch

I that dist\lX(i), lX~jk~).<b(e) for. 1 ~k~n(e). We mèst sho",! that Sh(v~)
belongs to the mdlvldèally ratl0nal e-core of (N, v,,). Certamly, Sh(v,,) 1S
feasible, Pareto optimal and individèally rational. If Sh(v,,) were not in the
e-core, we coèld, Üó Theorem 2, find à coalition S ñ N sèch that ISI ~ /( å)
and

ISh(v", i)<v,,(S);~ISI.
iES

Îï the other hand, oèr choice of ä( å) gèarantees that åàñÜ member of S
has at least ï( å) y-sèbstitètes in N; Oèr choice of ï( å) gèarantees that at
least ,(Ì,ó, /(å)) of these y-sèbstitètes do not belong to S. Íånñå
Theorem 3 tells ès that

I Sh(v",i)~Sh((v,,)s, {S})_~~~l~!_.!-!~.
iES

Îï the other hand, individèal rationality of the Shapley valèe for the game
(v,,)s gèarantees that Sh((v,,)s, {S})~(v,,)s({S})=v,,(S). Combining this
fact with the previoès ineqèality and the definition of ó yields

I Sh(v", i) ~ v,,(S) -~ ISI.
iES

which is à contradiction. We conclède that Sh(v,,) indeed belongs to the
individèally rational e-coreof (N, v,,), as asserted. This completes the proof
of Theorem 1. I
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It is ofinterest to obtain good estimates îï <5(8) and ï(8), in terms ofcer-
tain natural parameters of the technology (é, À). ÒÜå chief obstacle to
doing so is that the integer /(8) given Üó Theorem 2 depends îï the
technology in à way that seems difficult to quantify. If we think of /(8) as
known, however,8 it is not hard to obtain àn estimate for ï(8). Simply
keeping track of the various parameters in the proofs of Theorem 3 and
Theorem 1 gives àn estimate for ï(8) îï the order of à constant times
(Ì/8)3(/(8»3.9 ÒÜå number <5(8) of course, depends only îï the modulus of
continuity of À.

9. LIMITING ÂÅÍÀ VIOR

ÒÜå example presented in Section 4 shows that the Shapley value of à
large game, while in the individually rational 8-core, need not Üå close to
ànó point in the core (åóån if the core is not empty). ÒÜå same example
also suggests that the Shapley value should Üå close, not to the core of the
large finite game, but to the core of à limiting nonatomic game. ÒÜå pur-
pose of this section is to show that this is indeed the case. In fact, we show
quite à lot more: the individually rational 8-cores of à sequence of games
converge to the core of the limit game. Òî make this precise we require
some preliminary discussion.

We will restrict our attention to the case where Q is à finite set, say
Q = {ø( ,..., Øò} so that we will speak of types. (Similar results could
undoubtedly Üå established in more general contexts, but would probably
Üå mèñÜ more complicated, and lose mèñÜ of their intuitive flavor.)

Òî define à nonatomic limiting game, we fix strictly positive1O real nèm-
bers å 1 ,..., å ò with L å/ = 1, and disjoint intervals 11"'" 1 ò îï the real line
for which length (//) = å/. Set 1 = U 1/, let ~ Üå the family of Borel subsets
of 1, and let J1 Üå the restriction to 1 of Lebesgue measure. (ÒÜå inter-
pretation we have in mind is that 1 represents à continuum of players of
which the fraction å/ = J1(I/) are of type t. ÒÜå family ~ of à" Borel subsets
if 1 is the family of admissible coalitions.)

Òî define à nonatomic game îï 1, in the sense of Àèmànn and
Shapley [13], we must define à set function ë îï ~ which is of bounded
variation. Òî this end, let Â Üå àn element of ~. If J1(B) = Î, we define
ë(Â)=Î. Otherwise, we write p/=J1(Bnl/)/J1(B) for åàñÜ t; note that

8 That is, if we regard 1(6) as à known parameter of the technology.
9 This màó üå compared with the estimate obtained Üó Mas-Colell, which is of the same

order.
10 ÒÜå case in which some of the 6,'s are zero ñàï üå treated Üó restricting attention to à

subset of .î.
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1>',;.. î and that L 1>', = 1. Choose à sequence {f k} of profiles îï Q such that
Ilfkll-f- 00 andfk(w,/lIfkll-f- 1>', for åàñÜ t. We then define

( .A(fk) )ë(Â) = kl~moo W Jl.(B).

(In view of Lemma 2, this limit exists and is independent of the particular
sequence {fk} of divisors we choose.) Òî see that ë is of bounded
variation, we note that Î ~ A(f)/llfll ~ ì for ànó divisor f (where Ì is the
individual marginal bound for the technology (Q, À)) so that
Î ~ ë(Â) ~ MJl.(B). (ÒÜå construction we Üàóå given corresponds to the
usual "fractionating process" for constructing nonatomic economies. ÒÜå
limit limk-ooA(fk)/llfkll is to Üå interpreted as the limiting per-capita
payoff to à coalition with à given distribution of types, so ë(Â) is the
limiting payoff, normalized relative to the number of players.)

Recall that the ñîãå of ë consists of all nonnegative, finitely-additive set
functions 0": f!4 -f- ~ such that 0"(/) = ë(/) and Î"(Â);" ë(Â) for åàñÜ Â Å f!4. (If
î" is in the core, we màó interpret 0"(/,) as the total (normalized) payoff to
the set of players of type t.) It is à useful fact that every elements of the core
treats players of the same type equally.

LEMMA Ñ. Let î" be!oïg to the ñîãå î! ë. Theï for each t aïd each Âîãå!
subset À of/,.

î"(À) = 0"(/,) Jl.(A)/Jl.(/,).

Ðãîî! Let us first perform à preliminary calculation. Suppose that Â is
à Borel subset of/such that Jl.(Bn /,)/Jl.(B) = Jl.(/,) = (J, for åàñÜ t (so that Â
has the same relative distribution as /); write Â' = l\B. ÒÜå definition of ë
implies that I

Ië(Â) = ë(/) Jl.(B),

ë(Â') = ë(/) Jl.(B').

Since î" is in the core of ë, we obtain

Î"(Â);" ë(Â) = ë(/) Jl.(B),

Î"(Â');" ë(Â') = ë(/) Jl.(B').

Additivity of î" and Jl. imply that

0"(/) :::Î"(Â) + Î"(Â');" ë(/).

Since 0"(/) = ë(/), we conclude that Î"(Â) = ë(Â) and Î"(Â') = ë(Â').
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Now suppose that Ai,A2 are subsets of/, with Jl(Ai)=Jl(A2); we claim
that q(Ai) = è(À2). Òî see this, we write ð = Jl(Ai)/O,= .è(À2)/0" and

choose à subset Ñ of 1\// such that Jl(Cn/s)/Os=P for åàñÜ s#t. Our
preliminary calculation implies that

è(À! u Ñ) =À(À! U Ñ) = À(/) .è(À! u Ñ),

è(À2 u Ñ) = À(À2 U Ñ) = À(/) .è(À2 u Ñ).

Since .è(À! u Ñ) = .è(À2 u Ñ), we conclude that è(À! u Ñ) = è(À2 u Ñ), and
additivity of q implies that q(Ai) = è(À2).

Finally, let À Üå à Borel subset of //' and let m üå à positive integer.
There is à unique integer r such that

r .è(À) ã+l
-~-<-.
m Î/ m

We òàó then choose disjoint Borel subsets Ei"'.' Åò of // such that
UEi=/" Jl(Ei)=O,/m for åàñÜ i, U~=iEicAcU~:::Ei. Our previous
calculations, together with additivitiy of q yield tQat q(Ej) =.è(!/)/m for
åàñÜ i, and Üånñå that

ãè(/,)/m~è(A)~(ã+ 1)è(/,)/m.

Letting m tend to infinity now yields the desired result. I

For åàñÜ q in the core of À, define ii Å ~T Üó ii(t) = è(//)/.è(//). In view of

Lemma Ñ, we ñàï unambiguously interpret ii(t) as the per-capita payoff to
players of type (. Let

¸(À) = {è: q is in the core of À},

so that ¸(À) is à subset of ~ ò.
We now fix à sequence {(N k, V~k)} of games derived from the technology

(é, À). We assume that IN kl -+ 00 and that IX; i(w/)/IN kl -+ Î/ for åàñÜ (;
there is also ïî loss of generality in assuming that lXj;i(W/»O for åàñÜ k
and t. We view the nonatomic game À as à (normalized) limit of the games
(N k, V~k)' For å> Î we will say that à payoff õ in the individually rational
e-core of (N k, Vk) is àn equal-treatmeït payoff if õ(;) = õ(ë whenever
IXk(i) = IXk(j) (so that players of the same type receive the same payoff). For
such àn õ, we define õ Å ~T Üó x(t) = x(i) for ànó i Å N k with IX(;) = (; we

write C.(Nk, V~k) for the set ofsuch vectors, so that C.(Nk, Vk) is à subset of
~T. Of course, for ÕÅ C.(Nk, Vk)' we òàó interpret x(t) as the per-capita
payoff to players of type (. Evidently, then, to show that the sets ¸ .(N k, V~k)
and ¸(À) are close is to show that, in à natural sense, the individually
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rational B-COre of (Nk, Vok) (and the Shapley value in particular) is close to
the core of À; this is what we are going to do. We use the HausdorfT dis-
tance between sets as the measure of closeness; for information about the
HausdorfT distance and the lim sup and lim inf of à sequence of sets, we
refer to Hildenbrand [8].

ÒÈÅÎRÅÌ 4. Given <>0> Î and Âî > Î there is àï ÂI with 0< ÂI < Âî and àï
integer ko such that

dist(C",(Nk, VCXk)' Ñ(À)) < <>0

for every k ~ ko. Equiva/ent/y,

Ñ(À) = n lim sup C,,(N k, VCXk)
,,>0 k-oo

= n lim inf Ñ ,,(N k, VCXk)'
Î k-oo ,,>

Iï particu/ar, if (k = Sh(N k, VCXk)' then

lim dist((k, Ñ(À)) =0.
k-oo

Ðãîî! We write ñ: = C,,(N k, VCXk)' Note that åàñÜ ñ: is à compact set.

Moreover, if îõ' Å Ñ:, then for åàñÜ t,

--1 MINkl
x(t) ~ vcxk(Nk)/ltXk (ñî,)! ~ ItX;;l(cot)l'

Since INkl/ltX;;l(cot)1 ~ (}t, we conclude that the sets ñ: are in fact
uniformly bounded. We Üàóå already noted that, given â> î, the sets ñ:
are nonempty for sufficiently large k. It follows then that
lim SUPk -00 ñ: # 0 for åàñÜ â> î. Since Ñ:' ñ ñ: whenever â' < â, we also
Üàóå that lim sup Ñ:' ñ lim sup ñ: whenever â' < â. Thus {lim sup Ñ:} is à
nested family of compact sets, and in particular, n,,>î lim sup ñ: # 0.

ÒÜå next step is to show that N" > î lim sup ñ: ñ Ñ( À). Let
îõ' Å N" > î lim sup ñ:; then îõ' Å lim sup ñ: for åàñÜ â> î, so there is an
increasing sequence {kn} of positive integers, à decreasing sequence {âï} of
positive numbers tending to zero, and à sequence {îÕ'ï} converging to îõ'
with îÕ'ï Å ñ:" for åàñÜ ï. We claim that îõ' is in Ñ(À).

ÒÎ see this, set (J=L;r~1 îÕ'(t)J.tt; we need to show that (J belongs to the
core of À. First of all, no.te that



~

LARGE GAMES 89

ò .1

0-(/) = L x(t) Jl/(/)
/=1

ò
= L X(t)(}/

/=1

= f ( lim Xn(t)) ( lim ~~~ )/=1 ï-îî ï-îî I Nk" I

= t lim (.in(t~la~l(w/)I )/=1 ï-îî I Nk" I ,

1.Li~lXn(t) la{;l(w/)1= 1ò "
ï-îî I Nk,,1

1.vcxk,,(N k,,)= 1ò
ï- 00 I Nk,,1

=)..(/).

Thès î- is feasible. If î- were not in the core we coèld tind à Borel set Â for
which ),,(Â) > î-(Â); hence there woèld Üå à positive nèmber ð sèch that

),,(Â) î-(Â)~ > ~ + ð.

Choose coalitions Sn ñ N k" sèch that ISnl -+ 00 and

la~l(w/)ïSnl Jl(Bï/,)-+
ISnl Jl(B)

for åàñÜ (. ÒÜå detinition of)" yields that

~= lim ~~
Jl(B) ï -00 ISnl

so we have

~~> f Xn(t)ICX~I(W/)ï~nl+~
ISnl /=1 ISnl 4

for ï large. If we write Õï for the eqèal-treatment payoff in the 8n-core of
(Nk", VCXk,,) which gives rise to Õï, then oèr last ineqèality implies that

ðVCXk,,(Sn) > xn(Sn) +41Snl
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Ifor large n. However, since 8ï -+ Î, this contradicts the fact that Õï is in the
8n-core of (N kï' vakï) for large n. We conclude that î- is in the core of ë and

that õ belongs to Ñ(ë), as asserted. Thus n.>î lim sup C~ ñ Ñ(ë); note that

in particular, Ñ( ë)# eJ.
ÒÜå next step is to show that Ñ(ë) ñ n.>î lim inf C~. Given ii Å Ñ(ë) and

àn 8> Î, we must therefore construct, for åàñÜ large k, à vector Xk Å C~ '

such that Xk -+ è. Òî this end, define, for åàñÜ k, à vector Yk Å ~Nk Üó
Yk(i)=ii(tXk(i». We will show that à small perturbation of Yk is in the

individually rational 8-core of (N k, Vak).
It is convenient and involves ïî loss of generality to assume that our

games are zero-normalized, so that Vak( {i}) = î for åàñÜ k and i.

Write î- = L ii(t) ð." so that î- is in the core of ë. Âó definition,

(/) = 1.~~î- 1ò INkl .

Since i I
ò !

I

Yk(Nk)=L Yk(i) = L ii(t) ItX;; 1((J),)1
,=1

and

ItX;;I((J),)I/INkl-+(J,=p.(I,),

we conclude that

~ -+ 0-( / )INkl '

and

.!:~-+l.
Yk(Nk)

Thus if we set

vak(Nk)Zk =
( N

) Yk,
Yak k

we obtain à feasible, Pareto optimal, individually rational equal-treatment
payotT for the game (Nk, Vak)' and clearly Zk -+ è. We need to see that Zk is
in the 8-core of (N k, Vak) for k large. If this were not so then for åàñÜ k we
would find à coalition S k Ñ N k such that

Vak(Sk) Zk(Sk)

~>~+8.
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Passing to à subsequence if necessary, we màó assume that
Ð, = limk~ ñî Icx;; I(W,) n Skl/ISkl exists for åàñÜ t. Let Â Üå ànó Borel subset
of 1 such that .è( Â n I,)/.è( Â) = ð, for åàñÜ t. ÒÜån

~= lim~.
.è(Â) k~co ISkl

Îï the other hand, the equal-treatment nature of Zk and the fact that
Z k -+ ii imply that

~= lim ~.
.è(Â) k ~ ñî ISkl

Íånñå
ë(Â) > î-(Â) + 8.è(Â)

which contradicts the fact that î- is in the core of À.. We conclude that
Zk is in the 8-core of (N k, Vk) for k sufficiently large. Íånñå Ñ(À.) ñ
n.>o lim inf C~.

We have now shown that

n lim sup C~ ñ Ñ(À.) ñ n lim inf C~.
.>0 k~co .>0 k~co

Since lim sup C~ ~ lim inf C~ for every 8, it follows that

n lim sup C~ = Ñ(ë) = n lim infC~.

ÒÜå first statement of the Theorem is àn easy consequence of this fact.
Òî see this fix äî> Î, 80> Î, and let U Üå the äî-nåighÜîrhîîd of Ñ(ë); i.e.,

è= {ÓÅ ~T: dist(y, Ñ(Ë))<äî}.

Since C(A.)=nlimsupC~, we ñàï find àn 81, 0<81<80, such that
U ~ lim sup C~l' Íånñå U ~ C~1 for all sufficiently large k. Writing U k for
the äî-nåighÜîrhîîd of C~I' we need to show that ¸(ë) ñ U k for all suf-
ficiently large k. If this were not so we could find à sequence of integers
{kn} tending to infinity and à sequence {ii ï} in Ñ(À.) such that
dist(iin, C~;)~äO for åàñÜ n. Passing to à subsequence ifnecessary, we màó
assume that ii ï -+ à. But then dist(ii, C~ï) ~ !äî for kn large, so that ii would

-1

Üå à point of Ñ(À.) which was not in lim inf C~ .This is à contradiction, so
-1

we must have Ñ(À.) ñ U k for all sufficiently large k. In other words

dist(C~I' Ñ(À.)) <äî

for all sufficiently large k, as desired.
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ÒÜå final assertion, about the Shapley value, is àn immediate
consequence of this distance estimate and Theorem 1, so the proof is
complete. I

We remark that à similar argument màó Üå used to show that, for every
å> Î, lim inf C~ = limsup C~; this set màó Üå interpreted as representing
th~ set of equal-treatment payoffs in the e-core of À. (Of course, this is not
true if å = Î, as the example in Section 4 shows.) We shall not go into the
details here.

It is tempting to suppose that the (per-capita normalized) Shapley values
of the games (N k, V~k) converge to the asymptotic Shapley value of the nîn-
atomic game À. Unfortunately, À need not have àn asymptotic Shapley
value (see the "three-handed glove" market in Àèmànn and Shapley [3],
for instance). Perhaps such à result could Üå proved using the more general
value of Mertens [12].

Note added in proof Since this paper was accepted, we have obtained analogous results for
NTU games, Wooders and Zame, "NTU values of large games," University of Toronto,
Department of Economics Working Paper (forthcoming).
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