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On large games with bounded essential coalition sizes

Eyal Winter∗ and Myrna Wooders†

We consider games in characteristic function form where the worth of a group
of players depends on the numbers of players of each of a finite number of types
in the group. The games have bounded essential coalition sizes: all gains to co-
operation can be achieved by coalitions bounded in absolute size (although larger
coalitions are permitted they cannot realize larger per-capita gains). We show that
the utility function of the corresponding “limit” market, introduced in Wooders
(1988, 1994a), is piecewise linear. The piecewise linearity is used to show that for
almost all limiting ratios of percentages of player-types, as the games increase in
size (numbers of players), asymptotically the games have cores containing only one
payoff, and this payoff is symmetric (treats players of the same type identically). We
use this result to show that for almost all limiting ratios of percentages of player-
types, Shapley values of sequences of growing games converge to the unique limiting
payoff.
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1 Introduction

Cooperative games with bounded essential coalitions have the property that all gains to
coalition formation can be realized by coalitions bounded in size; that is, any large coali-
tion can achieve its worth by cooperation restricted to coalitions (in a partition of the
coalition) containing fewer members than the bound. This sort of game is frequently
used in the published literature. The most well-known of these examples is perhaps the
“glove game”, in which some players are each endowed with a right-hand glove, and
others a left-hand glove, and a pair of gloves is worth $1. This example is analyzed in
detail in Shapley and Shubik (1969a), where it is shown that the limit of the values
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of a particular growing sequence of games is in the limit core. In general, every
two-sided market with n sellers and m buyers has bounded essential coalitions, and even
situations with more than two types of players. A nice property of such games is that we can
describe the payoff achievable by any coalition in terms of payoffs achievable by “small”
coalitions and compare payoffs in games with differing numbers of players of each type.
There are other underlying reasons why games of this sort frequently appear; their special
properties serve well to illustrate a variety of phenomena of markets and games with many
players.

It has been shown that games satisfying the property of “small group effectiveness”,
where almost all gains to collective activities can be realized by relatively small groups of
players, are approximately market games: games derived from exchange economies where
all agents have concave, quasi-linear payoff functions. When arbitrarily small percentages
of players are ruled out, small group effectiveness is equivalent to the property that average
or per capita payoffs are bounded over all games considered (see Wooders 1994a for both
these results).1 Moreover, under the same conditions, approximate cores are nonempty and
converge to equal treatment cores (Wooders 1977, Shubik and Wooders 1982, Wooders
1994b, 2007). Besides being of interest themselves, games with bounded essential coalition
sizes approximate games satisfying the property that the supremum of average payoffs is
bounded sizes (or, in other words, games satisfying strict small group effectiveness).2

In this paper, for games with bounded essential coalition sizes (or, in other words, games
satisfying strict small group effectiveness), we demonstrate a stronger convergence of games
to market games than in Wooders (1988, 1994a) More precisely, we show that games derived
from situations with a finite number of types of players and bounded essential coalition
sizes are asymptotically equivalent to games derived from markets where all players have
the same, piecewise-linear utility function. In the more general setting, Wooders (1994)
shows that large games are asymptotically equivalent to games derived from markets where
all players have the same concave, continuous, and 1-homogeneous utility function;3 our
main contribution here is showing that, with the further restrictions of a finite number of
player types and bounded coalition sizes, we obtain the piecewise linearity. The results are
obtained by sharpening, for our special case, some arguments in Wooders (1988). Using the
properties of piecewise linearity of the utility function, we describe how our result implies
that the limit core is a singleton for almost all limiting distributions of player types and also
implies an asymptotic equivalence of cores and Shapley values.

Before leaving this introduction, we remark on what sorts of economic models generate
games with bounded essential coalition sizes. First, we note that if there are gains to
trade of private goods then typically increasing the numbers of traders leads to increasing

1 Market games were introduced into the literature in Shapley and Shubik (1969b), who define a market game
as a game derived from an economy where players have concave, quasi-linear preferences.

2 The condition that per capita payoffs are bounded is very mild and, for TU games, simply rules out average
or per capita payoff becoming infinite as the number of players goes to infinity. For much more general results
concerning cores of games with many players, see, for example, Kovalenkov and Wooders (2003) and Wooders
(2008).

3 Wooders (1988) allows a compact metric space of attributes and a weaker condition bounding returns to group
size.

192 International Journal of Economic Theory 4 (2008) 191–206 C© IAET



Eyal Winter and Myrna Wooders On large games with bounded essential coalition sizes

opportunities to trade in larger coalitions. Thus, while such models might satisfy conditions
of boundedness of average utilities (per capita boundedness) they are not likely to satisfy
the condition of bounded essential coalition sizes. If the primary interest, however, is group
or coalition formation, one may assume that there is only one private good (money or some
composite commodity) and, therefore, gains to trade of commodities disappear. There are
many examples of club economies with bounded essential coalition sizes.4 Also, matching
models typically satisfy bounded essential coalition sizes (see e.g. Roth and Sotomayor
1990).

2 An example

In this section, we present an example of our result.5 The piecewise linearity of the utility
function is illustrated by an indifference curve with linear segments.

We consider a situation where there are two types of players: cooks and helpers. There
are only three sorts of “profitable” work-groups:

(a) 1 cook and 2 helpers can make a banquet;
(b) 4 cooks alone can make a banquet (cooks are not very efficient as helpers);
(c) A helper can find his way to the unemployment insurance office and collect unem-

ployment benefits.

Suppose a banquet is worth $10 and unemployment insurance is worth $1. Because
players of the same type are identical and exact substitutes, we can describe a coalition
by a pair (x, y) of nonnegative integers, representing the number of cooks and helpers,
respectively. We denote the payoff to a pair (x, y) by �(x, y). The function �(x, y), the
maximum payoff that a coalition (x, y) can realize by forming groups, is the optimal value
of the objective function of the following integer programming problem:

Maximize 10x1 + 10
[

x2

4

] + y1

subject to: x1 + x2 ≤ x ,

2x1 + y1 ≤ y, and

x1, x1 and y1 are nonnegative integers,

where [ x2

4 ] is the largest integer less than or equal to x2

4 .

4 If restricted to situations with only one private good, multiple papers in the literature on club economies
(or on the “Tiebout Hypothesis”) studying properties of price-taking equilibrium satisfy bounded essen-
tial coalition sizes. See Allouch and Wooders (2007), an exception to this, for further discussion and
references.

5 For the reader familiar with that paper we remark that the example is taken directly from Wooders (1988) and
also appears in Wooders (1994b).
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Some calculation reveals that, for y > 3, �(x, y) is given by

�(x , y) =



5x2 + 10

[
x − ( y − 2

2

)
4

]
− 8 if y is even, 2x − y = 8r + 6

for some nonnegative integer, r

5y + 10

[
x − ( y

2

)
4

]
if y is even, 2x � y, and

2x − y �= 8r + 6

for any nonnegative integer r
if y is odd and

5y + 10

[
x − ( y − 3

4

)
4

]
− 12 2x − y = 8r + 5

for some nonnegative integer r
if y is odd, 2x � y, and

5y + 10

[
x − ( y − 1

4

)
4

]
− 4 2x − y �= 8r + 5

for any nonnegative integer r
8x + y if 2x ≤ y



.

(For our purposes, we do not consider y ≤ 3.)
When 2x ≥ y, roughly, the maximum value of the objective function is achieved by

forming as many (a) groups as possible, and then putting the remainder of the cooks in (b)
groups. However, this might leave 3 cooks “left-over” (if y is even, this is the condition that
2x − y = 8r + 6). It then pays to break an (a) group, send 2 helpers to the unemployment
insurance office, and form an additional (b) group. If only 1 or 2 cooks are “left-over”, they
are (optimally) left unemployed. An additional complication arises when y is odd then one
more helper is left unemployed (and gets unemployment insurance) than when y is even.

If 2x < y, the maximum value of � is achieved by simply forming as many (a) groups
as possible, and then putting the remaining helpers in (c) groups.

For large groups of cooks and helpers, the per-capita payoff depends, approximately,
only on the size of the group (the total number of cooks and helpers), and the distribution
or composition of the group (the percentage of cooks and of helpers). To illustrate, let
(x, y) be in R

2
+ , (x , y) �= (0, 0), and let {(xn, yn)} be a sequence of pairs of nonnegative

integers where xn + yn → ∞ and xn

xn + yn → x
x + y and yn

xn + yn → y
x + y as n → ∞. We leave

it to the reader to verify that for any (x, y) with 2x > y,

(x + y) lim
n→∞

�(xn, yn)

xn + yn
= 5x

2
+ 15y

4

194 International Journal of Economic Theory 4 (2008) 191–206 C© IAET



Eyal Winter and Myrna Wooders On large games with bounded essential coalition sizes

2 4
0

1

2

3

4

5

6

7

8

9

1U
Y

X

Figure 1 An indifference curve for the limiting utility function.

and with 2x ≤ y,

(x + y) lim
n→∞

�(xn, yn)

xn + yn
= 8x + y.

To describe a market game generated by the game-theoretic information, we endow
each agent with one unit of his or her type, and describe the utility function of an agent by
the indifference map depicted in Figure 1. The utility function for an agent is given by:

u(x , y) =
 5x

2
+ 15y

4
if 2x � y

8x + y if 2x < y

 .

Observe that on the cones (x, y) with 2x ≥ y and (x, y) with 2x ≤ y, the utility function is
linear; our main result is that the utility function has the sort of property whenever essential
coalition sizes are bounded. (In contrast, in Wooders (1988, 1994) it is demonstrated that
under milder conditions, we still obtain convexity of the utility function.)
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If we specify a total population of players in terms of the numbers of cooks and
helpers in the population, if the ratio of helpers to cooks is greater than 2 then the data
above determines a cooperative game with side payments. Suppose, for example, that a
population N consists of 5 helpers and 2 cooks. Then the core of the game is nonempty and
assigns a payoff of 4 to each cook and a payoff of 1 to each helper. In fact, in any population,
if the ratio of helpers to cooks is greater than 2, then the core is nonempty and assigns each
cook 4 and each helper 1; helpers are in relative abundant supply and can only achieve what
they can do on their own. Because at least 1 helper must be unemployed, in a core outcome
all helpers must receive only 1 each.

If the ratio of helpers to cooks is less than 2, cooks are in relatively excess supply. If the
core is nonempty, it must be possible to assign each helper to a 2-helper, 1-cook coalition
and each cook must be either with 2 helpers or in a 4-cook coalition (and there must be at
least 1 such coalition). The existence of a 4-cook coalition implies that the core payoff must
assign each cook 10

4 . The existence of a 2-helper, 1-cook coalition then implies that the core
must assign each helper 15

4 . We can see from this case that if the population includes both
cooks and helpers and if cooks are in relatively excess supply, then the nonemptiness of the
core implies that the number of helpers, say y, must be even and the number of cooks, say x,
must be equal to 4z + y

2 for some non-negative integer z. It is also apparent that if the core
is empty, but there are many players, we can form as many 2-helper, 1-cook coalitions and
4-cook coalitions as possible and have “few leftovers”: at most 1 helper and at most 3 cooks.

The properties of this example are standard for games with bounded essential coalition
sizes.

3 Games

In this section, we recall some definitions.
A game (with sidepayments) is a pair (N , ν) where N is a finite set (the set of players)

and ν is a function (the worth function of the game) from the set 2N of subsets of N to
the set R+ of nonnegative real numbers, with the property that ν (φ) = 0. A nonempty
subset S of N is called a coalition and the number ν (S) is the worth of the coalition S. If
the player set N is understood, we frequently refer to ν itself as the game. The game (or ν)
is superadditive if for all disjoint subsets S and S′ of N we have

ν
(
S ∪ S ′) ≥ ν (S) + ν

(
S ′) .

Let (N , ν) be a game. Two players i and j, i �= j are substitutes if for all coalitions S with
i �∈ S and j �∈ S, it holds that ν (S ∪ {i}) = ν (S ∪ { j}).

A payoff for the game (N , ν) is a vector x ∈ R
N ; for convenience we use the notation

x(i) for the i th component of x. The payoff is feasible if there is a partition of N into
(disjoint) coalitions, say (S 1 . . . , S L ), such that

x(N) ≤
L∑

� = 1

ν (S�) , (1)

where x(S) = ∑
i∈S x(i), for any S ⊂ N .
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For ε ≥ 0, the payoff x is in the weak ε-core of (N , ν) if x is feasible and

x(S) ≥ ν(S) − ε |S|
for all coalitions S where |S| denotes the number of elements in the set S. The payoff x is in
the strong ε-core if it is feasible and if

x(S) ≥ ν(S) − ε

for all coalitions S ⊂ N . When ε = 0 the (weak or strong) ε-core is simply the core. The
weak ε-core consists of those feasible payoffs with the property that no group of players
could each be better off by ε, whereas the strong ε-core has the property that no group
of players could collectively be better off by ε in total. (These concepts are introduced in
Shapley and Shubik (1966).)

4 Pregames

To formalize the notion of a large game we use the notion of a pregame with a finite number,
say T , of types of players. All players of the same type are substitutes.

Let s ∈ Z
T
+ be the T-fold Cartesian product of the nonnegative integers. We call s a

profile of a group of players, and interpret s t as the number of players of type t in the group,
t = 1, . . . , T . We write 0 for the profile which is identically zero. We write s ′ ≤ s if s ′

t ≤ s t

for each t and write χ t for the profile given by

χ t
t ′ =

[
0 if t ′ �= t

1 if t ′ = t.

]
.

By the norm or size ‖s‖ of a profile s = (s 1, . . . , s T ) we mean

‖s‖=
T∑

t = 1

st .

A partition of a profile s is a collection of profiles {s �} satisfying the condition that∑
l s

� = s . (This is a natural analogue to the notion of a partition of a set.)

A pregame with types is an ordered pair (T , �) where T is a number of types and
� : Z

T
+ → R+ , called the worth function (of the pregame), satisfies the conditions:

�(0) = 0 and (2)

�(s ) + �(w) ≥ �(s + w) and for all profiles s and w

(superadditivity).
(3)

A pregame consists simply of a set of player types or attributes, and a worth function,
specifying a payoff achievable by any group of players depending on the composition of the
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group. Pregames have now appeared in several places in the published literature.6 In view
of our definition of feasibility, the assumption of superadditivity is purely for notational
convenience; we discuss this further after our next definition.

We say the pregame has bounded essential coalition sizes if there a constant B such that,
for all profiles s ∈ Z

T
+ , there is a partition of s, say {s �}, with the properties that

�(s ) = ∑
� �(s �) and

‖s �‖ ≤ B for each �.

In other words, a pregame has B-bounded essential coalition sizes if the worth of any
coalition is equal to the sum of the worths of some collection of disjoint sub-coalitions,
each containing no more than B members.

Remark 1 On superadditivity. An alternative approach would be to omit the requirement
of superadditivity and instead require that for any profile s there is a partition{s �} of s
with the property that ‖ s � ‖≤ B for each s � in the collection and �(s ) ≤ ∑

� �(s �). This
would not affect the set of feasible outcomes in any game derived from a pregame nor affect
the core or ε-cores of the game. What is important, however, is that a group of players
can split into smaller groups and each smaller group can realize its own worth, a property
known as essential superadditivity, which is built into our definition of feasibility.7

To derive a game from a pregame (T , �) we specify a finite set N and a function

α : N → {1, . . . , T},
called a type function. With any subset S ⊂ N , we associate a profile, pr o f (α|S) ∈ Z

T
+ ,

given by

prof (α|S)(t) = ∣∣α−1(t) ∩ S
∣∣ ;

prof (α|S)(t)is simply the number of players of type t in S while prof (α |S) is a list of the
numbers of players of each type in S. Given N and α, the worth function of the game
(N , να) is derived from the worth function of the pregame:

να(S) = �
(
prof (α|S)

)
.

The pair (N , να) is called a derived game.

5 Premarkets with piecewise linear utility functions

A premarket with a piecewise linear utility function is a pair (G, U) where G is a number
of types of goods, and U , called a utility function, is a function from RG

+ to R+ with the
properties that:

6 See, for example, Wooders (1983) for NTU pregames and Wooders and Zame (1987) for TU pregames.
7 This issue is discussed for cooperative games more generally in Wooders (2008).
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(5.1) For some collection of cones, say C 1, . . . , C K , all containing the origin, with the prop-

erty that R
G
+ = K∪

k=1
CK , we have U a linear function on C k for each k = 1, . . . , K ;

that is, for any k, and any x , y∈Ck , we have U (x) + U (y) = U (x + y)
(5.2) U(x) ≥ 0 for all x ∈ R

G
+ .

We note that these 2 conditions imply that U is superadditive and 1-homogeneous (i.e. for
any positive λ and any x ∈ C k , it holds that U (λ x) = λ U (x)).

Let (G, U) be a premarket. A vector x∈ R
G
+ is called a commodity bundle. Given a finite

agent set N and an endowment function e : N → R
G
+ , a derived market is determined.

Given the agent set N , the function e assigns an endowment of commodities to each agent.
The ordered triple (N , e, U) is called a market .

We will next derive a utility function from a pregame.8 Let (T , �) be a pregame. The
derived utility function U is given by

U (x) = ‖x‖ lim
n→∞

�(s n)

‖s n‖ , (2)

where {s n} is a sequence of profiles with the properties that

(a) ‖ s n ‖ → ∞ and

(b) ‖x − ‖x‖
‖s n‖ s n‖ → 0 as n → ∞.

(We note that the limit in the definition of U exists and is independent of the choice of the
sequence {s n} in the sense that if another sequence of profiles, say {̂s n}, satisfies properties
(a) and (b) then (2) also holds for that sequence. This is easily demonstrated and is also
immediate from Wooders (1988)).

Our first Proposition relates pregames with bounded essential coalition sizes to pre-
markets with piecewise linear utility functions.

Proposition 1 Let (T , �) be a pregame with T types and bounded essential coalition sizes.
Then the derived utility function U is a concave and piecewise linear function; thus the pair
(T , U) is a premarket, called the derived premarket.

We first state and prove a lemma and introduce some auxiliary concepts. Then the proof
of the proposition is almost immediate.

Let E = {s ∈ R
T
+ : ||s || ≤ B} denote the set of all profiles s bounded in size by B. We

call the members of E essential profiles. From our assumption of bounded coalition sizes,
note that for every profile s′ there are nonnegative integers �s for each s ∈ E satisfying∑
s ∈ E

�s s = s ′ and �(s ′) = ∑
s ∈ E

�s �(s ).

8 This is much in the spirit of Shapley and Shubik (1969b) where the authors relate markets (economies in
which all agents have concave utility functions) and totally balanced games. Here, however, we relate pregames
and premarkets. As our example in the preceding section illustrates, we will show that games with many players
derived from pregames with bounded essential group sizes are market games where players have piecewise linear
utility functions.
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It holds that for each commodity bundle x there are weights λs ∈ R+ satisfying the
condition that

U (x) = ||x||
∑
s∈E

λs � (s ) .

A collection E(x) ⊂ E of essential profiles supports the utility function Uat a commodity
bundle x if and only if λs > 0 for each s ∈ E(x).

For every commodity bundle x there is a collection of essential profiles E(x) supporting
the utility function U at x. This is because, for profiles{s n}with ‖x‖

‖s n‖ s n → x and‖s n‖ → ∞
we have:

U (x) = ‖x‖ lim
n→∞

�(s n)

‖s n‖

= ‖x‖ lim
n→∞

∑
s∈E

�n
s �(s )

‖s n‖

(where each �n
s is a nonnegative integer for each s∈ E and

∑
s∈S

�ns = s n), and

U (x) = ‖x‖
∑
s∈E

�(s )

(
lim

n→∞
�n

s

‖s n‖
)

,

where, if necessary, to ensure that lim
n→∞

1
‖s n‖�

n
s exists for each s∈ E, we pass to a subsequence

of {s n}. A candidate for the collection E(x) is simply {s ∈ E : lim
n→∞

�n
s

‖s n‖ > 0}. Note also that

we can choose the profiles s n so that the set of essential profiles supporting U at x supports
the worth function � at s n. To see this, taking “≈” to mean “approximately equal”, observe
that

U (x) = ‖x‖
∑

s∈E(x)

λs �(s ) implies U (x) ≈ ‖x‖
∑

rs

s∈E(x)

�(s )

for some set of rational weights r s > 0, so we have

U (x) ≈ ‖x‖
∑
s∈E

�n
s

‖s n‖�(s ),

where s n = ∑
s k∈E

�n
s �(s ) and �n

s satisfies �n
s

‖s n‖ = rs .

Lemma 1 Let x and y be commodity bundles such that, for some collection E(x) of profiles
supporting U at x, and for some collection E(y) of profiles supporting U at y, we have
E(y) = E(x). Then U (x) + U (y) = U (x + y).

PROOF: Let {s n} and {wn} be sequences of profiles where ‖x‖
‖s n‖ s n → x , ‖y‖

‖wn‖
wn → y, ‖s n‖ → ∞, ‖wn‖ → ∞, U (x) = ‖x‖ lim

∑
�(s n)
‖s n‖ , and U (y) = ‖y‖ lim

∑
�

(wn) ‖wn‖ , E(s n) = E(x), and E(wn) = E(y) for each n, there are sets of positive integers
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{λn
s : s ∈ E(x)} and {ρn

s : s ∈ E(y)} such that �(s n) = ∑
ρn

s
s∈E(n)

�(s ) and �(wn) =∑
ρn

s
s∈E(y)

�(s ). Because E(x) = E(y) it follows that

�(s n + wn)

= ∑
λn

s
s∈E(x)

�(s ) + ∑
ρn

s
s∈E(y)

�(s )

∑
s ∈ E(x)(λ

n
s + ρn

s )�(s ).

Using some simple algebra, it follows that

lim
‖x + y‖

‖s n + wn‖ (s n + wn) = x + y

and, therefore,

‖x + y‖ lim
�(s n + wn)

‖s n + wn‖ = U (x + y). �

PROOF OF PROPOSITION 1: First, observe that because E is a finite set, there is only a
finite number of (distinct) collections of nonempty subsets E, say E

1, . . . , E
J . Let y be

a commodity bundle and let E(y) be a collection of essential profiles supporting U at
y. It must hold that E(y) = E

j for some j. From Lemma 1, for all commodity bundles
x with E(y) = E(x) it must hold that U (x) + U (y) = U (x + y). Let C j be the set of all
commodity bundles x supported by E

j . Because E(x) = E(r x) for any non-negative real
number x it follows that C j is a cone. The one-homogeneity of U , its concavity, and the
non-negativity of U(x) for all commodity bundles x are easily demonstrated (and also
already in the literature for the more general case in Wooders 1988, 1994a,b). �

6 Limiting behavior of derived games

In this section, we investigate the limiting behavior of growing sequences of games derived
from a pregame and the corresponding sequences of games derived from the associated
premarket. First, for completeness, we state a result on nonemptiness of strong ε-cores,
which follows from a result on strong ε-cores in Wooders (1994b).

Proposition 2 Let (T , �) be a pregame with bounded essential coalition sizes. Then there is
an integer η (ε) such that for every derived game (N, vα) with |N| ≥ η(ε), the strong ε-core
of (N, vα) is nonempty.

As we will show, if the distribution of players converges to some point in the interior of a
cone on which the utility function is linear, then the limit of equal treatment strong ε-cores
is given by the derivative of the utility function. Because, for games with many players,
Shapley values are in weak ε-cores and Shapley values treat identical players identically,
under the same conditions the limit of the Shapley values exists and equals the limit core.
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As we will next demonstrate, these results follow easily from the piecewise linearity of the
utility function U and results in the literature on values of large games, specifically those
of Aumann and Shapley (1974) and Wooders and Zame (1987).

Before proceeding, we remark that we will describe a continuum limit game of the sort
considered in Aumann and Shapley (1974) with coalitions of positive measure. Because we
have in mind situations with finite, in fact bounded, coalition sizes, the interpretation of
“coalitions” of positive measure may be unclear. Our interpretation is that a coalition of
positive measure is an aggregate of finite coalitions. Under our conditions the f -core, the
core of a continuum game with finite coalitions, is equivalent to the A-core, the core of
a continuum game with coalitions of positive measure (see Kaneko and Wooders (1986),
especially lemma 3.1 on the equivalence of feasibility conditions, and Hammond et al.
(1989), on equivalence of cores).9

We now proceed by defining a limiting nonatomic game and stating some results from
Wooders and Zame (1987).

We fix strictly positive real numbers �1, . . . , �T with
∑

�1 = 1, and disjoint intervals
I 1, . . . , I T on the real line for which length (I t ) =�T . Set I =∪I t , let B be the family of
Borel subsets of I , and let µ be the restriction to I of Lebesgue measure. (In interpretation,
I represents a continuum of players of which the fraction �T =µ (I T ) are of type t . The
family B of all Borel subsets of I is the family of admissible coalitions.)

To define a nonatomic game on I , in the sense of Aumann and Shapley [1974], we
must define a set function λ of bounded variation. To this end, let β be an element of B.
If µ (β) = 0, we define λ (β) = 0. Otherwise, we write β t =µ (β ∩ I t )/µ (β) for each t ;
note that β t ≥ 0 and that

∑
βt = 1 Choose a sequence { f k} of profiles on 
 such that

‖ f k‖ → ∞ and f k
t /‖ f k‖ → βt for each t . Define

λ(β) =
(

lim
k→∞

�( f k)∥∥ f k
∥∥

)
µ(β),

which is interpreted as the per capita payoff to a group with composition given by β

multiplied by the measure of players in the set β. (This limit exists and is independent of
the particular sequence { f k} of profiles we choose.) To see that λ is of bounded variation,
note that 0 ≤ �( f )

‖ f ‖ ≤ m for any profile f , where m is the maximum per-capita payoff of
the pregame

m = max
f

�( f )

‖ f ‖ = max
f ∈E

�( f )

‖ f ‖
(and this maximum exists). Therefore, 0 ≤ λ (B) ≤ mµ (B). (This construction corre-
sponds to the “fractionating process” for constructing nonatomic economies. We interpret

the limit lim
k→∞

�( f k )
‖ f k‖ as the limiting per-capita payoff to a coalition with a given distribution

of types, so λ (B) is the limiting payoff, normalized relative to the measure of players.)
Recall that the core of λ consists of all nonnegative, finitely-additive set functions

σ : β → R such that σ (I ) = λ(I ) and σ (B) ≥ λ(β) for each β∈B . (When σ is in the core,

9 Roughly, the condition required for equivalence of the f -core, the A-core, is that the game can be represented
as an economy without externalities. Examples of nonequivalence appear in Kaneko and Wooders (1986).
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σ (I t ) is interpreted as the total (normalized) payoff to the set of players of type t .) It is
a useful fact that every element of the core treats players of the same type equally. The
following lemma is from Wooders and Zame (1987).

Lemma 2 Let σ belong to the core of λ. Then, for each t and each Borel subset A of
It , σ (A) = σ (It )

µ(A)
µ(It ) .

For each σ in the core of λ, define σ̄∈ R
T by σ̄ (t) = σ (It )

µ(It ) . In view of Lemma 2, we can

interpret σ̄ as the per-capita payoff to players of type t . Let C̄ (λ) = {σ̄ : σ is the core of λ},
so that C̄(λ) is a subset of R

T .
We now fix a sequence {(Nk , ναk )} of games derived from the pregame (
, �). We

assume that |Nk | → ∞ and that αk (�t )
|Nk | → θt for each t ; there is also no loss of generality

in assuming that α−1
k (� t ) > 0 for each k and t . We view the nonatomic game λ as a (nor-

malized) limit of the games (Nk , ναk ). For ε > 0 a payoff x in the weak ε-core of (Nk , ναk)
is an equal-treatment payoff if x(i) = x( j ) whenever αk(i) =αk( j ) (so that players of the
same type receive the same payoff). For such an x, we define x̄∈ R

T by x̄(i) for any i∈Nk

with α(i) = t; we write C̄ε(Nk , ναk ) for the set of such vectors, so that C̄ε(Nk , ναk ) is a
subset of R

T . Of course, for x∈C̄ε(Nk , νk), we may interpret x̄(t) as the per-capita payoff
to players of type t . Evidently, then, to show that the sets C̄ε(Nk , ναk) and C̄(λ) are “close”
is to show that, in a natural sense, the weak ε-core of (Nk , ναk) is close to the core of
λ. This result first appeared in Wooders (1979) for sequences of games with a fixed dis-
tribution of types of players but the weaker condition of boundedness of average payoffs.
Wooders and Zame (1987) continue by showing that, under stronger conditions (bound-
edness of individual marginal contributions) the Shapley value is in the limiting core.10

Theorem 1 Given σ 0 > 0 and ε0 > 0 there is an ε1, with 0 <ε1 <ε0, and an integer k0

such that di s t(C̄ε1 (Nk , ναk ), C̄ (λ)) ≤ σ0 for every k > k0. Equivalently,

C̄(λ) = ∩
ε>0

lim sup
k→∞

C̄ε(Nk , ναk ) = ∩
ε>0

lim inf
k→∞

C̄ε(Nk , ναk ).

If ζ K = Sh(Nk , ναk), then lim
k→∞

dis t(ζK , C̄ (λ)) = 0 where Sh(Nk , ναk ) is the Shapley value

of the game (Nk , ναk ) represented by a point in R
T
+ .

Given ε > 0, all sufficiently large games derived from a pregame with bounded essential
coalition sizes have nonempty strong ε-cores. Since, for any game, the strong ε-core is
contained in the weak ε-core, under our conditions the above theorem also holds when the
weak ε-core is replaced by the strong ε-core. We now define a limiting continuum game
using the utility function U derived from the pregame. Let { f k} be a sequence of profiles

on 
 such that ‖ f k‖ → ∞ and f k
t

‖ f k‖ → βt for each t . Define

λM(β) = lim
k→∞

(
U ( f k

t )∥∥ f k
∥∥

)
µ(β).

10 It can also be shown that for small ε, “most” payoffs, in ε-core of (Nk , ναk ) are “nearly” equal-treatment
payoffs. This was first demonstrated in Wooders (1977); see also Wooders (1994b, 2007) for this result under
substantially milder conditions.
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It is immediate from the construction of U that λM(β) = λ (β) for every Borel set β. We
can now apply results for differentiable market games to the game λ, when θ , the limiting
ratio of player types, is in the interior of one of the cones on which U is linear.

The following proposition is not surprising in view of the results of Aumann and
Shapley (1974). In our context, it is very clear and easily proven.

Proposition 3 When U is linear on a neighborhood of θ the core of λM consists of a singleton;
that is, |C(λM)| = 1. Moreover, the core of the market game C(λM) coincides with the core of
the game C(λ). At points where U is differentiable, the equal treatment payoff in the core of
C(λ) and C(λM) is given by the gradient of the utility function U .

PROOF: First, recall that every core payoff treats players of the same type identically, so we
have C(λM) = C̄(λM). Let x∈ R

T
+ represent an equal-treatment payoff in the core of λM .

Suppose U(s) is given byU (s ) = a 1s 1 + a 2s 2 + · · ·+ aT sT for all s∈ R
T
+ in a neighborhood

of θ . Also suppose, for the purpose of obtaining a contradiction, that xt ′ < at ′ for some t ′.
Because x is the core of λM ,

T∑
j = 1

x j θ j =
T∑

j = 1

a j θ j .

Therefore, for some t ′′ �= t ′, we must have xt ′′ > at ′′ . Consider the coalition given by I\It ′ .

For this coalition, we have

T∑
t = 1

t �= t ′′,

x j θ j <

T∑
t = 1

a j θ j .

From the definition of λM and of U it follows that I\It ′ can improve upon x, a
contradiction. Thus, for x in C̄(λM) we must have x t = a t for all t . Therefore, C̄(λM)
consists of a singleton, given by the gradient of the utility function U . �

We can conclude that whenever θ is in the interior of one of the cones on which U is
linear, the core of the original game λ is also a singleton. With Lebesgue measure on the
simplex, we can say that for almost all θ in the simplex, sequences of games derived from
the pregame with distribution of player types converging to θ have only one element in the
limit of the ε-cores.

We also have the following result.

Proposition 4 Assume θ is in the interior of one of the cones on which U is linear. Let Sh(Nk ,
ναk) represent the Shapley value of the game (Nk , ναk) where the tth component of Sh(Nk ,
ναk) is the Shapley value of a player of type t . Then the sequence converges to a limit, say z∗,
and {z∗} = C̄(λ).

PROOF: This follows from the facts that, given any ε > 0, the Shapley values are in the
ε-cores for all sufficiently large terms in the sequence, and the equal-treatment ε-cores
converge to the limit core C̄ (λ). �
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Because of the remarkable simplicity of the market representation of a pregame with
bounded essential coalition sizes, the feature that, for almost all ratios of measures of player
types θ1, . . . , θT the core consists of a singleton, emerges clearly and sharply.11 Therefore,
we have included Proposition 4, in this paper. We note that its implications for equivalence
of the limit of values and the limit core hold more broadly.

Because inessentiality of large coalitions and finiteness of the set of player types ensures
that, given θ , the game λ is representable as a market game where players all have the
same concave utility function (Wooders 1994), the utility function is differentiable almost
everywhere on the simplex and it follows that the core C̄(λ) is a singleton almost everywhere.
Moreover, for any sequence of finite games (Nk , ναk) as above, with limiting proportions
of player types given by θ1, . . . , θT , the limit of the values exists and equals C̄(λ) for
almost every (θ1, . . . , θT ) in the simplex; this follows from the differentiability of the utility
function.

7 Conclusions

In contrast to Wooders (1988) and more recent research (e. g. Wooders 2007, 2008), the
present paper limits the set of player types to be finite rather than a compact metric space.
With a compact metric space of player types (or, in other words, attributes or characteris-
tics), boundedness of essential coalition sizes ensures that, given ε > 0 all sufficiently large
derived games have nonempty strong ε-cores. We can also conclude, from Wooders (1988,
2008), that a pregame with a compact metric space of player types can be represented by
a limiting premarket where all players have concave utility functions and 1-homogeneity
continues to hold. If essential coalition sizes are bounded, with a compact metric space of
attributes the piecewise-linear nature of the limiting utility function continues to hold as
does nonemptiness of strong ε-core (ε > 0) cores of all sufficiently large games. Conver-
gence of strong ε-cores also continues to hold but becomes somewhat more subtle.
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