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1. Introduction

The market game, both in its sidepayment and nosidepayment versions, has provided a valu-
able tool for the utilization of game theoretic analysis for the study of exchange economies. It is
known that exchange economies map into totally balanced games? for both sidepayments and
nosidepayments. It is known that totally balanced sidepayment games map into exchange econ-
omies and it is conjectured, but not yet proved or counterexampled, that every totally balanced
nosidepayment game is representable by an exchange economy.?

A natural question to ask is are there other economic phenomena which give rise to market
games or “near-market games”?

In this paper we consider the relationship of market games and near-market games to econ-
omies with complexities beyond that of the exchange economy. We argue that a broad class of
replication economies generate near-market games, including private goods economies with
nonconvexities, coalition production economies, and economies with local public goods. We
note that economies with pure public goods do not, without special restrictions, give rise to near-
market games.

More specifically, we say that a sequence of replica games is a sequence of near-market games
if the games are superadditive and the sequence satisfies a “near-minimum efficient scale for
coalitions” property—all increasing returns to coalition size are eventually exhausted. The near-
minimum efficient scale property ensures that the sequence is asymptotically totally balanced—
given any epsilon greater than zero and any subgame of any game in the sequence, when the set
of players in that subgame is replicated sufficiently often, the epsilon-core of the replicated
subgame is non-empty.

* This paper is a revision of a Cowles Foundation Discussion Paper, No. 657. This work is related to
Department of Navy Contract Nooo14-77-C-0518 issued by the Office of Naval Research under Con-
tract Authority NR 047-006. However, the content does not necessarily reflect the position of the
policy of the Department of the Navy or the Government, and no official endorsement should be
inferred.

The United States Government has at least a royalty-free, nonexclusive and irrevocable license
throughout the world for Government purposes to publish, translate, reproduce, deliver, perform,
dispose of, and to authorize others so to do, all or any portion of this work.

The support of the Social Sciences and Humanities Research Council of Canada is gratefully ac-
knowledged. Also, we are indebted to an anonymous referee for careful comments on an earlier ver-
sion of the paper.

1) We note that every subgame of a totally balanced game has a non-empty core.

2) Clearly the mappings are not one to one in both directions, as the market game contains far less in-
formation than does the exchange economy.
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A model of a sequence of replica economies with coalition production and local public goods,
where agents are allowed to be members of possibly more than one jurisdiction, is developed and
the derived sequence of games is shown to be a sequence of near-market games. Few restric-
tions are placed on the model; the major ones are that the asymptotic growth of utility functions
is no more than linear and the production correspondences are such that positive outputs do not
become virtually free in per-capita terms as the economies become large.

The model in this paper differs from Shubik and Wooders (1983a, 1983b) in that here both
local public goods and coalition production are incorporated; in the previous papets, except for
a few examples, local public goods were not considered. Moreover, coalition structures are not
restricted to partitions; instead, a class of allowable coalition structures is taken as given and in an
allowable coalition structure it is possible that an agent can belong to one or more jurisdictions
and one or more productive coalitions simultaneously. The primary purpose of the devel-
opment of the model herein is to manifest the strength of the near-minimum efficient scale
property. This natural and nonrestrictive property ensures the asymptotic total balancedness.
The assumption of the sidepayments property enables us to keep the proofs relatively simple.

Except under some very special conditions (satiation or “asymptotic” satiation, i.e., marginal
utilities go to zero as the amount of the public good increases) replica economies with pure public
goods do not generate near-market games. Since games derived from economies with pure
public goods may well be totally balanced, this suggests that, in line with the incentives literature
it is when we consider sequences of economies that game-theoretic properties of private-goods or
“market-like” economies and of pure public goods economies differ.

As indicated above, in this paper we analyze replication sequences of economies—ones with
a fixed number of types of agents and increasing numbers of agents of each type. This keeps the
analysis relatively straightforward and facilitates development and exposition of the model. To
extend this analysis to economies with a continuum of agents or with simply a “large” number of
agents appears to pose different problems than extensions of this nature for private goods
exchange economies. The technical results in this paper are based on results concerning non-
emptiness of approximate cores of large replica games (See Wooders (1983) and Shubik and
Wooders (1983a)); these results are for games without sidepayments but apply to the sidepay-
ments case. The extension of much of the analysis to economies with a large number of agents
(but not necessarily replica situations) could, we believe, be carried out using the more recent
game-theoretic framework in Wooders and Zame (1984) and, to the continuum, by using the
Kaneko and Wooders (1984) framéwork (Kaneko and Wooders is also for “without sidepay-
ments”). '

In Section 2 a mathematical structure and analysis for near-market games is presented.
Section 3 contains our model of a sequence of replica economies whose derived games are near-
market games. Section 4 concludes the paper. All proofs are contained in the appendix.

2. Near Market Games

2.1 Games

We first review some game-theoretic concepts.

A game (with sidepayments) is an ordered pair (N, v) where N = {1, ..., n} is a finite set,
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called the set of players, and v is a real-valued function mapping subsets of N into R, with
v( @) = 0. Two players i and j are substitutes if given any subset S of N wherei ¢ S andj ¢ S,
we have v(SU{i}) = v(SU{j}). A subgame (S, v) of (N, v) is an ordered pair consisting of a
non-empty subset S of N and the function v restricted to subsets of S. The game (N, v) is super-
additive if for all disjoint subsets S and S’ of N, we have v(S) + v(S’) < v(SUS"). A payoff for
the game is a vector B = (B, ..., B") € R", the non-negative orthant of the n-fold Cartesian

product of the reals. A payoff B is feasible if Z B' < v(N). Given e > 0, apayoffis in the (weak)
1eN

e-core” if it is feasible and if, for all non-empty subsets S of N, >~ B' > v(S) — ¢|.§| where | S|
1eS

denotes the cardinal number of the set . When & = 0, the g-core is called simply the core.

Given a game (N, v), let (N, &) denote the totally balanced cover of (N, v); the function & is
the smallest real-valued function such that, for all non-empty subsets S of N, the subgame (S, 7)
has a non-empty core and v(S) < F(S).

2.2 Sequences of Games

A sequence of games (N,, v,)™, is superadditive if each game (N,, v,) is superadditive. It is
per-capita bounded if there is a constant K, independent of r, such that v,(N,)/| N,| < K forall r.

Let (N,, v,)=_; be a sequence of games where, for some positive integer T, for each r the set of
players N, contains rT players, denoted by N, = {(¢, ¢):t=1,...,T,q=1,...,r}. Foreach
rand each 1, let [t], = {(t,q):g = 1,. .., r}. The sequence is a sequence of replica games if

() N, c N, forall r;
(2) for each r and all subsets S of N,, v,(S) < v,(S) whenever r' >r;
(3) for each r and each ¢ all players in [¢], are substitutes for each other.

Throughout the following, given a sequence of replica games (N,, v,)=., we define [¢], as
above and call the members of [¢], players of type t. We also assume there are T types of players
and denote the set of players N, as above.

Given a sequence of replica games (N, v,)%_; and a subset S of N, for some 7, define the
vector p(S) = (s1, ..., sp) by its coordinates s, = | S  [z],]; the vector p(S) is called the
profile of S and is simply a list of the numbers of players of each type contained in S. Let I denote
the T-fold Cartesian product of the nonnegative integers. Observe that for any r and any subset
S of N,, we have p(S) e I. Also, since players of the same type are substitutes, if S and S’ are
two subsets with the same profiles then for any r such that S < N, and §' < N,, we have
v,(S) = v,(S"). Consequently the function v, can be completely defined by a mapping from a
subset of / to the reals. In the following, given r and a profile s of a subset of N,, we define v,(s)

T
as v,(S) for any S < N, with p(S) = 5.9 Given s € I we write [s| =Y s, since when
t=1

T
p(S) =5, we have |S|=2 s,
t=1

We say a sequence of replica games satisfies the property of “near minimum efficient scale” (for

3) This concept was introduced by Shapley and Shubik (1966).
4) This abuse of notation should create no confusion. We note that we typically denote subsets by
upper case letters and profiles by lower case ones.
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coalitions), NMES, if it is per-capita bounded. Ifthe sequence is also superadditive, we say the
sequence is a sequence of near-market games.

We remark that when a sequence of replica games is per-capita bounded and superadditive,
both F(N,)/| N, | and v(N,)/| N, | converge and to the same limit. In this case, for r sufficiently
large, the per-capita gains to forming a coalition larger than N, are small. This motivates our
term “near-minimum efficient scale.”

A sequence of replica games (N,,v,)™, is asymptotically totally balanced if, given any r, any
subset S of N,, and any & > 0, there is an #* such that for all » > n* we have

ijnr(Sn) _ M< e,
S, | S,

where v,, denotes the function v,, with r’ = nr and S, is any subset of N, with p(S,) = np(S).
1t can easily be verified (and follows from well-known results, cf. Shapley (1967)), that given any
game (N, v), we have G(N)/|N | — v(N)/|N | < ¢ if and only if the e-core of the game is non-
empty. Consequently, given any subset S of N, for some r and any sequence of subsets (S,)
satisfying the properties required above, for all n sufficiently large the subgames (S, v,,) have
non-empty &-cores.

The following theorem provides sufficient conditions for asymptotic total balancedness of
sequences of replica games.

Theorem 1. Let (N,, v,)2.; be asequence of near-market games. Then the sequence is asymp-
totically totally balanced.
Proof. All theorems are proven in the Appendix.

3. Near-Market Economies

3.1 Introduction to Near-Market Economies

In this section we develop a model of a sequence of replica economies with private goods, local
public goods, and coalition production. Minimal restrictions are imposed on the model yet we
are able to show that the sequence of derived games is superadditive and per-capita bounded and
thus is asymptotically totally balanced. Therefore, the class of replication economies we consider
are near-market economies—the derived games are near-market games for large replications.

3.2 The Model

The model may look more formidable than it actually is. Therefore, before the formal state-
ment of the model, we will describe the main components.

An economy &, is defined for each replication number r. The set of agents N, consists of r
agents of each of T types, where all agents of the same type have the same endowments and
preferences. We take IR’ as the private commodity space and IR” as the public commodity space.
Utility functions then map IR”*+' into R'.. Only private commodities are initially endowed so
endowments are in R’,.

A jurisdiction structure is a specification of a collection of jurisdictions where all the agents in
each jurisdiction jointly consume (local) public goods and where every agent belongs to at least
one jurisdiction. In this model, we do not restrict allowable jurisdiction structures® to partitions.

—292—



M. Shubik and M. H. Wooders: Near-Markets and Market Games

Therefore, for any set of agents S < N, we take as given a set of allowable jurisdiction structures
Z(8); thus an clement J € _7(S) is an allowable jurisdiction structure of S.

We also take as given a public goods production correspondence Z, which associates a public
goods production set with every possible jurisdiction (every non-empty subset of N,). Thus
allowable jurisdiction structures are given by the correspondence 7 (S) and production possibili-
ties by .Z,.

Allowable firm structures and production possibilities for private goods are defined in a man-
ner analogous to the definitions of allowable juristiction structures and production possibilities
for public goods.

A sequence of replica economies (&,)7; is defined as a sequence of septuples

&=WN,R,R},U,W, (% Z),(F,7))
where N, ={(t,q9):t=1,...,T,g=1,...,r} is the set of agents;

IR is the private commodity space;

IR7 is the public commodity space;

U, ={u":(¢,q) € N,} is an indexed collection of utility functions mapping IR7*’ into R
with the property that for some linear function L and some real number ¢ we have u'4(x, y)
< L(x,y) + ¢ for all x in IR™ and y in R', and for all (¢,q) in N,;?

W, ={w"“ e R':(¢,q) € N,} is an indexed collection of initial endowment vectors, each in
R’ (no public goods are initially endowed);

(%, Z,) is a pair of correspondences, where Z, called the allowable jurisdiction structure corre-
spondence, maps non-empty subsets S of N, into collections of non-empty subsets of § and Z,,
called the public goods production correspondence, maps subsets S of N, into subsets of IR” x IR';

and (&, Y,) is another pair of correspondences where .7, called the allowable firm structures
correspondence, maps non-empty subsets S of N, into collections of subsets of S’ and Y,, the
private goods production correspondence, maps non-empty subsets S of N, into subsets of
R,

Before proceeding, some further clarifying remarks may be in order. Throughout the paper,
as above, a vector of public goods will be denoted by x, x', etc. and a vector of private goods by
»,¥', etc. The allowable jurisdiction structure correspondence simply describes, given a subset
of agents S, the jurisdiction structures of $' which are permitted; this correspondence is taken as
given, and must satisfy certain conditions which will be stated later. The public goods produc-
tion correspondence associates a production possibility set for public goods with each subset of
agents; this correspondence is also taken as given and will also be required to satisfy certain con-
ditions. The allowable firm structure correspondence is analogous to the allowable jurisdiction
structure correspondence and specifies, for any given set of agents, those collections of subsets
which can engage in production of private goods. The private goods production correspondence
associates a production possibility set (for private goods) with each subset of agents.

5) The reader may find it useful to think of a jurisdiction as a club, (and not as a “locality” in a spatial
model).

6) This property is needed even to ensure that a sequence of private goods exchange economies
generates a sequence of near-market games (see Shapley and Shubik (1966)) and is nonrestrictive,
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A number of further specifications are made on the components of a sequence of replica

economies:

(1) N, c N,,, for each r (this relation is for technical convenience).

(2) Foreacht eachgandq’in{g”:q" =1,...,r},andallr, u' = 4'* and w'? = w'?; ie,
all agents of the same type have the same utility functions and the same initial
endowments. Also, u*%(w') > 0 for all (¢, g) € N, and for all r (this assumption is for
technical convenience).

(3) Givenr,S c N, and J(S) € Z(S), J(S) is an allowable jurisdiction structure of S and
a member of J(S) is called a jurisdiction. Allowable jurisdiction structures J(S) are
required to satisfy the properties that

(Ba) S c \U S (allowable jurisdiction structures of S cover S);
S5'eJ(S)

(3b) ifJ(S) e J.(S) and J(S”) € J,(S’), where S and S’ are non-empty, disjoint subsets
of agents, then {S” < N,:8” € J(S) u J(§)} € Z(S U S);

(3c) given S < N, and r' > r, if J(S) is in Z(S), then Z(S) is in Z.(S);

(3d) if S and S’ are non-empty subsets of N, with the same profiles, then there isa one-to-
one mapping, say y, of_Z(S) onto_7(S") such that if w(J(S)) = J(S’), then the col-
lection of profiles of members of J(S) (not all necessarily distinct), equals those of
J(S).

As stated earlier, 7 describes the set of allowable jurisdiction structures of S for each subset §
of N,. Given S,amember of Z(S), say J(S), must satisfy certain properties. The first property
(3a) is that each agent must be in some jurisdiction. Property (3b) states that if J() is an allow-
able jurisdiction structure of S and J(S") is an allowable jurisdiction of S’, where S and S’ are dis-
joint, then the jurisdiction structure of § U S consisting of the union of members of J (S) and
J(S") is allowable. Note that partitions satisfy (3a) and (3b) above but (3a) and (3b) also admit
jurisdiction structures which are not partitions. Property (3c) is simply that the set of allowable
jurisdiction structures of a set of agents does not decrease as the size of the set of agents increase.
Finally, (3d) simply states that the set of allowable jurisdiction structures of a set of agents
depends only on the number of agents of each type in that set.

To ensure that the meaning of (3) is clear, following is an example. Let N, =
{(1,1),(2,1),(3,1),(1,2),(2,2), (3, 2)} so N, has 6 agents, 2 agents of each of three types. Let
S =1{1,1),(2,1),(3,1)}. Then let %(S) be the partitions of § unioned with J(S) =
{1, 1), (2, D}, {(2,1), (3, )}}; for some unspecified reason, in addition to the partitions of S,
the allowable jurisdiction structures of S include one where agent (2, 1) can be in a jurisdiction
with (1,1) and in a jurisdiction with (3,1) simultaneously. Let S’ = {(1,2), (2,2), (3,2)}.
Since S and S’ have the same profiles, we must have _%(S’) equal to the partitions of S unioned
with J(8") = {{(1,2), (2,2)}, {(2,2), 3,2)}}. Also, since S and §' are disjoint (S U S)
must include, for example J(S) u {{(1, 2)}, {(2,2), (3,2)}} from (3b).

(4 The public goods production correspondence is required to satisfy the properties that

(4a) givenS < N,and r' >r,Z,(S) c Z.{S) (the public goods production possibility
set available to a coalition does not decrease when the economy becomes larger);

(4b) if S and S’ are non-empty subsets of N, for any r, with the same profiles, then
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Z(S) = Z,(S"), (the production possibility set for a subset of N, depends only on the
profile of that coalition);
(400 0 e Z.(S) for all non-empty subsets S of N, and for all r.

(5) Given asubset S of N,, allowable firm structures F(S) € F.(S) are required to satisfy the
same properties as allowable jurisdiction structures, i.e. (3a), (3b), (3¢), and (3d) of (3)
above. Also, the private goods production correspondence is assumed to satisfy the same
properties as the public goods production correspondence, (4a), (4b), and (4¢) above.

(6) For private goods, we define the aggregate production correspondence. Given r and
S < N,, define

17r(S) = U Yr(S/);

F(S)e F.(S) S'eF(S)
then Y,( - ) is the rth aggregate production correspondence. Note that Y,( - ) is superaddi-
tive, given any two disjoint, non-empty subsets S and S’ of N,, we have ¥,(S) + ¥,(S")
c 7.(su S).

The above consists of a description of the components of a sequence of replica economies and
members of the sequence. Note that at this point very little structure has been imposed on the
model. In the following, we introduce additional definitions which enable us to relate pro-
duction decisions to consumption decisions and to define feasible states of an economy.

An N,-allocation is a vector (x,y) = (x", ..., x7", 3", ..., y7) e R+ where (x', y")
is a commodity bundle for the (¢, g)thagent. Given any r and any non-empty subset S of N, an
S-allocation is an N,-allocation where x'? =0 and y"? =0 if (+,q) ¢ S.

Given r and a non-empty subset S of N,, an S-private goods production plan is a vector
y e Y.(8).

In this paper it is assumed that public goods produced in one jurisdiction are not transferable to
another. This necessitates a different approach to the definition of public goods production plans
than that used for private goods (which can be exchanged between agents, productive coalitions,
and/or jurisdiction). Specifically, for public goods we keep track of the jurisdiction structure
associated with a public goods production plan. Given a non-empty subset S' of N,, an S-public
goods production plan is an ordered pair, ¢(S) = (J(S), {(xs, zs) € Z,(S"):S" € J(S)}) where
J(S) e Z(S).

Given r and a non-empty subset S of N,, an S-state of the economy, e(S), is an ordered triple,
e(S) = (7, 0(S), (x,y)) where 7 is a private goods production plan for S, ¢(S) =
(I(S), {(x5, 2z5) € Z.(S):S" € J(S)}) is an S-public goods production plan, and (x, y) is an
S-allocation where x'“ = > x for all (¢,g) € S (the (¢, g)th agent consumes the total

st'qeleé)
outputs of public goods produced in all jurisdictions of which he is a member). The state is

S-feasibleif > (y'7 — w') + > zg = . An N,-state of the economy is called simply a
(Lg)es s'ed(S)

state of the rth economy, or, when no confusion is likely to arise, simply a state of the economy.
Given S c N, let 4,(S) = {(x, y) : there is an S-feasible state of the economy with the asso-
ciated S- allocation (x, y)}. The set 4,(S) is called the set of S-attainable allocations. We note
that if 7' > r, then
Projs 4,(S) < Projs 4,(S)
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where Projs 4,-(S) denotes the projection of the set 4,.(S) onto the subset of IRIS 1"+ associat-
ed with the members of S for any replication number r”.

3.3 The Derived Games

We now define the sequence of games derived from the sequence of economies.

Given r and S < N,, define v,(S) = sup S u(x'?,y%) when S # . Define
(x, ) €4,(5) (r,q)eS

v,(S) =0 when S = 2.
Observe that the pair (N,, v,) is a game with sidepayments. The generation of a game with
sidepayments presumes, as usual, the existence of a freely transferable medium of exchange;
there is no need to introduce this explicitly. It is straightforward to verify that the sequence of
derived games is a sequence of replica games.
3.4 Near-Market Economies
Without further restrictions on the economies, in particular on production, there is no assur-
ance that the derived sequence of games is a sequence of near-market games. The restrictions
required are, informally, that positive production does not become virtually free as the economies
become large. Formally, we assume
Al. There is a closed convex cone ¥* < IR/, with —IR, < Y* and ¥* n IR, = {0}, such
that Y,(S) < Y™ for all subsets S of N, and for all r.

A2. There is a closed convex cone .2 ¢ R™ x R/, with {0} x —R' ¢ 2* and 2% n
R™ x IR’ = {0}, such that for any r, any non-empty subset S < N,, and any allowable
jurisdiction structure J(S) € Z(S), we have > (xg,z5) € {(x,2) € R™":

S'eJ(S
(ISlx,z) € Z*} for all (x5, zs) € Z(S’) and for all S’ e J(S).

The first assumption is clear. The second is that there is some set 2™ satisfying the prop-
erties of a standard private goods production set and public goods are never cheaper per capita
than private goods would be if they were produced with the “production” set .Z*.

An example of production correspondences which satisfy A2 in the one-private-good, one-
public-good case is given by the production functions x + z/| S| = 0 for each subset S of N, and
for all » with_#(S) equal to the set of partitions of S. Here the per capita costs of the public good,
in terms of the inputs, is constant and independent of the size and composition of the jurisdiction
structure.

To see what A2 rules out, suppose all coalitions have the production set Z determined by the
production function x + z = 0, there is only one private good and one public good, and again
JAS) is the set of all partitions of S. To show that A2 is not satisfied, let x, = 2/r and
z, = —(2/r) for each positive integer . Observe that (x,,z,) € Z(S) forall§ < N, and for all
r. Choose a sequence of subsets S, < N, for each r such that |S,] =r. We then have
lim |S,|x, =2and lim z, = 0. This contradicts A2 since 2 *is closed and 2* ~ R = {0}.

The consequences of Al are described in Shubik and Wooders (1983b).

Together, the assumptions on Z, and Y, and on the utility functions imply that the sequence of
derived games is per-capita bounded. Since the sequence of derived games is also superadditive,
it is a sequence of near-market games and asymptotically totally balanced.

Theorem 2 Let (&£,)=, be a sequence of replica economies satisfying Al and A2. Then the
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derived sequence of replica games is a sequence of near-market games and is asymptotically
totally balanced.

In the Appendix, we show that the derived sequence of games is per-capita bounded and su-
peradditive. Theorem 2 then follows as a Corollary to Theorem 1.

4. Conclusions

In this paper we have introduced concepts of sequences of near-market games and market
economies. It was demonstrated that when “free” consumption (in per-capita terms) is ruled
out, then sequences of economies with local public goods and coalition production generate
sequences of near-market games—a property of sequences of private-goods-exchange economies,
Also, this has been done with few restrictions; non-monotonicity of utility functions, non-
convexities, and indivisibilities are allowed. The analysis suggests that many of the specifics of
the particular model investigated could be varied and the same results still obtained. Thus it
appears that diverse models of economic structures have the near-market game property. The
fundamental condition for this property to obtain is that of a near-minimum efficient scale for
coalitions.

Appendix

In this appendix, Theorem 1 is proven. Whenever possible, for the sake of brevity, we use
results currently available for sequences of replica games. Also, throughout this appendix, the
sequences of games are assumed to be sequences of per-capita bounded, superadditive replica
games.

When a sequence of replica games (N,, v,)<, is superadditive and per-capita bounded, it can
be shown that for any r/, and any profile s < p(N,), the sequence of subgames (S, v,,)=; is
superadditive and per-capita bounded, where v, is the characteristic function of the nr'th game
and S, is any subset of N,,. with profile equal to ns. Thus, to show that the sequence (N,, v,)2;
is asymptotically totally balanced, we need only show that the sequence is asymptotically

balanced, 7e, lim 2@ _ jim T,
r—o Ier r— |Nr|
as above is asymptotically balanced.
Observe that from Wooders ((1983), Lemma 8), the limits, as r goes to infmity, of both
v,(N,)[r and §,(N,)/r exist and are equal. This, and our observations above, prove Theorem 1.

Also, this theorem can easily be obtained as a consequence of Wooders ((1983), Theorem 1).

Then every subsequence of subgames (S, V)%

Proof of Theorem 2

To prove the theorem, we need only prove that the sequence of derived games is superadditive
and per-capita bounded. It is straightforward to verify that the sequence is superadditive; thus
we omit the proof.

To prove per-capita boundedness of the sequence of games, we construct another sequence of
economies, say the *-economies, so that the sequence of games derived from the *-economies,
denoted by (N,, v¥)%_,, is per-capita bounded and has the property that for all r and for all non-
empty subsets S of N,, we have v,(S) < v*(S) + ¢|S|.
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For the *-economies, let Y* be the private goods production possibility set available to all coali-
tions § < N, for all . Observe that for any firm structures, say F,(S) and F!(S) we have

r*= >
S" e F,(S) 8’ e Fi(S)
so the firm structure will be irrelevant. Of course, ¥,(S) < Y* and for any firm structure F (S),
Y* c Y™
S'e F(S)

Given r and a subset S of N,, define Z*(S) = {(x,z) € R"':(|S|x,z) € .Z*}. Note that
Z*(S) is a closed convex cone with vertex {0} and {0} x —IR, < Z*(S); this follows from the
assumptions on .Z*. Let ¢(S) = (J(S), {(xs, zs) € Z,(S"): S’ e J(S)}) be an S-public goods
production plan. From assumption A.2, there is an (x,z) € Z*(S) such that

(@) for each (z,q) € S, we have > Xy < X
{s'e/(S) (r.q)es"}

and

b > zs<z
§ET(S)

Informally, there is an (x, z) in Z*(S) “at least as good as” any S-public goods production plan in
the sense that with the production possibility set Z *(S), the agents can consume as much of the
local public goods while using no more of the inputs. (Note, however, because agents do not
necessarily have monotonic increasing preferences for the local public goods, they may not prefer
to have more of them.)

For the purposes of this theorem, we can restrict our attention to states of the *-economies
with associated jurisdiction structures {{(z, ¢) : (¢, ¢) € N,} since with this jurisdiction structure
all agents can be made “at least as well-off” as with any other jurisdiction structure. To see this,
given any r and any non-empty subset S of N,, let (x,z) € Z*(S) so (|S|x,z) € .Z* and
(x.z/IS) € Z*({(z, g)}) for each (¢, q) € S; thus with the jurisdiction structure {{(z, ¢)}:
(¢,9) € N,} each agent in S can consume x and total inputs are unchanged.

In the *-economies, the agents will all have the same utility functions. For each r and for all
(¢t,q) € N,, define u*?(x,y) = L(x,y) where L is a linecar function such that
u"(x, y) < L(x,y) + c for some constant ¢ for all (x,y) € IR" + IR, and for all (¢, g) € N,.

For each r and each non-empty subset S of N,, let 4*(S) denote the set of S-attainable alloca-
tions for the *-economies.

For each r and all non-empty subsets S of N,, define

vi(S)= sup > L*x",y").

(x,7)e43(S) (1,9)es
The finiteness of this “sup” is ensured by the linearity of the function L* and boundedness of A}
(S). Also,

viS) = sup L( X x, X ).
x,0eas) (aes (t,g)es

Let % be areal number such that K > vf(N,). We will show that % is a per-capita bound for
the sequence of games (N,, v¥)™.,. Suppose not. Then there is an r’ and a feasible state of the
r'th *-economy, say e*(N,) = (7, (J(N,), {(xs, zs) € Z*(S"):S € J(N,)}), (x,y)), such
that L( > x", > ") >.%7r. We can assume without any loss that F(N,) = {N,}

(t,q)e N, (1,q)eN,.
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and J(N,) = {{(1, 9)}:(z, ¢) € N,}. Also, we can assume that x'* = x"* and y'? = " for all
(¢,q) and (¢, q') in N,. We claim that there is an (x',y) € AT(N;) with x"'? = x'* and
¥4 =y for all (, ) e N, which will yield a contradiction. Since e*(N,) is feasible (for the
r'th *-economy), we have y € Y*. Observe that j/r' € Y* Also, for some z'? for each

(t,0) € Ny, we have (x0,27) € Z°((c, ), and 3 (—w)+ T =5 so
(t,a)e N, t,9)e Ny
(y"—w) + > z'%“=3[r'? This proves our assertion that (x',y) e AT(Ny).
(t,g) e Ny (1,9) € Ny

But then L( > x'", > y'") =—1,L( > x> yY)>.% which is a con-

(t,q)e Ny (t,9) e Ny r (t,q)e N, (t,a)e N,
tradiction. Therefore the sequence (N,, v¥)>, is per-capita bounded.

Since u'(x,y) < L(x,¥) + ¢ for all (x,y) € IR” x IR., and from the construction of the
production possibilities set for the *-economies, we have v,(N,) < v¥(N,) + ¢|N,| for all r.
Therefore the sequence (N,,v,)>; is per-capita bounded.

Q.E.D.

(Martin Shubik, Cowles Foundation for Research in Economics at Yale University)
(Myrna Holtz Wooders, the Unwersity of Toronio)
First draft received February 19, 1986; final draft accepted March 11, 1986.
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