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Abstract

We formulate a club model where players’ have identical single-peaked preferences over club sizes as a
network formation game. For situations with “many” clubs, we provide necessary and sufficient for non-
emptiness of the farsighted core and the direct (or myopic) core. With “too few” clubs, if players are farsighted
then the farsighted core is empty. In this same case, if players are myopic then the direct core is always
nonempty and, for any club network in the direct core, clubs are of nearly equal size (i.e., clubs differ in size
by at most one member).
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1. Introduction

The study of group formation and group activities in economies has had a long history in
economics, going back at least to Tiebout (1956) and Buchanan (1965). Groups may form for the
purposes of provision of public goods, either ‘local’ or pure, for the purpose of mutual insurance,
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to keep prices high (cartels), to enjoy each other’s company, or for a multitude of other reasons.
We shall call such groups ‘clubs.’ Here we offer a new approach to the study of clubs. In particular,
modeling club structures as bipartite networks, we formulate the problem of club formation as
a game of network formation and identify those club networks that are stable if players behave
farsightedly in choosing their club memberships, as well as club networks that are stable if players
are myopic. Thus we bring together two strands of the literature: club theory2 and the theory of
social and economic networks initiated by Kirman (1983).

Unlike the random graph theoretic approach taken by Kirman (1983), here we follow an
approach similar to that taken by Jackson and Wolinsky (1996) in their study of networks and
focus exclusively on strategic considerations in club network formation. The basic setup of our
model is closely related to the model of Konishi et al. (1997, 1998), among others.3 They examine,
however, free mobility equilibrium of a local public goods economy (an assignment of players
to clubs, locations, or jurisdictions that partitions the population and has the property that no
individual can gain either by moving to any other existing club or creating his own club). The
partition derived from the players’ strategy choices is thus stable against unilateral deviations by
individuals; that is, the partition is Nash stable.

In contrast to much of the prior literature on clubs (discussed further below), we allow strategic
coalitional moves and permit players to be farsighted.4 Using the farsighted core introduced in
Page and Wooders (2004) as our stability notion,5 we show that if players’ payoffs are single-
peaked on the domain of club sizes, if players agree on the club size at which payoffs peak (i.e.,
players agree on the optimal club size) and if there are sufficiently many players and clubs to allow
for the partition of players into clubs of optimal size, then a necessary and sufficient condition for
the farsighted core to be nonempty is that the set of players can be partitioned into clubs of optimal
size. In contrast to the case with farsighted players, we show that if there are sufficiently many
players and clubs and players are myopic, then a necessary and sufficient condition for the direct
core (or the myopic core) to be nonempty is that players who end up in smaller-than-optimal size
clubs (i.e., ‘left-over’ players) have no incentive to switch their memberships to already existing
clubs of optimal size. We note that in this case, the outcome of myopic behavior corresponds
to outcomes of myopic behavior as in Arnold and Wooders (2005) and the set of outcomes in
the direct core corresponds to the set of Nash club equilibrium outcomes.6 We also show that if
players are farsighted and there are too few clubs, so that the average number of players per club
is larger than the optimal club size, then the farsighted core is empty. If players are myopic and
there are too few clubs, then the direct core is nonempty, and for any club network in the direct
core the club structure is such that clubs are of nearly equal size (i.e., clubs differ in size by at
most one member).

2 For surveys of club theory from several perspective see, for example, Demange (2005), Kovalenkov and Wooders
(2005), Conley and Smith (2005), Le Breton and Weber (2005), and Jaramillo et al. (2005).

3 In fact, there are a multitude of papers on clubs, both modeled as games in characteristic form (or as hedonic games, by
which we mean that preferences are defined directly over coalitions) and modelled with more details about the economic
structure. A comprehensive survey is beyond the scope of this paper; instead, we discuss only those relationships to the
literature that we believe may be most informative to the reader.

4 In addition to using a network model, our approach differs from the cooperative/price-taking approach in much of the
literature on clubs in that coalitions behave strategically and there is ‘free entry’.

5 Stated loosely, a club network is contained in the farsighted core if no group of agents has an incentive to alter their
club memberships, taking into account club membership changes that might take place in the future.

6 The Nash club equilibrium concept of Arnold and Wooders requires that only individuals within the same club can
coordinate their actions.
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We demonstrate via an example why, if there are too few clubs relative to the number of
players, the farsighted core is empty. In particular, we show via our example that this emptiness
problem is caused by the fact that farsighted players, unlike myopic players, may switch their club
memberships to already overcrowded or optimally-sized clubs, temporarily making themselves
worse off, if they believe that switching might induce an out-migration that makes them ultimately
better off. This ceases to be the case if players are myopic because myopic players will switch
memberships if and only if switching makes them immediately strictly better off. As a result, we
are able to show in general, and illustrate via our example, that with myopic players even when
there are too few clubs, a club structure in which all clubs are of nearly equal size is immune to
coalitional defections. We note that Arnold and Wooders reach similar conclusions in a dynamic
model of club formation with myopic players.

We also demonstrate via an example the importance of the rules of network formation in deter-
mining stable club outcomes. In our model of club network formation we assume free mobility,
meaning any player or group of players can move freely and unilaterally from one club to another.
We illustrate via an example the implications for stability with farsighted players versus stability
with myopic players of assuming that only one player at a time can move freely and unilaterally
from one club to another. To the best of our knowledge, the differences in equilibrium outcomes
of club economies, depending on the rules of network formation and on whether individuals are
farsighted or myopic, has not previously been noted in the literature.

Our framework builds on a canonical model of club formation: individuals are homogeneous
and have single-peaked preferences over club size. The model captures the idea that individuals are
positively affected by the number of members who share their clubs, but eventually congestion
effects set in so that there is a most preferred club size, which we shall call ‘optimal.’7 This
canonical model, as a special case, and extensions of the model in a number of directions have a
long history in the literature, going back to club economies with essentially homogeneous players
modeled as games in characteristic function form, see for example, Pauly (1970) and Shubik
and Wooders (1982, 1983) and continuing to the more recent literature, for example, Banerjee
et al. (2001), Bogomolnaia and Jackson (2002), and Diamantoudi and Xue (2003). Pauly, for
a situation with homogeneous players and transferable utility, and Shubik and Wooders (1982,
1983), for non-transferable utility games, describe conditions ensuring nonemptiness of cores and
approximate cores.8 Banerjee et al. focus on the core in simple coalition formation games while
Bogomolnaia and Jackson study various solution concepts such as Nash stability and individual
stability in hedonic games. Diamantoudi and Xue study the farsighted stable set and the largest
consistent set (Chwe, 1994) in these games. While these papers go beyond the canonical model
used herein, they perhaps underscore the importance of understanding this model.

Our paper adds a network structure to the canonical model. In the special case where the set of
players can be divided into clubs of optimal size, then outcomes of all solution concepts coincide;
nonemptiness of the core of the cooperative game is well known9 and the robustness of the stability
of partitions of the players into clubs of optimal size is reinforced by our results. In the other case,
however, when there are ‘too few’ clubs, the results for cooperative games mentioned above do not

7 Note that this club size may not be Pareto-optimal; it is instead the preferred club size of an individual. The optimal
club size may be three, for example, but Pareto optimality may require that, in a five-person economy, all individuals are
in one club.

8 These two papers are based on results for general non-transferable utility games in Wooders (1983). Kovalenkov and
Wooders (2003) provide the most recent results in this area.

9 See, for example, Pauly (1970) and Wooders (1978) (for the one-private good case).
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apply. In particular, how is the characteristic function (stating the worth of each possible coalition)
to be defined? The standard definition from economic theory defines the worth of a coalition as
the most that it can guarantee itself no matter what the complementary coalition does. In our
network framework (as in Konishi et al., 1998), a coalition cannot prevent others from joining;
that is, there is free entry.10 Under the standard definition the worth of a coalition is equal to the
minimum payoff the coalition can guarantee to its members. As illustrated by an example, the
‘free entry’ condition of our club model is not compatible with the standard definition. (This is not
at all meant as a criticism of the cooperative game approach; it addresses important, but different,
sorts of situations.) The same comments apply to hedonic games (with ordinal preferences over
coalitions of membership). The differences between our network approach and the cooperative
game approach also appear in the set of equilibrium outcomes. We will elaborate on this with
some examples in the paper and in the penultimate section of the paper.

On a more abstract level, in each of the papers on cooperative games noted above, there are
essentially two primitives, a set of alternatives for each coalition and a dominance relationship. In
our approach there are four primitives: the feasible set of networks, the preferences of players, the
rules of network formation, and a dominance relation. In this paper, given the player population,
the feasible set of networks is determined by the number of club locations, the preferences of
players are single-peaked over club size, the rules of network formation are free entry, and the
dominance relations discussed are indirect and direct dominance. We focus primarily on indirect
dominance (i.e., farsighted dominance). The importance of how one might arrive at a core point in
a cooperative game has long been recognized in the literature on networks based on cooperative
games (cf., Slikker and van den Nouweland, 2001 or van den Nouweland, 2005 for a survey). Our
framework allows us to consider this question in a club context.

We shall proceed as follows. In Section 2, we introduce the notion of a club network and state
the assumptions of our model. In Section 3, we define the farsighted dominance relation over the
feasible set of club networks, and we define the farsighted path dominance relation. In Section 4,
we define the abstract club network formation game with respect to the farsighted path dominance
relation and we define the farsighted core of the club network formation game. Finally, in Section
4, we state our main result giving necessary and sufficient conditions for nonemptiness of the
farsighted core for the case in which there are sufficiently many clubs.

2. Club networks

We begin by introducing the notion of a club network. Using bipartite networks we are able to
represent any club structure in a compact and precise way.

Let N be a finite set of players consisting of two or more players with typical element denoted
by i and let C be a finite set of club types (or alternatively, a set of club labels or club locations)
with typical element denoted by c.

Definition 1 (Club networks). A club network g is a nonempty subset of N × C such that (i, c) ∈ g

if and only if player i is a member of club c.

Given club network g,

g(c):={i ∈ N : (i, c) ∈ g}

10 See also Demange (1994) and, for a survey, Demange (2005).
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Fig. 1. Club network g0.

(i.e., the section of g at c) is the set of members of club c in network g ⊆ N × C, while the set

g(i):={c ∈ C : (i, c) ∈ g}
(i.e., the section of g at i) is the set of clubs to which player i belongs in network g ⊆ N × C.

In club network g, the set of all clubs to which some member of club c′ belongs is given by

g2(c′) = g(g(c′)) = ∪i ∈ g(c′)g(i).

Moreover, in network g the set of players who share membership in some club with player i′
is given by

g2(i′) = g(g(i′)) = ∪c ∈ g(i′)g(c).

Note that if each player can belong to only one club, then g2(i′) is simply the set of players
who belong to the same club as player i′.

Example 1. To illustrate, suppose there are five players N = {i1, i2, i3, i4, i5} and two clubs
C = {c1, c2}. Further, suppose that c1 denotes a chess club while c2 denotes a fencing club. Club
network g0 depicted in Fig. 1 represents one possible club structure given N and C.

In club network g0 the chess club has three members

g0(c1) = {i2, i3, i4},
while the fencing club has two members

g0(c2) = {i1, i5}.
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Note that in club network g0 each player is a member of one and only one club. Thus, for
example

g0(i5) = {c2},
that is, player i5 is a member of the fencing club, but is not a member of the chess club. Below
we will formalize the single club membership property of this example in an assumption that we
will maintain throughout the paper. Finally, note for example that under single club membership,

g2(c1) = c1 and g2(i4) = {i2, i3, i4}.

The collection of all club networks given N and C is given by the collection of all nonempty
subsets of N × C, denoted by P(N × C). We shall denote by |g(c)| the number of members of
club c (i.e., the club size) in network g and by |g(i)| the number of clubs to which i belongs in
network g. In Example 1, the chess club has three members, that is |g0(c1)| = 3, and player i5
belongs to one club - the fencing club - and thus |g0(i5)| = 1.

We shall maintain the following assumptions throughout:

A-1 (single club membership). The feasible set of club networks, K ⊂ P(N × C), is given by

K ⊂ {g ∈ P(N × C) : |g(i)| = 1 for all i ∈ N}.
Thus, in each feasible club network g ∈K each player is a member of one and only one club.

Again note that club network g0 in Example 1 satisfies the single club membership assumption
[A-1]. Also note that under assumption [A-1] the collection {g(c) : c ∈ C} forms a partition of the
set of players.

A-2 (identical payoff functions depending on club size). Players have identical payoff func-
tions, u(·), and payoffs are a function of club size only. In Example 1, player i5 is a member of
the fencing club, that is, g0(i5) = {c2}, and this club has a membership set given by

g0(g0(i5)):=g2
0(i5) = {i1, i5}.

Thus, in network g0 player i5 has a payoff given by

u(|g0(g0(i5))|) = u(|g2
0(i5)|) = u(|{i1, i5}|) = u(2).

In general, given any club network g, |g2(i)| denotes the total number of club members in the
club to which player i belongs.

A-3 (single-peaked payoffs). There exists a club size s∗ with 1 ≤ s∗ < |N| such that payoffs
are increasing in club size up to club size s∗ and decreasing thereafter.

A-4 (free mobility). Each player or group of players can move freely and unilaterally from one
club to another. This means that a player can drop his membership in any given club and join any
other club without bargaining and without seeking the permission of any player or group of players.
In this sense our model of club formation as a game over club networks is noncooperative. The
assumption of free mobility is quite common in models of noncooperative network formation (see,
for example, Bala and Goyal, 2000), as well as in the club literature (see, for example, Demange,
2005 and the references contained therein).
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Fig. 2. Club network g1.

Example 2. It is important to note that our assumptions do not rule out the possibility that some
clubs have no members (i.e., are empty). Thus, in some feasible club networks g ∈K, it may be
the case that g(c) = ∅ for some club type c ∈ C. If club c has no members, then |g(c)| = |∅| = 0.
Fig. 2 depicts just such a situation.

In moving from club network g0 in Example 1 to club network g1 above, players i1 and i5 have
freely and unilaterally dropped their memberships in the fencing club and joined the chess club.
Thus, in club network g1 the fencing club c2 has no members.11

Before leaving this section, we note that, while we have introduced utility functions in the
description of our model, this is not necessary for our results to hold. We could instead have
preferences given by preference relations directly over club memberships; that is, we could equally
well have had hedonic preferences (see Bogomolnaia and Jackson, 2002 and, for a formulation
with networks, Page and Wooders, 2005).

3. Dominance relations over club networks

Under the assumption of free mobility players can alter any existing club network by simply
switching their memberships. Such membership changes however can trigger further membership

11 While we assume that in moving from club network g0 to club network g1 agents i1 and i5 act freely and unilaterally
in switching their memberships, our model does not address the question of how agents i1 and i5 come to switch their
memberships simultaneously, whether by communication and collusion or by serendipity. In order to address this question
formally additional structure would have to be added to the current model. Page et al. make a start on addressing this
question via the introduction of the supernetwork (i.e., a network of networks) in which the arcs represent coalitional
moves and coalitional preferences (see also Page and Wooders, 2004).
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changes by other players that in the end leave some or all of the players who initially switched not
better off and possibly worse off. Here we will consider two types of dominance relations over
club networks: direct dominance and indirect dominance. Under direct dominance players are
only concerned with the immediate consequences of their membership decisions. Under indirect
dominance, players are farsighted and are concerned with the long run consequences of their
membership decisions. We begin by formalizing the notions of direct and indirect dominance.

3.1. Direct and indirect dominance

Throughout the following let S denote a nonempty subset of N.

Definition 2 (Direct and indirect dominance). Let g0 and g1 be two club networks inK (g0 �= g1).

(1) (Feasible change) We say that the coalition S can feasibly change club network g0 to club
network g1, denoted

g0→
S

g1,

if the move from network g0 to network g1 only involves a change in club memberships by
players in S, leaving unchanged the memberships of players outside group S; that is,

g0(i) = g1(i) for all players i ∈ N \ S (i.e, i not contained in S).

(2) (Improvement) We say that club network g1 is an improvement over club network g0 for
players i ∈ S, denoted g1Sg0

if u(|g2
1(i)|) > u(|g2

0(i)|) for players i ∈ S.

(3) (Direct dominance) We say that club network g1 directly dominates club network g0, denoted

g1 � g0 if for some set of players S, g0→Sg1 and g1Sg0.

We shall sometimes write g1�Sg0 to indicate the set of players S who can change network
g0 to network g1 and for whom g1 dominates g0.

(4) (Indirect dominance) We say that club network g∗ ∈K indirectly dominates club network
g ∈K, denoted

g∗ �� g

if there exists a finite sequence of club networks, g0, . . . , gn, with g:=g0 and g∗:=gn, and a
corresponding sequence of sets of players, S1, . . . , Sn, such that for k = 1, 2, . . . , n,

gk−1→
Sk

gk and g∗Sk
gk−1.
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Fig. 3. Three possible club structures.

Thus, club network g∗ indirectly dominates club network g if (i) there is a finite sequence of
feasible changes to network g ending with network g∗, and if (ii) payoffs

(u(|g2
∗(i)|))i ∈ N

in ending club network g∗ are such that for each k and for the players in each coalition Sk, payoffs
in the ending club network g∗ are greater than the payoffs players in Sk would have received in
club network gk−1 (i.e., in the club network that players in Sk changed); that is, for each k

u(|g2
∗(i)|):=u(|g2

n(i)|) > u(|g2
k−1(i)|) for i ∈ Sk.

The definition of indirect dominance above is a network rendition of Chwe’s definition of
farsighted dominance.

The following example illustrates indirect dominance. We will return to this example later in
our discussions of the direct and farsighted cores.

Example 3. Suppose that there are seven players and two clubs and that the optimal club size is
3. Fig. 3 depicts three feasible club networks, g0, g1, and g2. Club network g2 indirectly dominates
club network g0.

To see this, consider the following sequence of moves. First, players i6 and i7 switch their
memberships from club c2 to club c1. This feasible move by players i6 and i7 changes club
network g0 to club network g1 and is denoted by

g0 →
{i6,i7}

g1.

Second, players i1 and i2 switch their memberships from club c1 to club c2. This feasible move
by players i1 and i2 changes club network g1 to club network g2 and is denoted by

g1 →
{i1,i2}

g2.
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Given an optimal club size of 3 and given the assumption of single-peaked payoffs, the initial
moves by players i6 and i7 makes them worse off. In particular, players i6 and i7 start out in club
c2 in network g0 with four members {i4, i5, i6, i7} and payoffs given by

u(|g2
0(i6)|) = u(|g2

0(i7)|) = u(|{i4, i5, i6, i7}|) = u(4),

and move to club c1 creating a new club network g1 in which club c1 has five members
{i1, i2, i3, i6, i7}. As a result, players i6 and i7 are made worse off with payoffs given by

u(|g2
1(i6)|) = u(|g2

1(i7)|) = u(|{i1, i2, i3, i6, i7}|) = u(5).

However, due to the second round of moves by players i1 and i2, players i6 and i7 end up
in a smaller club c1 in club network g2, and thus end up better off. In particular, in the second
round of moves, players i1 and i2 leave club c1 and move to club c2 changing club network g1
to club network g2. This move makes players i1 and i2 better off, but also makes players i6 and
i7 better off. In particular, players i1 and i2 move from club c1 in network g1 with five members
{i1, i2, i3, i6, i7} and payoffs given by

u(|g2
1(i1)|) = u(|g2

1(i2)|) = u(|{i1, i2, i3, i6, i7}|) = u(5),

to club c2 in network g2 with four members {i1, i2, i4, i5} and payoffs given by

u(|g2
2(i1)|) = u(|g2

2(i2)|) = u(|{i1, i2, i4, i5}|) = u(4).

These second round moves by players i1 and i2 leave players i6 and i7 in a smaller club c1
and thus make players i6 and i7 better off. Thus, players i6 and i7 who started out in club c2 in
network g0 with four members {i4, i5, i6, i7} and payoffs given by

u(|g2
0(i6)|) = u(|g2

0(i7)|) = u(|{i4, i5, i6, i7}|) = u(4)

end up in club c1 in network g2 with 3 members, {i3, i6, i7} and payoffs given by

u(|g2
2(i6)|) = u(|g2

2(i7)|) = u(|{i3, i6, i7}|) = u(3).

3.2. Path dominance

Let > denote an irreflexive dominance relation on the set of club networksK.12 In what follows,
we shall assume that > is either direct or indirect (as defined above), but for now, we shall simply
assume that > is any irreflexive relation on K.

We say that a sequence of club networks {gk}k inK is a path domination sequence (or a <-path)
if for any two consecutive networks gk−1 and gk,

gk−1 < gk.

Using the terminology of graph theory, we can think of the relation gk−1 < gk between net-
works gk and gk−1 as defining a <-arc from network gk−1 to network gk. The length of <-path
{gk}k is defined to be the number of <-arcs in the path. We say that network g1 ∈K is <-reachable
from network g0 ∈K if there exists a <-path of finite length in K from g0 to g1.

12 If dominance relation > on K is irreflexive, this means that it is not possible to have g > g for any g ∈K.
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Using the notion of <-reachability we can define a new relation on the feasible set of club
networks K. In particular, for any two networks g0 and g1 in K define

g1�Kg0 if and only if

{
g1 is < −reachable from g0, or

g1 = g0.
(1)

For any dominance relation < the induced relation �K is a weak ordering on K. In particular,
�K is reflexive (g�Kg) and �K is transitive (g2�Kg1 and g1�Kg0 implies that g2�Kg0). We
shall refer to the relation �K as the path dominance relation.13

If the dominance relation > is given by a direct dominance relation �, we shall refer to the
induced path dominance relation �K as a direct path dominance relation; and if > is given by an
indirect dominance relation ��, we shall refer to �K as a farsighted path dominance relation

Note that if network g1 directly dominates network g0 for players i ∈ S, then g1 also dominates
g0 with respect to the direct path dominance relation �K. Thus

if g1�Sg0 for some coalition S, then g1�Kg0.

This applies even if the coalition S consists of a single player, that is, even if S = {i} for some
player i ∈ N. Thus

if g1�{i}g0 for some player i ∈ N,then g1�Kg0.

Also note that if network g1 directly dominates network g0, then g1 also indirectly dominates
g0. However, if g1 indirectly dominates g0, then g1 may or may not directly dominate g0.

4. Club formation games and the path dominance core

An abstract club formation game (in the sense of von Neumann Morgenstern) is given by the
pair (K,�K), whereK is the feasible set of club networks and �K is the path dominance relation
on K.

One of the most fundamental stability notions in game theory is the core. Here, we define the
notion of core for club formation games with respect to path dominance.14 We call this notion of
the core the path dominance core.

Definition 3 (The path dominance core). Let (K,�K) be a club formation game. A subset C of
club networks in K is said to be the path dominance core of (K,�K) if for each club network
g ∈C there does not exist a club network g′ ∈K, g′ �= g, such that g′�Kg and if there does not
exist a strict superset of C with this property. If �K is induced by a direct dominance relation,
we shall refer to the path dominance core as the direct core and, if �K is induced by an indirect
dominance relation, we shall refer to the path dominance core as the farsighted core.

Note that any club network g contained in the path dominance core C (direct or farsighted) is
a Nash club network, and in fact is a strong Nash club network.15 Letting NE denote the set of

13 The relation �K is sometimes referred to as the transitive closure in K of the dominance relation > on K.
14 We use the classic approach to the core of Gillies (1959).
15 A club network g ∈K, is a Nash club network if there does not exist another club network g′ ∈K such that g′�{i}g

for some agent i ∈ N.
A club network g ∈K, is a strong Nash club network if there does not exist another club network g′ ∈K such that g′�Sg

for some coalition S.
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Nash club networks in K and letting SNE denote the set of strong Nash club networks in K, we
can conclude from our definition of the path dominance core that

C ⊆ SNE ⊆ NE.

Our first results give necessary and sufficient conditions for the farsighted core to be nonempty.

Theorem 1 (Necessary and sufficient conditions for nonemptiness of the farsighted core). Con-
sider a club network formation game (K,�K) with |N| players, |C| clubs, and optimal club size
s∗, 1 ≤ s∗ < |N|. Suppose that assumptions (A-1)–(A-4) hold and let

|N| = rs∗ + l for positive integer r and non-negative integer l such that 0 ≤ l < s∗.

If the path dominance relation �K is induced by an indirect dominance relation, that is, if �K
is given by

g1�Kg0 if and only if

{
g1 is �� −reachable from g0, or

g1 = g0,

then the following statement holds:

(1) If |C| ≥ |N|/s∗, that is, if the number of club locations is large enough to allow for the
formation of the maximum number of clubs of optimal size (i.e., r clubs of size s∗), then the
farsighted core is nonempty if and only if all the players can be divided into clubs of optimal
size (i.e., if and only if l = 0). Moreover, club network g∗ is contained in the farsighted core
if and only if g∗ has r clubs of size s∗.

(2) If |C| < |N|/s∗ and s∗ and |C| are greater than or equal to 2, then the farsighted core is
empty.

Proof. We divide the proof into two parts, depending on whether there are enough clubs for all
players to be in clubs of optimal size.

(1) Suppose that |C| ≥ |N|/s∗. First, we show that nonemptiness implies that players can be
divided into clubs of optimal size. Suppose that players cannot be divided into clubs of
optimal size; that is, suppose 0 < l < s∗. Consider a club network g1 with r clubs of size s∗
and one club of size l. Note that we need only consider networks with r clubs of size s∗ and
one club of size l because these networks are the only possible candidates for inclusion in the
path dominance core (if a club is too large a group could benefit by moving to another club,
and if there are two clubs smaller in size than s∗, then a group could benefit by moving from
one of these clubs to the other). To begin suppose that clubs c1 and c2 are such that

|g1(c1)| = s∗ and |g1(c2)| = l,

and suppose players g1(c2) (i.e., all l members of club c2) leave club c2 and join club c1. In
the new network g2,

|g2(c1)| = s∗ + l and |g2(c2)| = 0.

All other clubs remain unchanged. Next, suppose that the l players who just moved from
club c2 to club c1 join with s∗ − l of the players originally in club c1 in network g1 and move
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to club c2. In the resulting new network g3,

|g3(c1)| = l and |g3(c2)| = s∗.

Finally, note that network g3 indirectly dominates network g1. In particular, players g1(c2)
who initiated this sequence of changes are better off in network g3 than in network g1, and the
l players g1(c2) and s∗ − l of the players g1(c1) who together changed network g2 to network
g3 are better off. Thus, g3 �� g1, and thus our only reasonable candidate for membership
in the path dominance core cannot be in the path dominance core. We must conclude that
nonemptiness of the path dominance core implies that players can be divided into clubs of
optimal size without left-overs.

Second, let g be a club network such that, for all clubs c ∈ C, either |g(c)| = s∗ or |g(c)| = 0.
Thus, network g partitions the players into clubs of optimal size. Because u(s∗) > u(|g(c)|)
for all clubs c with |g(c)| �= s∗, no group of players can initiate a change in network g, which
will lead to another network, making the players in the group better off. Thus, any such club
network is contained in the path dominance core.

(2) Suppose that |C| < |N|/s∗ and s∗ and |C| are greater than or equal to 2. Consider a club
network g0 in which clubs c1 and c2 are such that

|g0(c1)| = s∗ + k1 and |g0(c2)| = s∗ + k2

for nonnegative integers k1 and k2.

Case 1. Suppose k1 ≥ k2 + 1. First, suppose a coalition S1 ⊂ g1(c1) of size k1 from club c1
moves to club c2. In the new club network g1,

|g1(c1)| = s∗ and |g1(c2)| = s∗ + k1 + k2.

Next, suppose a coalition S2 ⊂ g1(c2) of size k1 from club c2, satisfying S1 ∩ S2 = ∅,
moves to club c1. In the resulting network g2,

|g2(c1)| = s∗ + k1 and |g2(c2)| = s∗ + k2.

Finally, note that network g2 indirectly dominates network g0. In particular, the players
in coalition S1 from player set g0(c1) who initiated this sequence of changes is better off in
network g2 than in network g0, because they start out in club c1 of size |g0(c1)| = s∗ + k1
and end up in club c2 of smaller size |g2(c2)| = s∗ + k2. The players in coalition S2 from
player set g1(c2) who changed network g1 to network g2 are better off because in network
g1 they are in club c2 of size s∗ + k1 + k2 while in network g2 they are in club c1 of
smaller size s∗ + k1. Thus, g2 �� g0.

Case 2. Suppose k1 = k2 > 0. Again consider clubs c1 and c2 in network g0. We have

|g0(c1)| = s∗ + k1 and |g0(c2)| = s∗ + k2.



F.H. Page Jr., M. Wooders / J. of Economic Behavior & Org. 64 (2007) 406–425 419

Suppose that a two-player coalition S1 ⊆ g0(c1) from club c1 moves to club c2. In the
new club network g1

|g1(c1)| = s∗ + k1 − 2 and |g1(c2)| = s∗ + k2 + 2.

Next suppose that a three-player coalition S2 ⊂ g1(c2) from club c2, satisfying S1 ∩
S2 = ∅, moves to club c1. In the resulting network g2,

|g2(c1)| = s∗ + k1 − 2 + 3 and |g2(c2)| = s∗ + k2 + 2 − 3.

Finally, note that network g2 indirectly dominates network g0. In particular, the players
in coalition S1 from player set g0(c1) who initiated this sequence of changes is better off in
network g2 than in network g0- because they start out in club c1 of size |g0(c1)| = s∗ + k1
and end up in club c2 of smaller size |g2(c2)| = s∗ + k2 − 1. The players in coalition S2
from player set g1(c2) who changed network g1 to network g2 are better off because in
network g1 they are in club c2 of size |g1(c2)| = s∗ + k2 + 2 while in network g2 they
are in club c1 of smaller size |g2(c1)| = s∗ + k1 + 1. Thus, g2 �� g0. �

It should be noted that if there is only one club (i.e., if |C| = 1), then the farsighted core is
nonempty. By Theorem 1, if there are at least two clubs and the optimal club size is at least
2, but there are too few clubs to allow players to be divided into clubs of optimal size, then
farsightedness leads to instability and the farsighted core is empty in general. However, as our
next result will demonstrate, if players are myopic rather than farsighted, then stability is possible
even if players cannot be divided into clubs of optimal size. Thus, in club formation games with
free entry, myopia can lead to stability.

Theorem 2 (Necessary and sufficient conditions for nonemptiness of the direct core). Consider
a club network formation game (K,�K) with |N| players, |C| clubs, and optimal club size s∗,
1 ≤ s∗ < |N|. Suppose that assumptions (A-1)–(A-4) hold and let

|N| = rs∗ + l for positive integer r and non-negative integer l such that 0 ≤ l < s∗.

If the path dominance relation �K is induced by a direct dominance relation, that is, if �K is
given by

g1�Kg0 if and only if

{
g1 is � −reachable from g0,or

g1 = g0,

then the following statements are true:

(1) If |C| ≥ |N|/s∗, that is, if the number of club locations is large enough to allow for the
formation of the maximum number of clubs of optimal size (i.e., r clubs of size s∗), then
the direct core is nonempty if and only if either l = 0 or u(l) ≥ u(s∗ + 1). Moreover, club
network g∗ is contained in the direct core if and only if g∗ has r clubs of size s∗ and one club
of size l.

(2) If |C| < |N|/s∗, that is, if the number of club locations is not large enough to allow for the
formation of the maximum number of clubs of optimal size, then the direct core is nonempty.
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Moreover, club network g∗ is contained in the direct core if and only if the club structure
induced by g∗ is such that clubs differ in size by at most one member, that is, if and only if

|(|g∗(c)| − |g∗(c′)|)| ≤ 1

for all clubs c and c′ in C.

Proof. (1) If |C| ≥ |N|/s∗ and l = 0, then (1) follows from conclusion 1 of Theorem 1. Suppose
now that

|C| ≥ |N|
s∗

and u(l) ≥ u(s∗ + 1) where 0 < l < s∗.

Consider a club network g1 with r clubs of size s∗ and one club of size l. Let S∗ be the group
of players such that each player i in S∗ is a member of as s∗ club (i.e., a club of size s∗) and let L
be the group of players in the club of size l. Because

u(|g2
1(i)|) ≥ u(|g2(i)|) for all g ∈K and all i ∈ S∗,

no coalition requiring the participation of players from S∗ will be able to change club network g1
to another club network making the participates from S∗ better off. Moreover, because

u(l) ≥ u(s∗ + 1) and payoffs are single peaked,

no coalition of players from L alone will be able to change club network g1 to another club
network making the players from L better off. Thus, for any club network g1 with r clubs of size
s∗ and one club of size l, there does not exist a club network g2 ∈K, g2 �= g1, such that g2�Kg1.
Therefore, if |C| ≥ |N|/s∗ and u(l) ≥ u(s∗ + 1), then any club network g1 with r clubs of size s∗
and one club of size l is in the path dominance core.

Suppose now that |C| ≥ |N|/s∗ but that u(l) < u(s∗ + 1). Let g ∈K, and given g define the
following club subcollections:

C+
g :={c ∈ C : |g(c)| > s∗}, C∗

g:={c ∈ C : |g(c)| = s∗} and C−
g :={c ∈ C : |g(c)| < s∗}.

Given that |C| ≥ |N|/s∗, C−
g �= ∅ for all g ∈K.

Let g ∈K and suppose that C+
g �= ∅. Consider clubs c1 ∈ C+

g and c2 ∈ C−
g and let S1 be a

coalition of players from club c1 of size s∗ − |g(c2)|. Observe that if players in coalition S1 ⊂ g(c1)
switch their memberships to club c2, then the new larger club c2 will be of optimal size s∗ and
all members of coalition S1 will be made better off by making the switch. Let g′ ∈K be the club
network which results from this switch. Then we have

g′�S1g and thus g′�Kg.

Let g ∈K and suppose that C+
g = ∅. If |C∗

g| = r, then there is a player i in some club c1 ∈ C−
g

who can switch his membership to some club c2 ∈ C∗
g and be made better off because u(l) <

u(s∗ + 1). Letting g′ ∈K be the club network resulting from this switch we have

g′�{i}g and thus g′�Kg.

If |C∗
g| < r (maintaining the assumption that C+

g = ∅) then sufficiently many players from
clubs in C−

g can switch their memberships to some club c′ ∈ C−
g resulting in a new, larger club

c′ of optimal size s∗. Moreover, all players making this membership switch will be better off.
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Letting S′ denote the coalition of players making the switch and letting g′ ∈K be the resulting
club network we have

g′�S′g and thus g′�Kg. �

Example 3 above is particularly interesting as it demonstrates that farsighted behavior may
generate quite different outcomes than myopic behavior and strong Nash equilibria (or Nash club
equilibria). In Example 3, the number of clubs is not sufficiently large to permit all players to
be in clubs of optimal size (i.e., |C| < |N|/s∗ for |C| = 2, |N| = 7, and s∗ = 3). By part (2) of
Theorem 2 above, club networks g0 and g2 in Fig. 3 are contained in the direct core. In particular,
in both networks g0 and g1 club sizes differ by 1 and no group of players (nor any single player)
can improve upon his own payoff, but nevertheless the farsighted core is empty. This is because
farsighted players will switch their club memberships to an already overcrowded or optimal
club, temporarily making themselves worse off, if they believe that switching will induce an out
migration that ultimately makes them better off. In Example 3, players i6 and i7 move from club
c2 in network g0 to club c1 thereby changing network g0 to network g1. This move by i6 and i7
then induces players i1 and i2 to move from club c1 in network g1 to club c2 thereby changing
network g1 to network g2 and making players i6 and i7 better off by leaving them in a smaller
club.

In our model of club network formation we assume free mobility, meaning any player or group
of players can move freely and unilaterally from one club to another. In the our last example we
show how stable club outcomes may change with a change in the rules.

Example 4 (Noncooperative free mobility). As indicated by Theorems 1 and 2 above, depending
on the rules of network formation, direct path dominance and farsighted path dominance can
yield very different results. For example, suppose we assume that the rules of network formation
are noncooperative and free entry is allowed. Thus, only one player at a time can freely and
unilaterally change his club membership. Also, suppose that there are 12 players and 6 club
locations:

N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, C = {c1, c2, c3, c4, c5, c6}.
Finally, suppose the optimal club size is 3 and that all players’ single-peaked preferences over

club sizes are given by

u(3) > u(2) > u(1), . . . u(5) < u(4) < u(3), u(4) > u(2) > u(1).

Graphically, payoffs look like Fig. 4.
The club configuration

with corresponding club network denoted by g0 is in the direct core but is not in the farsighted
core under noncooperative, free entry rules. To see this consider the following sequence of non-
cooperative moves. First, player 1 moves from club c1 to club c4. After this move by player 1 the
club configuration is
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Fig. 4. Payoffs to club size.

Let g1 be corresponding club network. Second, player 5 moves from club c2 to club c4. After
this move by player 5 the club configuration is

Let g2 be corresponding club network. Third, player 9 moves from club c3 to club c4. After
this move by player 9 the club configuration is

Let g3 be corresponding club network. Club network g3 is not only in the farsighted core, it is
also in the direct core. Note that club network g3 indirectly dominates club network g0, and thus,
club network g0, while being contained in the direct core, is not contained in the farsighted core.
To see that g3 indirectly dominates g0, note that

g0→{1}g1→{5}g2→{9}g3, g0≺{1}g3, g1≺{5}g3 and g2≺{9}g3.

Finally, note that if the rules of network formation had allowed any group of players to move
freely and unilaterally from one club to another, then the club configuration

would no longer be in the direct core. For example, players 4, 8, and 12 could move to club c4
producing club configuration

Letting g4 be corresponding club network, under free mobility, g4 directly dominates g0
because

g0→{4,8,12}g4 and g0≺{4,8,12}g4.

Thus, under free mobility g0 is not contained in the direct core.

5. Further relationships to the literature

As noted in the introduction, in view of the very central and important nature of our canonical
model, there are many papers in the literature studying this model or of other models that include
the canonical model as a special case. Here we note just a few of these papers.
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Within the context of cooperative games, where free entry is not permitted, it would be standard
to use u as the worth function and then allow the game to be essentially superadditive; that is, to
allow any group of players to divide into smaller groups or clubs without any externalities between
the clubs.16 To explore the differences with our approach, consider the following example:

Example 5 (Further Relationships to the Literature). Suppose that

u(1) = 0, u(2) = 1, u(3) = 3, u(n) = 0, n ≥ 4.

Let N be the set of players. When |N| > 3 and players can freely form coalitions (and exclude
other players) the core is nonempty if and only if |N| is divisible by three. But in our model we
assume that the number of clubs (or club locations) is exogenously given and we allow free entry
into clubs. Here is where our approach, like that of Konishi et al. (1997, 1998) among others,
diverges from cooperative game theory.

Continuing the example, suppose that there is more than one club. With free entry, if |N| ≥ 4,
the most that any coalition can guarantee itself is zero. Thus, the approach of cooperative game
theory would give us a cooperative game (N, v) where v(S) = 0 for all coalitions S! The unique
point in the core would be the zero vector. With free entry into clubs, this is clearly not a fruitful
approach.

Other notions of the core are applicable, for example, the gamma-core proposed by Chander
and Tulkens (1995, 1997). The gamma core assumes that the complementary coalition will do the
best possible for itself. In some contexts, such as environmental economics, this is an eminently
reasonable and fruitful approach. But it also does not give the same outcomes in all situations as
our approach.

Models incorporating the canonical model as a special case and using noncooperative
approaches or mixes of non-cooperative and cooperative approaches to analyze stable divisions
of players into clubs or coalitions include Konishi et al. (1997, 1998), Bogomolnaia and Jackson
(2002), and Arnold and Wooders (2005), among others. Konishi et al. treat models of economies
with local public goods; the most salient similarities between their model and ours is that they
have a fixed number of jurisdictions and free entry is allowed. See also Demange (1994, 2005). All
these papers consider some form of Nash stability of partitions of players into clubs. A partition
of players into clubs is Nash stable if no player would prefer to leave his current club and join
another. A full treatment of Nash stability in club networks is beyond the scope of our paper.
Moreover, it is treated in a more general setting allowing hedonic games as a special case in Page
and Wooders (2005), where in fact we introduce a concept of farsighted Nash stability and provide
some characterization results.17

A paper successfully combining aspects of cooperative game theory and free entry is
Bogomolnaia and Jackson (2002). These authors consider a hedonic (cooperative) game but
introduce an approach and equilibrium concepts that allow them to treat free-entry equilibrium.
The authors define a partition � of players into clubs as contractually individually stable if there
does not exist a player i and a club Sk ∈ �, i /∈ Sk, with the property that i prefers the club member-
ship {i} ∪ Sk to the membership of the club to which he belongs under the partition � and, for all
members of Sk, the club {i} ∪ Sk is at least as good as the club Sk. To illustrate some of the differ-
ences between our work and theirs, first consider a case of our model where the number of clubs

16 See, for example, Pauly (1970) and Wooders (1978).
17 For the basic model considered in this paper, Nash stability is also discussed in Arnold and Wooders (2005).
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is at least as great as the number of players; it then follows from Proposition 2 of Bogomolnaia
and Jackson that both an individually stable coalition partition and a Nash stable partition exist.
However, when we have a smaller number of clubs, their result cannot be immediately applied.
We note, however, that in the context of our model, a contractually individual stable partition
always exists. In particular, consider an assignment of individuals to clubs where there are as
many clubs of optimal size as possible, and all excess players are in one club. Suppose that there
are, for example, three clubs, the optimal club size s∗ is 3, and there are 11 players. Consider a
partition where there are two clubs of size 3 and one of size 5. This is a contractually individually
stable partition, even though the Bogomolnaia–Jackson conditions are not satisfied.

6. Conclusions

An aspect of our work which we find particularly interesting is relationships between the out-
comes of the dynamic process in Arnold and Wooders (2005) and the outcomes of farsighted
strategic behavior. Research in progress addresses these questions and also further develops
network models of clubs, in a number of directions.
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