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bstract

Small groups of players of a cooperative game with side payments are “effective” if almost all gains to group formation can be
ealized by groups of players bounded in absolute size. Per capita payoffs are bounded if the average payoff to players has a uniform
pper bound, independent of the size of the total player set. It is known that in the context of games with side payments derived
rom pregames (which induce a common underlying structure on the potential gains to groups of players from cooperation in any
ame) small group effectiveness implies nonemptiness of approximate cores and the approximation can be made arbitrarily close as
he player set is increased in size. Moreover, per capita boundedness, along with thickness (implying that there are many substitutes
or each player) yields the same result. In this paper, using extensions of the concepts of small group effectiveness and per capita
oundedness to games without side payments (NTU games), we obtain results analogous to those for games with side payments. As
he prior results, the results of the current paper can be applied to economies with non-convexities, non-monotonicities, production,
ndivisibilities, clubs, and local public goods.
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. Small group effectiveness in games and economies

It has been shown that cooperative side-payment games with many players have nonempty approximate cores and
Please cite this article in press as: Wooders, M., Small group effectiveness, per capita boundedness and nonemptiness of
approximate cores, J Math Econ (2008), doi:10.1016/j.jmateco.2007.06.006

ndeed, are approximated by market games—games derived from economies where all participants have continuous,
oncave utility functions (Wooders, 1994a).1 The game theoretic structure used to obtain these results is that of a
regame, which specifies the total payoff achievable by a group of players as a function of the numbers of play-
rs in the group and their characteristics. The minimal conditions required to obtain this result are (1) small group

E-mail address: myrna.wooders@vanderbilt.edu.
URL: http://www.myrnawooders.com.

1 This definition of market games is due to Shapley and Shubik (1969), which demonstrates an equivalence of market games and “totally balanced”
ames with side payments.
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effectiveness—almost all gains to collective activities can be achieved by cooperation only within groups of players
bounded in size and (2) essential superadditivity—any payoff vector achievable by a partition of a set of players into
groups is feasible for the set of players.2 Moreover, if there are many substitutes for each player, boundedness of
average feasible payoff to players – per capita boundedness – suffices for nonemptiness of approximate cores.3

This paper turns to NTU games and initiates a study aimed at obtaining analogous results to those described above.
The advantage of our framework is that the results can be applied to a diversity of economies, including: economies
with private goods, indivisibilities and non-monotonicities; economies with public goods, both local and pure and;
economies with coalition production. The recent research of Bonnisseau and Iehle (2007) provides new motivation.
Bonnisseau and Iehle derive a number of new relationships between cores and other solution concepts of game and
economic equilibrium. Thus, to the extent that these relationships continue to hold for approximate cores, nonemptiness
of approximate cores gains new significance.4

In this paper we demonstrate that the condition of uniform upper-boundedness of the set of equal treatment payoffs,
called per capita boundedness and introduced in Wooders (1983) for NTU games with a fixed distribution of player
types, suffices for nonemptiness of approximate cores when an “exceptional set” of players is ignored.5 We then
introduce a concept of small group effectiveness (SGE) for NTU games and demonstrate nonemptiness of uniform
approximate cores of games with sufficiently many players. The concept is an extension of a concept with the same
name for games with side payments introduced in Wooders (1992, 1994a, b).6 Our results are extensions of the results
of Wooders (1983) and our proofs rely heavily on results from that paper.

To motivate our research, we first consider TU games and provide a number of motivating examples. We are grateful
to Jean-Marc Bonnisseau for suggesting this addition to the paper.

Further discussion of the literature is contained throughout the paper, in its concluding section, and in the cited
papers.

2. TU games, small group effectiveness and per capita boundedness

2.1. Transferable utility games: some standard definitions

Let (N, v) be a pair consisting of a finite set N, called the player set, and a function v, called the worth function,
from subsets of N to the non-negative real numbers with v(φ) = 0. The pair (N, v) is a TU game (also called a game
with side payments). Nonempty subsets of N are called groups.7

A payoff vector for a game (N, v) is a vector x ∈RN .8 A payoff vector x is feasible if

x(N)
def=

∑
i ∈ N

xi ≤
∑

v(Sk) (1)
Please cite this article in press as: Wooders, M., Small group effectiveness, per capita boundedness and nonemptiness of
approximate cores, J Math Econ (2008), doi:10.1016/j.jmateco.2007.06.006

for some partition {S1, . . . , SK} of N.

2 Or, in other words, an option open to a group of players is to cooperate only within elements of a partition of the group.
3 This result, for games with side payments, first appeared in Wooders (1979b) and, for games without side payments, in Wooders (1983).
4 Both Predtetchinski and Herings (2004) and Bonnisseau and Iehle (2007) demonstrate necessary and sufficient conditions for nonemptiness of

cores of NTU games. Bonnisseau and Iehle relate their findings to a number of techniques and concepts for markets, including, for example, the
social coalitional equilibrium, introduced in Ichiishi (1981), and the partnered core, introduced in Reny and Wooders (1996).

5 For games with side payments, per capita boundedness is equivalent to finiteness of the supremum of the per capita (or average) payoff to players,
introduced in Wooders (1979b) and used in a number of papers, including, for example, Shubik and Wooders (1982).

6 Earlier results, dating back to Wooders (1977, 1979a), use stronger conditions.
7 To state our assumptions on the model we use the term “groups” instead of “coalitions” as we interpret the model as pertaining to socio-economic

structures rather than only to the cooperative behavior suggested by the word “coalition”. When we wish, however, to suggest cooperation by the
members of a group, we also use the term “coalition”.

8 We regard vectors in finite dimensional Euclidean space RT as functions from T to R, and write xi for the ith component of x, etc. If S ⊂ T and
x ∈RT , we shall write xS := (xi : i ∈ S) for the restriction of x to S. We write 1S for the element of RS all of whose coordinates are 1, or simply 1 if
no confusion can arise.

dx.doi.org/10.1016/j.jmateco.2007.06.006
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Given ε ≥ 0, a payoff vector x ∈RN is in the weak ε-core of the game (N, v) if it is feasible and if there is a group
f players N0 ⊂ N such that

|N \ N0|
|N| ≤ ε (2)

nd, for all groups S ⊂ N0,9

x(S) ≥ v(S) − ε|S| (3)

here |S| is the cardinality of the set S. The payoff vector x is in the uniform ε-core (or simply in the ε-core) if if is
easible and if (3) holds for all groups S ⊂ N.

Let (N, v) be a game and let i, j ∈ N. Then i and j are substitutes if, for all subsets S ⊂ N with i, j /∈ S, it holds that

v(S ∪ {i}) = v(S ∪ {j}).
Let (N, v) be a game and let x ∈RN be a payoff vector for the game. If for all players i and j who are substitutes

t holds that xi = xj then x has the equal treatment property. Note that if there is a partition of N into T subsets, say
1, . . . , NT , where all players in each subset Nt are substitutes for each other, then we can represent x by a vector
∈RT where, for each t, it holds that yt = xi for all i ∈ Nt .

.2. Essential superadditivity

In this paper we wish to treat games where the worth of a group of players is independent of the total player set
n which it is embedded and an option open to a group is to achieve the total worths realizable by a partition of the
otal player set into smaller groups; that is, we treat games that are essentially superadditive. This is built into our the
efinition of feasibility above, (1). An alternative approach would be to assume that v is the ‘superadditive cover’ of
ome other worth function v′. Given a not-necessarily-superadditive function v′, for each group S define v(S) by:

v(S) = max
∑

v′(Sk) (4)

here the maximum is taken over all partitions {Sk} of S; the function v is the superadditive cover of v′. Then the
otion of feasibility for superadditive games, requiring that a payoff vector x is feasible only if

x(N) ≤ v(N), (5)

ives an equivalent set of feasible payoff vectors to those of the game (N, v′) with the definition of feasibility given by
1).

The following Proposition may be well known and is easily proven.10

roposition 1. Given ε ≥ 0, let (N, v′) be a game. A payoff vector x ∈RN is in the weak, respectively uniform, ε-core
f (N, v′) if and only if it is in the weak, respectively uniform, ε-core of the superadditive cover game, say (N, v), where
is defined by (4).

In view of the above Proposition, for ease in notation we shall simply assume that (N, v) is superadditive and
Please cite this article in press as: Wooders, M., Small group effectiveness, per capita boundedness and nonemptiness of
approximate cores, J Math Econ (2008), doi:10.1016/j.jmateco.2007.06.006

ypically use the definition of feasibility given by (5).11 We stress, however, that for the results of this paper there is
o gain or loss in invoking the assumption of superadditivity rather than essential superadditivity and in fact this holds
or numerous papers dealing with coalition economies (for example, papers on coalition economies, clubs, or Tiebout

9 It would be possible to use two different values for epsilon in expressions (2) and (3). For simplicity, we have chosen to take the same value for
psilon in both expressions.
10 This result was already well understood in Gillies (1959) and applications have appeared in a number of papers in the theoretical literature of
ame theory; see, for example, Aumann and Dreze (1974); Kaneko and Wooders (1982).
11 For some applications, such as those with clubs or local public goods, it is important to keep in mind the underlying groups supporting outcomes
n the core—that is, groups S such that x(S) ≤ v′(S). But unless one has something to say about such groups, there is no gain in keeping track of
roups supporting outcomes in the core or in ε-cores.

dx.doi.org/10.1016/j.jmateco.2007.06.006
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economies in Demange and Wooders, 2005, such as Jaramillo et al., 2005, or Conley and Smith, 2005, or many others
on the theory of Tiebout economies or economies with clubs).

2.3. TU pregames

First, let us provide a simple example of a pregame based on the well known Shapley–Shubik glove game. In the
example, we introduce the reader to the general notation and concepts used to describe our model.

Example 1: A glove pregame. Suppose there are two types of players, players who each own a RH (right-hand)
glove and players who each own a LH (left-hand) glove. A (RH, LH) pair of gloves is worth 1.00. Formally, in the
notation to be used below, let Ω = {ω1, ω2} denote a set of attributes, where ω1 denotes the attribute “is endowed with
a RH glove” and ω2 denotes the attribute “is endowed with a LH glove”. A population (S, α) is a pair consisting of a
finite set S of players and a function α, called an attribute function, from S to Ω. For this example, α simply tells us
which players have RH gloves and which players have LH gloves.12 Let F (Ω) denote the set of all populations, that is,
the set of all pairs (S, α) consisting of a finite set S and an attribute function α :→ Ω. Given (S, α) ∈ F (Ω), define13

�(S, α) = min{|α−1(ω1)|, |α−1(ω2)|}.
The pair (Ω, �) is an example of a pregame. Note that the pregame is not a game since we do not yet have a set of
players. Even this simple pregame, however, can be used to induce a countable collection of games. To induce a game,
let (N, α) denote a population. For each nonempty group S ⊂ N define vα(S) = �(S, αS), where αS is the restriction
of α to S, and define vα(∅) = 0. The pair (N, vα) is then a game induced by the pregame and, as to be expected since
it is a glove game, the worth function of the induced game is:

vα(S) = min

{
# of players with RH gloves in S,

# of players with LH gloves in S

}
. �

We now provide the formal model of a TU pregame. Let (Ω, d) be a compact metric space of player attributes (or
types) equipped with a metric denoted by d. Let F (Ω) denote the set of all pairs (S, α) where S is a finite, nonempty
set (of players) and α :→ Ω is an attribute function. Then, for each player i ∈ S, α(i) provides a complete description
of the relevant characteristics of player i. The pair (S, α) is called a population and may be thought of as a listing of
players with their ascribed attributes. For ω in Ω, the set of players in S with attribute ω is α−1(ω) and |α−1(ω)| is the
number of players in S with that attribute.

A pregame with side payments (or a TU pregame) is an ordered pair (Ω, �) where Ω is a space of attributes, and
� is a function (the worth function of the pregame) which associates to each population (S, α) in F (Ω) a non-negative
real number, called the worth of the population (S, α). In interpretation, �(S, α) is the total worth (or value or payoff)
of a group of players S, given that the attributes of the members of S are described by the attribute function α.

Let (Ω, �) be a pregame, let N be a finite set, and let α be an attribute function mapping N into Ω. The derived
game (N, vα) is the game with the characteristic function defined by

vα(S)
def=�(S, αS)

for every nonempty subset S of N, where αS denotes the restriction of α to S. It follows from the definition of a pregame
that, in any game (N, vα) derived from a pregame (Ω, �), any two players i, j ∈ N with the same attributes (α(i) = α(j))
are substitutes, that is, players with the same attributes are substitutes. Thus, the worth of a group of players depends
on the attributes and not on the names of its members.

The pregame framework can capture a variety of economic situations. We provide two more examples. The first
Please cite this article in press as: Wooders, M., Small group effectiveness, per capita boundedness and nonemptiness of
approximate cores, J Math Econ (2008), doi:10.1016/j.jmateco.2007.06.006

example illustrates a situation with ever-increasing returns to population size. The second illustrates a situation with a
compact metric space of attributes.

12 Suppose, for example, that S = {1, 2, 3} and α(1) = ω1, α(2) = ω1, and α(3) = ω2; the population S then consists of two players, 1 and 2, who
are each endowed with a RH glove and one player, 3, who is endowed with a LH glove.
13 If, for example, S = {1, 2, 3}, α(1) = ω1, α(2) = ω1 and α(3) = ω2, then �(S, α) = 1.

dx.doi.org/10.1016/j.jmateco.2007.06.006


+Model
M

E
t

s
p
w
t

(
(

(

b
e

n
t
ω

d
t

S
s

t
o

G
d

t
f

a

ARTICLE IN PRESSATECO-1373; No. of Pages 19

M. Wooders / Journal of Mathematical Economics xxx (2008) xxx–xxx 5

xample 2: A marriage pregame with a compact metric space of player attributes. Le Ω = {(t, ω) :
∈ {m, f } and ω ∈ [0, 1]}. In interpretation, a pair (t, ω) ∈ Ω describes a player by his gender t and his socio-economic
tatus ω. We define a metric d on Ω so that two players with difference genders are “far apart” in attribute space and
layers who are of the same gender differ by the Euclidean distances between their socio-economic status’s.14 The
orth of a population (S, α) will be what it can achieve by partitioning into male–female pairs. Specifically, suppose

hat for population (S, α):

a) If |S| = 1 then �(S, α) = 0 (groups consisting of only a single player earn zero);
b) If S = {i, j}, α(i) = (m, ω1) and α(j) = (f, ω2) for some ω1, ω2 ∈ [0, 1] then �(S, α) = h(ω1, ω2) where h is some

non-negative real valued, continuous function. For example, we might take h(ω1, ω2) = ω1 + ω2 or h(ω1, ω2) =
ω1ω2. (groups consisting of male–female pairs have positive payoffs, depending on their attributes);

c) Otherwise, let �(S, α) equal the maximum total sum achievable by partitioning S into male–female pair and
singleton groups.

In this example small groups are strictly effective in the sense that partitions of the total player set into groups
ounded in size (by two) can realize all gains to collective activities. This feature is not necessary for our results; the
xample, however, illustrates another sort of case that will be covered by our assumptions.

Note that players who are close in terms of the metric on attribute space are close substitutes, that is, they are
early equally valuable as population members. If the Euclidean distance between (ω1, ω2) and (ω1, ω2) is small,
hen a male–female pair with socio-economic status’s ω1 and ω2 has nearly the same worth as a pair with status’s
′
1, ω

′
2 �.

While our results require only essential superadditivity, for ease in notation and exposition, and since it makes no
ifference to the results, we will assume superadditivity. First, given two populations (S, α) and (T, β), write S ∨ T for
he disjoint union of S and T and α ∨ β for the function from S ∨ T to Ω defined by:

α ∨ β(i)
def=

{
α(i) if i ∈ S

β(i) if i ∈ T
.

Superadditivity: A pregame (Ω, �) is superadditive if for all (S, α), (T, β) in F (Ω) we have

�(S, α) + �(T, β) ≤ �(S ∨ T, α ∨ β).

uperadditivity is a natural assumption when one of the options open to a group of players is to partition into disjoint
ubgroups and the worth of each subgroup is independent of the worths to the remaining subgroups.

We require that players who have similar attributes are approximately substitutes, a continuity assumption. We call
his ‘per capita continuity’ since the distance between the worths of two populations (which differ only in the attributes
f the players) is divided by the number of players in the population.

Per capita continuity: Let (Ω, �) be a pregame. We assume that:

iven ε > 0 there is a δ(ε) > 0 such that for any two populations (S, α) and (S, β) (with the same set of players) if
(α(i), β(i)) ≤ δ(ε) for all i ∈ S, then

�(S, α)

|S| − �(S, β)

|S| ≤ ε. (6)
Please cite this article in press as: Wooders, M., Small group effectiveness, per capita boundedness and nonemptiness of
approximate cores, J Math Econ (2008), doi:10.1016/j.jmateco.2007.06.006

Throughout the following, we shall assume that pregames satisfy superadditivity and per capita continuity. Note
hat from the definition of a pregame it follows that in any induced game players with the same attributes are substitutes
or each other.

14 For example, we could let d′ denote the usual Euclidean distance on [0,1] and let d((t, ω), (t′, ω′)) = δt,t′ + d′(ω, ω′) where δt,t′ = 2 if t �= t′
nd δt,t′ = 0 otherwise.

dx.doi.org/10.1016/j.jmateco.2007.06.006
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2.4. Small group effectiveness and per capita boundedness

To motivate the following concepts, we provide another example. This example satisfies both the conditions, to be
introduced below, of per capita boundedness and small group effectiveness.

Example 3: An increasing returns to group size pregame. Let Ω = {ω}; there is only one attribute. Since there
is only one attribute, an attribute function must assign all players the same attribute ω and the worth of a population
(S, α) will depend only on |S|, the number of players in the population. Let

�(S, α) = |S| − 1

|S| .

This pregame exhibits ever-increasing returns to group size. But per capita payoffs are bounded, that is, there is a
constant C, in this case 1, such that

�(S, α)

|S| ≤ C

for all populations (S, α). Also, given ε > 0, there is a population (S0, α) so that for all populations (S, α) with |S| > |S0|,
it holds that

0 ≤ �(S, α)

|S| − �(S0, α)

|S0| ≤ ε;

thus, almost all (within ε per capita) gains to collective activities can be realized by groups bounded in size by |S0|,
that is, small groups are effective. �

A pregame (Ω, �) satisfies per capita boundedness, PCB, if there is a constant C such that for all populations (S, α)
it holds that

�(S, α)

|S| ≤ C, (7)

that is, per capita payoffs are bounded over all populations (S, α) or, in other words, the supremum of average worths
is finite.

If a pregame (Ω, �) satisfies per capita boundedness then, as Theorem 1 in the next section will demonstrate, for
both TU and NTU games, given ε > 0 all derived games with sufficiently many players have nonempty weak ε-cores.
As the following example illustrates, however, when there is more than one type of player this result may not hold for
uniform ε-cores.

Example 4. Consider a pregame (Ω, �) where Ω = {ω1, ω2} and � is the superadditive cover of the function �′
defined by:

Ψ ′(S, α) =
{

|S| if |α−1(ω1)| = 2,

0 otherwise.

Thus, if a group of players S contains two players with attribute ω1 then the worth of the group is equal to the number
of players. Otherwise, the worth of S is zero.

−1 −1
Please cite this article in press as: Wooders, M., Small group effectiveness, per capita boundedness and nonemptiness of
approximate cores, J Math Econ (2008), doi:10.1016/j.jmateco.2007.06.006

Now consider a sequence of games (Sν, vαν ) where |αν (ω1)| = 3 and |αν (ω2)| = ν for all ν. Note that if the
uniform ε0-core were nonempty, it would have to contain an equal-treatment payoff vector.15 For the purpose of

15 It is well known and easily demonstrated that the uniform ε-core of a TU game is nonempty if and only if it contains an equal treatment payoff
vector. This follows from the fact that the uniform ε-core is a convex set.

dx.doi.org/10.1016/j.jmateco.2007.06.006
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emonstrating a contradiction, suppose that xν = (xν
1, x

ν
2) represents an equal treatment payoff vector in the uniform

-core of (Sν, vαν ). The following inequalities must hold:

3xν
1 + vxν

2 ≤ ν + 3

2xν
1 + vxν

2 ≥ ν + 3, and

xν
1 ≥ 3

4 ,

hich is impossible. A payoff vector which assigns each player zero is, however, in the weak ε-core for ε > (3/ν + 3).
t is not very appealing, however, in situations such as this to ignore a relatively small group of players who can have
large effect on per capita payoffs. This leads us to the next concept. �

In general, given a population (S, α), a partition of the population is a collection of (sub) populations {(Sk, αk)}
here {Sk} is a partition of S and where, for each k, αk is the restriction of α to Sk.
A pregame (Ω, �) satisfies small group effectiveness, SGE, if it is superadditive16 and if, given any real number ε > 0,

here is an integer η0(ε) such that for each population (S, α), for some partition {(Sk, αk)} of (S, α) into subpopulations
ith |Sk| ≤ η0(ε) for each subpopulation (Sk, αk) in the partition it holds that

�(S, α) −
∑

k

�(Sk, αk) ≤ ε|S|.

hus, for every population (S, α), almost all (within ε per capita) gains to collective activities can be realized by
ggregating collective activities within groups of players bounded in absolute size.

Small group effectiveness is a natural relaxation of the condition that all gains to collective activities can be
ealized by groups of players uniformly bounded in size, now commonly called strict small group effectiveness. 17

his condition is satisfied by Example 3 above but not by Example 4. The beauty of small group effectiveness is that,
n addition to being as nonrestrictive, when there are many players of each type, as per capita boundedness, it allows
s to approximate games with many players and potentially large effective groups by games with groups bounded in
ize (as will be demonstrated in the proofs).

If there are sufficiently many players of each of a finite number of player types (that is, the players attributes are
rom some finite set) then per capita boundedness is equivalent to small group effectiveness (Wooders, 1994a, Theorem
) – besides bounding per capita payoffs, the function of SGE is to ensure that players with few substitutes cannot
ave significant impacts on average payoffs (as players with attribute ω1 can have in Example 4). The following result
s stated and proven for the case where Ω is a finite set and demonstrates more generally that when there are many
ubstitutes for each player, then SGE is equivalent to PCB.

.4.1. Theorem: (Wooders, 1994a) With “thickness”, per capita boundedness ≈ small group effectiveness
Let (Ω, �) be a pregame where Ω is a finite set.

. Suppose that (Ω, �) satisfies PCB. Then for each pair of real numbers ρ > 0 and ε > 0 there is an integer η(ρ, ε)
such that, for every population (S, α) with (|α−1(ω)|/|S|) > ρ or |α−1(ω)| = 0 for each ω ∈ Ω, for some partition
{(Sk, αk)} of (S, α) with |Sk| ≤ η(ρ, ε) for each k, it holds that

�(S, α) −
∑

k

�(Sk, αk) ≤ ε|S|;

that is, if the domain of the pregame is restricted so that the percentage of players of each type that appears in the
Please cite this article in press as: Wooders, M., Small group effectiveness, per capita boundedness and nonemptiness of
approximate cores, J Math Econ (2008), doi:10.1016/j.jmateco.2007.06.006

population is bounded away from zero, then the pregame satisfies small group effectiveness on this domain.
. Suppose that (Ω, �) satisfies SGE. Then (Ω, �) satisfies PCB.

16 We stress that essential superadditivity would suffice.
17 A condition of strict small group effectiveness was introduced in Wooders (1977). The condition there dictated that, for some bound B, any
ayoff that could be improved upon could be improved upon by a group of players containing no more than Bmembers of any type. See Winter and
ooders (1990) and Kovalenkov and Wooders (2003, 2005) for some implications of strict small group effectiveness..

dx.doi.org/10.1016/j.jmateco.2007.06.006
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Note that for Example 3, PCB and SGE are equivalent; since there is only one type of player, any game with many
players must have many players of each type.

Our Theorems in the next section will demonstrate that, for all sufficiently large games derived from pregames,
(1) per capita boundedness implies nonemptiness of weak ε-cores and, with an additional condition, (2) small group
effectiveness implies nonemptiness of uniform ε-cores.

3. NTU game and pregames

3.1. NTU games

The primary difference between a TU and a NTU game is that, for the TU case, the payoff possibilities for a group of
players are determined by a real number, the worth of the group. For a NTU game the payoff possibilities are described
by a set, whose elements are feasible payoff vectors.

A NTU game (in coalitional function form) is a pair (N, V ) where N is a finite set (the set of players) and V is a
set-valued function that assigns to each nonempty subset S of N (a group or coalition) a nonempty subset V (S) of RS ,
called a payoff possibilities set or simply a payoff set, with the following properties:

V (S) is a closed subset of RS , comprehensively generated18 by V (S) ∩ RS+;
0 ∈ V (S);
V (S) ∩ RS+ is bounded.

A payoff vector for a game (N, V ) is a vector x in RN . A payoff vector x is feasible for N if there exists a partition
{Sk} of N with the property that xSk ∈ V (Sk) for each k. With this definition of feasibility, we say that the game (N, V )
is essentially superadditive.

Given ε ≥ 0, a payoff vector x is in the weak ε-core of (N, V ) if it is feasible and if there is a subset N0 ⊂ N such
that (|N0|/|N|) ≤ ε and, for every subset S of N \ N0, xS + ε1S /∈ int V (S). A payoff vector x uniform ε-core of a
game (N, V ) if it is feasible for N and if, for every subset S of N, xS + ε1S /∈ int V (S).19

Informally, a feasible payoff vector x is in the weak ε-core if no set of players can improve upon x by more than ε

for each player in the set, provided that we ignore an exceptional set of players, which we shall call “leftovers”, that
constitutes, at most, a small fraction of the entire player set. A feasible payoff vector x is in the uniform ε-core if no
set of players can improve upon x by more than ε for each player in the set.

Our notion of the weak ε-core is analogous to notions of approximate cores and approximate equilibria that are
used in the literature of private goods exchange economies (see, for example, Hildenbrand, 1974, p. 202). The notion
of the uniform ε-core also appears in the literature, typically in the presence of assumptions on the convexity of V (N)
or on some degree of transferability of utility (or, in other words, “nonlevelness” of payoff possibilities sets). Payoffs
in either the weak ε-core or the uniform ε-core may be interpreted as stable if players are satisficing or approximately
optimizing, or if there are costs to coalition formation.

As noted and illustrated in Wooders (1983), to go from weak ε-cores to uniform ε-cores can be done in some
circumstances with convexity assumptions on payoff sets or with “nonleveledness” of payoff sets,20 insuring a degree
of “side-paymentness”. See Kaneko and Wooders (1996) for game theoretic applications and Wooders (1988) or Allouch
Please cite this article in press as: Wooders, M., Small group effectiveness, per capita boundedness and nonemptiness of
approximate cores, J Math Econ (2008), doi:10.1016/j.jmateco.2007.06.006

and Wooders (2007) for examples of application to economic models of an economy with local public goods/clubs.
Our results will also show that there are payoff vectors in approximate cores that treat substitute players equally.21

For NTU games our definition of substitutes requires that if i and j are substitutes then they make the same contribution
to any group they might join and, if they both belong to one group and a payoff vector x is feasible for the group, then

18 That is, x ∈ V (S) if and only if there is some y ∈ V (S) ∩ RS+ such that y ≥ x.
19 It would be possible to include the requirement that x is Pareto-optimal in the sense that there does not exist another feasible payoff y for N with
y ≥ x, y �= x. We do not do so, however, since it does not seem consistent with the notion of an approximate core.
20 Called the QTU property in Wooders (1983).
21 In fact, we demonstrate that, for the weak ε-core, there are payoff vectors that treat most similar players similarly and, for the uniform ε-core,

there are payoff vectors that treat all similar players nearly equally, where “similar players” have “similar” attributes. These results are obtained by
approximating the compact set of attributes by a finite set of types and then using continuity.

dx.doi.org/10.1016/j.jmateco.2007.06.006
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′ is also feasible for the group, where x′ is derived from x by interchanging the payoffs of i and j. More formally,
onsider a NTU game (N, V ). Two players i, j ∈ N are substitutes if

. For any S ⊂ N such that i, j /∈ S if x ∈ V (S ∪ {i}) then x′ ∈ V (S ∪ {j}) where x′ is defined by x′
j = xi and x′

� = x�

for all � ∈ S.
. For any S ⊂ N such that i, j ∈ S if x ∈ V (S) then x′ ∈ V (S) where x′ is defined by x′

j = xi, x′
i = xj and x′

� = x� for
all � ∈ S, � �= i, j.

Let (N, V ) be a game and let x ∈ V (N). Then x has the equal treatment property if, and only if, for all players i and
who are substitutes, it holds that xi = xj .

The same sort of remarks concerning superadditivity as those made in Section 2.2 continue to hold for NTU games.
or details, if desired, we refer the reader to the Vanderbilt Working Paper version of this paper.

.2. NTU pregames

To define a NTU pregame, we repeat some definitions from TU pregames:

. Ω denotes a compact metric space (the space of attributes) with the distance function d.

. F (Ω) denotes the set of all pairs (S, α), called populations, where S is a finite non-empty set (of players) and
α : S → Ω is a function (an attribute function).

. For ω in Ω, the set of players in S with attribute ω is α−1(ω) and |α−1(ω)| is the number of players in S with that
attribute.

The difference between TU and NTU games arises in the definition of the worth or payoff possibilities set of a
roup of players.

A (NTU) pregame is an ordered pair (Ω, φ) where Ω is a space of attributes and φ is a function (the worth function
r payoff possibilities function) that associates to each population (S, α) in F (Ω) a subset φ(S, α) ofRS , called a payoff
ossibilities set or simply a payoff set, that is closed, comprehensively generated by φ(S, α) ∩ RS+, contains the origin,
nd has bounded intersection with the positive orthantRS+. In interpretation, φ(S, α) represents the set of payoff vectors
orresponding to all possible payoff vectors that the group of players S can achieve for its members, given that the
ttributes of the members of S are as described by the attribute function α.

xample 5. To illustrate a NTU pregame, we will convert the glove game of the preceding section into an NTU
regame. Let Ω = {ω1, ω2} denote a set of attributes, where ω1 denotes the attribute “is endowed with a RH glove” and
2 denotes the attribute “is endowed with a LH glove”. As previously, given a population (S, α), the attribute function
assigns one glove to each player. For a population (S, α) consisting of only one player we define

φ(S, α) = {x ∈R : x ≤ 0}.
or a population (S, α) consisting of a pair of players with attributes ω1, ω2 we define

φ(S, α) =
{

(x1, x2) ∈R2 : x1 ≤ 1

2
, x2 ≤ 1

2

}
.

sing this data, we can construct the payoff possibilities for any population (S, α) by taking φ(S, α) as the set of payoff
ossibilities achievable by the population (S, α) when it is partitioned into groups consisting of pairs of players where
ne player is endowed with a RH glove and the other player is endowed with a LH glove and groups consisting of only
ne player.

We could also modify the example to assume that payoff sets for the pregame are given by the convex hulls of the
Please cite this article in press as: Wooders, M., Small group effectiveness, per capita boundedness and nonemptiness of
approximate cores, J Math Econ (2008), doi:10.1016/j.jmateco.2007.06.006

ayoff sets φ(S, α), In this case, for example, if there were three players in a derived game, player 1 endowed with a RH
love and players 2 and 3 endowed with LH gloves, then, since the payoff vectors ( 1

2 , 1
2 , 0) and ( 1

2 , 0, 1
2 ) are feasible,

he payoff vector ( 1
2 , 1

4 , 1
4 ) would be feasible. Alternatively, we could allow some transfers to be made between players,

ut not necessarily at a one-to-one rate. �

dx.doi.org/10.1016/j.jmateco.2007.06.006
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We will require that a pregame satisfies superadditivity. Superadditivity for the NTU case is in interpretation the
same as for the TU case and the discussion of essential superadditivity of TU games applies also to NTU games.

The function φ is superadditive if for all (S, α), (T, β) in F (Ω) we have

φ(S, α) × φ(T, β) ⊂ φ(S ∨ T, α ∨ β).

This is superadditivity in the usual sense: the union of two disjoint groups can always obtain for itself anything that
the groups could obtain separately.

Let (Ω, φ) be a pregame, let N be a finite set, and let α be an attribute function mapping N into Ω. The derived game
(N, Vα) is the game with Vα defined by

Vα(S)
def=φ(S, αS)

for every nonempty subset S of N, where αS denotes the restriction of α to S. From the definition of a pregame it follows
that a pregame (Ω, φ) satisfies substitution, the property that, for all populations (S, α), whenever α(i) = α(j) for two
players i, j in S then i and j are substitutes.

Let (N, Vα) be a game derived from a pregame (Ω, φ). A payoff vector x ∈ Vα(N) has the equal-treatment property if

xi = xj whenever α(i) = α(j).

3.3. Nonemptiness of approximate cores and equal treatment

In this section we introduce two concepts of small group effectiveness and show that they both imply nonemptiness
of approximate cores.

Weak approximate core property: A NTU pregame (Ω, φ) has the weak approximate core property if: Given any
real number ε > 0 there is an integer n1(ε) such that for all populations (S, α) with |S| ≥ n1(ε), the weak ε-core of
(S, Vα) is nonempty.

We actually will demonstrate that there exists equal-treatment payoff vectors in weak ε-cores of derived games with
sufficiently many players.22

Weak equal treatment approximate core property: A NTU pregame (Ω, φ) has the weak equal-treatment approximate
core property if: given any ε > 0 there is an integer η2(ε) such that for all populations (S, α) with |S| ≥ η2(ε), there is
a payoff vector x in the weak ε-core of (S, Vα) with the properties that for some S′ ⊂ S with (|S′|/|S|) > 1 − ε,

1. xS′ ∈ Vα(S′),
2. xW + ε1W /∈ int Vα(W) for any group W of S′, and
3. xS′ has the equal-treatment property.

Our first Theorem will use the following continuity condition:
Per capita continuity with respect to attributes: A NTU pregame (Ω, φ) satisfies per capita continuity with respect

to attributes if: For every ε > 0 there is a δ > 0 such that for all populations (S, α), (S, β) ∈ F (Ω) with d(α(i), β(i)) < δ

for all i, it holds that

H1(φ(S, α), φ(S, β)) < ε|S|
where H1 is the Hausdorff distance23 relative to the metric

||x − y||1 =
∑

i

|x(i) − y(i)|.
Please cite this article in press as: Wooders, M., Small group effectiveness, per capita boundedness and nonemptiness of
approximate cores, J Math Econ (2008), doi:10.1016/j.jmateco.2007.06.006

Note that the two populations (S, α) and (S, β) have the same set of players but the attributes of the players may have
changed. Per capita continuity with respect to attributes dictates that players whose attributes are close in attribute
space are approximate substitutes in induced games.

22 It is also interesting to ask when all payoffs in approximate cores treat similar players approximately equally. This is addressed in Wooders
(1983, Theorem 3), Wooders (1994b) and Kovalenkov and Wooders (2003) and other works.
23 We refer the reader to Hildenbrand (1974, p. 16) for a definition of the Hausdorff distance.

dx.doi.org/10.1016/j.jmateco.2007.06.006
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Per capita boundedness: A pregame (Ω, φ) satisfies per capita boundedness if: There is a constant K such that for
ny population (S, α) and its derived game (S, Vα), if x ∈ Vα(S) and x has the equal treatment property, then xi ≤ K

or all i ∈ S.
The reader can observe that the above example and those introduced in the preceding section all satisfy per capita

oundedness.

heorem 1. Let (Ω, φ) be a NTU pregame satisfying per capita boundedness and per capita continuity with respect
o attributes. Then (Ω, φ) has the weak equal-treatment approximate core property.

Theorem 2, demonstrating nonemptiness of uniform equal treatment ε-cores, requires small group effectiveness.
Small group effectiveness: A pregame (Ω, φ) satisfies small group effectiveness if: For every ε > 0 there is an integer

3(ε) such that for every pair (S, α) in F (Ω),

H1(φetp(S, αS), ∪�φetp(Sk, αSk )) ≤ ε|S|,
here the union is taken over all partitions {Sk} of S with |Sk| ≤ η3(ε) for each member Sk of the partition and
here φetp(S, αS) denotes the set of payoff vectors in φ(S, αS) with the equal treatment property (and similarly for
etp(Sk, αSk )).

We also use the term “strict small group effectiveness” in our proofs. The pregame (Ω, φ) satisfies this condition if,
or some sufficiently large (but finite) value of η3(ε), in the above definition ε can be set equal to zero.

It is easy to prove that small group effectiveness implies per capita boundedness. Thus we have the following
orollary to Theorem 1.

orollary 1. Let (Ω, φ) be an NTU pregame satisfying small group effectiveness and per capita continuity with
espect to attributes. Then (Ω, φ) has the weak equal-treatment approximate core property.

Small group effectiveness, by itself, is not enough to ensure nonemptiness of uniform approximate cores for derived
ames with many players. It is also necessary that leftover players can be compensated. For this purpose, we require
he following assumption.

Compensation: A pregame (Ω, φ) satisfies compensation if there is is a positive real number 0 < c ≤ 1, such that,
or any population (S, α) and derived game (S, Vα), if x is individually rational (that is, xi ≥ max{y ∈R : y ∈ Vα({i})}
or each i ∈ S) then y ∈ Vα(S), where, for some subset S′ ⊂ S and each i ∈ S′, yi = xi + (c′/|S′|)|S \ S′| and, for all
′ ∈ S \ S′, yi′ = xi′ − c′ where c′ is any positive real number less than c (that is, 0 ≤ c′ ≤ c).

Compensation ensures that, given a payoff vector x that is individually rational for the players in a derived game
S, Vα), it is possible to construct another feasible payoff vector y by taking away a small positive amount c′ from each
f the players in a subset S \ S′ of S and increasing the payoff to players in S′ by (c′/|S′|)|S \ S′| for each player. Note
hat compensation, with c = 1, is satisfied in any TU game.

xample 6. Consider a Shubik “bridge pregame”. There is only one attribute so any attribute function α assigns all
layers the same attribute. Any group of four players can realize a payoff of $1.00 each. Thus, for a population, say
= {1, 2, 3, 4}, consisting of four players, we have

φ(S, α) = {(x1, x2, x3, x4) : (x1, x2, x3, x4) ≤ (1, 1, 1, 1)}
f the number of players is not a multiple of four, however, not all players can play bridge—after as many bridge tables
s possible are formed, there may be leftover players. Suppose a group consisting of fewer than four players can realize
nly zero for each of its members. Then, if a group S does not have a multiple of four members, it holds that any equal
reatment payoff vector x assigns each player no more than zero. Note, however, that there will be at most three players
eftover, that is, for any group S, for some non-negative integer r, it holds that |S| = 4r + L where 0 ≤ L ≤ 3. This
mplies that 4r players can play bridge but L players will be leftover. Compensation and small group effectiveness
Please cite this article in press as: Wooders, M., Small group effectiveness, per capita boundedness and nonemptiness of
approximate cores, J Math Econ (2008), doi:10.1016/j.jmateco.2007.06.006

nsure that it is possible to ‘tax’ those players accommodated at bridge tables and make transfers to the leftovers until
he leftover players are as well treated as those who get to play bridge.24 �

24 In general, comprehensiveness is also required.

dx.doi.org/10.1016/j.jmateco.2007.06.006
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Concepts of uniform approximate core properties are defined analogously to the week approximate core properties.

Theorem 2. Let (Ω, φ) be an NTU pregame satisfying small group effectiveness and per capita continuity. If, in
addition, (Ω, φ) satisfies compensation then (Ω, φ) has the uniform equal-treatment approximate core property.

A result such as the above could also be obtained using assumptions of convexity of payoff sets, as in Wooders
(1983). In some interesting situations to which the results of this paper can be applied – economies with clubs, coalitions,
and/or local public goods, for example – convexity of payoff sets is restrictive while the ability to “transfer” some
payoff by transferring private goods from members of one club to another club seems relatively non-restrictive. (See,
for example, Allouch and Wooders, 2007).

4. Relationships to the literature and concluding remarks

Shapley and Shubik (1966) showed that private goods exchange economies with many players, all with quasi-linear
preferences, have nonempty approximate cores. The framework used in this paper is an outgrowth of that introduced
in Wooders (1977, 1983) for TU and NTU games (respectively) with finite number of player types. In Wooders (1983)
mild conditions are determined under which large NTU games with a fixed distribution of a finite number of player
types have nonempty uniform ε-cores. Effectively, in that paper the Lemmas show that large replica games (games with
the same percentage of players of each of a finite number of types) have nonempty equal-treatment (weak) approximate
cores. This fact, plus convexity, is then used to show nonemptiness of uniform approximate cores of all sufficiently
large replica games. Shubik and Wooders (1983) continue this research by defining the weak ε-core and, using the
lemmas of the earlier work, show that large replica games have nonempty weak ε-cores.

In the current paper we first state a Lemma showing that, with a finite number of player types, any large player set
is approximately a large replica of a fixed player set. To show that small group effectiveness implies nonemptiness
of approximate cores, in the finite-types case we use the Lemma to approximate a large player set by a replica of a
relatively small player set, which enables us to use the results of the prior papers, especially Wooders (1983). Since, for
the general case, the space of types is assumed to be a compact metric space, we can use continuity and compactness
to approximate large games by ones with a finite number of player types.

To obtain nonemptiness of uniform ε-cores, we introduce the condition of small group effectiveness for NTU
games. This condition is an extension of the condition of Wooders (1992, 1994a, b) to NTU games and, along with
the compensation property, implies that small groups of players can be compensated for not being in preferred groups.
In the TU case, the compensation property is built into the framework; the standard definition of games with side
payments allows compensation of leftover players. For the NTU case, we need to make the additional assumption of
compensation. We stress that compensation applies to games derived from club economies or economies with local
public goods, where there is some infinitely divisible good(s) that can be transferred between clubs, that everyone
wants, and that everyone has, while convexity of payoff possibilities sets may well not hold; see, for example, Allouch
and Wooders (2007).

A number of extensions and variations of the main results of Wooders (1983) have been obtained. The restriction
to a finite set of types was first relaxed in working paper versions of Kaneko and Wooders (1996). Wooders and
Please cite this article in press as: Wooders, M., Small group effectiveness, per capita boundedness and nonemptiness of
approximate cores, J Math Econ (2008), doi:10.1016/j.jmateco.2007.06.006

Zame (1987),25 as a consequence of the result that NTU Shapley values are in approximate cores of games with many
players, demonstrate nonemptiness of approximate cores (both weak and uniform) under a condition of boundedness
of individual marginal contributions to coalitions.26 This condition, however, also used in Wooders and Zame (1984)

25 And in an unpublished typescript, with working title “Approximate cores of games with many players”. In that paper, Wooders and Zame (1989)
demonstrate nonemptiness of approximate cores of NTU games with many players, without the replication restriction of Wooders (1983). As in
their 1984 paper, they rely upon a condition of boundedness of marginal contributions. Their condition, however, is more difficult to apply and also
is more restrictive than both per capita boundedness and small group effectiveness.
26 An NTU pregame (Ω, φ) satisfies boundedness of marginal contributions if that there is a constant M for the pregame such that:

if (S, α) ∈ F (Ω) and ({i}, β) ∈ F (Ω), where {i} is a singleton, and if x ∈ φ(S ∨ {i}, α ∨ β)
but xS /∈ int φ(S, α), then∑

j ∈ S∪{i}
xj −

∑
j ∈ S

xj ≤ M.

dx.doi.org/10.1016/j.jmateco.2007.06.006
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or TU games, is stronger than required. Roughly, the Wooders-Zame condition bounds marginal contributions while
mall group effectiveness, introduced in Wooders (1992), bounds average contributions; an example making this point
or TU games appears in Wooders (1994b).

Most recently, Kovalenkov and Wooders, in a series of papers, derive conditions under which games in parameterized
ollections have nonempty approximate cores; see Kovalenkov and Wooders (2001, 2003, 2005) and references therein.
n the Kovalenkov–Wooders papers, a collection of games is parameterized by (a) the number of approximate types of
layers and the goodness of the approximation and (b) the size of nearly effective groups of players and their distance
rom exact effectiveness. All games described by the same parameters are members of the same collection. The
onditions required on a parameterized collection of games to ensure nonemptiness of approximate cores are merely
hat most players have many close substitutes and all or almost all gains to collective activities can be realized by
roups of players bounded in size (small group effectiveness). The Kovalenkov–Wooders approach has the advantage
hat the results apply to given games. The framework of parameterized collections of games, however, is not readily
daptable to limiting results, such as those of Wooders (1994a) for games with side payments or for continuum limit
esults for economies. This motivates the continued study of games derived from NTU pregames.

We emphasize that the results of this paper can be applied to a variety of economic situations, including economies
ith only private goods with indivisibilities and nonconvexities, with clubs or local public goods as in Conley and
ooders (2001), with coalition production, and so on. In a number of papers on clubs and/or local public good

conomies, including Conley and Wooders, approximate cores have been decentralized by price-taking economic
quilibrium. Allouch and Wooders (2007) takes full advantage of nonemptiness of approximate cores under per capita
oundedness in application to club economies with possibly ever-increasing returns to club size. Whether the results
an be applied or extended to apply to the broad classes of economies such as those considered in Aliprantis and
urkinshaw (1991) is an open question.

In conclusion, we remark that under stronger conditions of small group effectiveness (in particular, when within ε

f all gains to coalitions can be realized by groups of players bounded in size, rather than ε per capita), then stronger
orms of the results could be obtained, such as nonemptiness of strong ε-cores.27 In the TU case, if strict small group
ffectiveness is satisfied, then all sufficiently large games derived from a (TU) pregame have nonempty strong ε-cores.
ewer economic models would satisfy the required conditions, however.
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ppendix A

We proceed as follows: First, we provide some definitions and notation and state a handy approximation Lemma
or the case of pregames with a finite set of attributes. (These concepts could also be stated for the case of a compact
etric space of attributes, but this is not necessary.) Before proving Theorem 1, however, we provide a discussion of

ome prior results for games with a fixed distribution of player types. We then prove Theorem 1 by appealing to results
n nonemptiness of approximate cores of replica games – games with a fixed finite set of player types – from Wooders
1983); Shubik and Wooders (1983). Then, using per capita continuity to approximate games by games satisfying the
onditions of the prior papers, we conclude the proof. We then turn to the proof of Theorem 2. Again, we use the prior
esults, discussed in more detail the following section.

Let us first recall the definition of balancedness, a concept which plays a significant role in our proofs. Given a game
N, V ), we first modify the payoff possibilities sets for groups S ⊂ N to be subsets of RN with coordinates associated
ith nonmembers of S unconstrained. Formallly, for group S ⊂ N define V ′(S) by
Please cite this article in press as: Wooders, M., Small group effectiveness, per capita boundedness and nonemptiness of
approximate cores, J Math Econ (2008), doi:10.1016/j.jmateco.2007.06.006

V ′(S) = {x ∈RN : xS ∈ V (S)}.
ow define payoff sets for the balanced cover game, say (N, Ṽ ), by:

Ṽ (S) = V ′(S) for all S ⊂ N, S �= ∅, S �= N

27 The strong ε-core requires feasibility and that no coalition can improve by more than ε per capita.
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and

Ṽ (N) = ∪∩S ∈ BV (S)

where the union is taken over all balanced collections of subsets of N. A collection B of subsets of N is balanced if
there exists non-negative weights wS for S ∈ B, called balancing weights, such that

∑
S ∈ B

i ∈ S

ws = 1 for each i ∈ N. A

balanced cover game is a balanced game, as defined in Scarf (1967). Since {N} is a partition of N the balanced cover
game generated by a balanced game is the balanced game itself.

A.1. Pregames with a finite set of attributes

Let (Ω, φ) be a pregame where Ω is a finite set, say Ω = {ω1, . . . , ωT }. Let (S, α) be a population. For each
t = 1, . . . , T , let st = |α−1(ωt)| and let s = (s1, . . . , sT ). The vector s is called the profile of (S, α). Observe that each
population (S, α) generates a profile s ∈ZT+. Also, a profile determines a population (unique up to a re-naming players
of the same types). Observe also that with any partition of the set S, say {S1, . . . , SK} we can associate a collection of
profiles, say {s1, . . . , sK

′ }, where sk is in the collection if and only if it is the profile of some member of {S1, . . . , SK}.
Kovalenkov and Wooders (2003, Lemma 2) provide a stronger version of the following Lemma.

Lemma 1. Let (Ω, φ) be a pregame where Ω = {ω1, . . . , ωT }. Let {sν} be a sequence of profiles such that ||sν|| → ∞
as ν → ∞ and (1/||sν||)sv → s for some s ∈RT . Then given any ε > 0 there is a profile h and an integer ν(ε) such
that for each ν ≥ ν(ε), for some integer rν and some profile �ν we have rνh + �ν = sν and ||�ν||/||sν|| < ε. Moreover,
when s is rational-valued, we can take h = ms for some integer m such that ms is integer-valued.

For the proof of Theorem 2, it will be useful to describe a balanced family of subsets of a population by a condition
on profiles of members of the family. Roughly, balanced collections can be described by profiles and weights (possibly
greater than one) and, conversely, profiles and non-negative weights can generate balanced collections of subsets of
populations. Details of the following arguments appear in prior papers in the literature (cf. Wooders, 1983; Kovalenkov
and Wooders, 2003).

Let (S, α) be a population where α maps S into a finite set Ω = {ω1, . . . , ωT }. Let {B�} denote a balanced family
of subsets of S and let {w�} denote a set of balancing weights for the collection. Let b� denote the profile of B�. It
follows that

∑
w�b

� = s where s denotes the profile of (S, α). Moreover, there may exist B�′
and B�′′

, with �′ �= �′′,
such that b�′ = b�′′

. Obviously, it holds that
∑

��=�′,�′′w�b
� + (w�′ + w�′′ )bl′ = s. Thus, we can describe a balanced

collection of subsets by a collection of (distinct) profiles b̄� with weights w̄� ∈R+ satisfying. Also, it holds that if a
set of nonnegative real numbers w̄� and a collection of profiles b̄� satisfy the condition that

∑
w̄�b̄

� = s then one can
generate (nonuniquely except in special cases) a balanced collection of subsets of S where the profile of each member
of the subset is that of some b̄� with a positive weight.

A.1.1. Replica games
Let (Ω, φ) be a pregame where, again, Ω is a finite set, say Ω = {ω1, . . . , ωT }. Let {(Nr, αr)}∞r=1 be a sequence of

populations, where, for each t = 1, . . . , T , it holds that

|α−1
r (ωt)| = r|α−1(ωt)|;

that is, the r th population in the sequence contains r times as many players with the same attribute (players of the same
‘type’) as the first game in the sequence and is called a replica game. Let (Nr, Vr) denote the rth replica game.

Let E(r) ⊂ RT represent the set of equal treatment payoff vectors for the game (Nr, Vr) and let Ẽ(r) represent the
set of equal treatment payoff vectors for the balanced cover game derived from the game (Nr, Vr). From Scarf (1967) it
follows that there is an equal treatment payoff vector in the core of the balanced cover of the game (N , V ); this payoff
Please cite this article in press as: Wooders, M., Small group effectiveness, per capita boundedness and nonemptiness of
approximate cores, J Math Econ (2008), doi:10.1016/j.jmateco.2007.06.006

r r

vector can be represented by an element of Ẽ(r). (Of course this payoff vector may not be feasible for the original
game, that is, it is not necessarily contained in E(r).)

Per capita boundedness implies that, for all replication numbers r, E(r) ∩ RT+ is contained in a compact set. It
follows that, for all r, Ẽ(r) ∩ RT+ is contained in the same compact set (from Wooders, 1983, Lemma 5).

dx.doi.org/10.1016/j.jmateco.2007.06.006
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Fig. A.1. Increasing equal-treatment balanced cover payoff possibilities.

From the properties of balanced cover games it holds that Ẽ(r) ⊂ Ẽ(r + 1) for all r (Wooders, 1983, Lemma 7).
hese two facts imply that the closed limit with respect to Hausdorff distance of the sequence of sets {Ẽ(r)} exists; let
denote this limit.28

These relationships are depicted in Fig. A.1.
A critical part of arguments underlying nonemptiness of approximate cores of games with many players connects

qual treatment payoffs of balanced cover games to equal treatment payoffs for larger replications of the game itself
Wooders, 1983, Lemma 5). Specifically, given the replication number r̂ there is an integer m(r̂) such that

Ẽ(r̂) ⊂ E(m(r̂)r̂),

consequence of the fact that ‘minimal balanced collections’ have rational weights. (Minimal balanced collections
ere introduced in Shapley, 1967; their definition is also stated in Wooders, 1983, p. 290, and used in the proof of
emma 5 of that paper).

From superadditivity, for all positive integers � we have E(r) ⊂ E(�r) (Wooders, 1983, Lemma 3 applied to the sets
f equal treatment payoffs). Thus, one obtains, for all positive integers �,

Ẽ(r̂) ⊂ E(�m(r̂)r̂),

s depicted in Fig. A.2. (Again, only essential superadditivity is required.)
It now follows that given ε > 0 there is a replication number r̂∗ with the property that the Hausdorff distance between

and Ẽ(r̂∗) is less than ε for all r ≥ r̂∗. Moreover, for the sequence {(N�m(r̂∗)r̂∗ , V�m(r̂∗)r̂∗ )}∞�=1 it holds that if x ∈RT

epresents an equal treatment payoff in the core of (Nr̂∗ , Ṽr̂∗ ) then x represents a feasible payoff vector for the game
N�m(r̂∗)r̂∗ , V�m(r̂∗)r̂∗ ) for each � = 1, 2, 3 . . .. It is then easy to show that x represents a equal treatment payoff in the
niform ε-core of (N�m(r̂∗)r̂∗ , V�m(r̂∗)r̂∗ ) for each � = 1, 2, 3 . . ..

We now turn to the question of how to handle the ‘leftovers’. That is, given any player set Nr for r ≥ r̂∗, we can
elect a subset of players, say S, containing the same number of players of each type as N�m(r̂∗)r̂∗ for � chosen to be as
Please cite this article in press as: Wooders, M., Small group effectiveness, per capita boundedness and nonemptiness of
approximate cores, J Math Econ (2008), doi:10.1016/j.jmateco.2007.06.006

arge as possible. This leaves the set of leftovers Nr \ S = L. Observe that |L| ≤ (m(r̂∗) − 1)|Nm(r̂∗)r̂∗ | and this bound
s independent of the replication number r.

There are a number of ways to proceed. One is to assume, as in Wooders (1983), that the payoff possibilities sets
re convex.29 Given x as above, simply consider payoff vectors y that assign a group of players with the same profile

28 See Hildenbrand, 1974, p 16, for example, for a definition of the Hausdorff limit.
29 It is only required, in fact, that one can convexify payoffs between players of the same type.

dx.doi.org/10.1016/j.jmateco.2007.06.006
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Fig. A.2. Equal treatment payoff possibilities for the balanced cover games and for a subsequence of the games.

as N�m(r̂∗)r̂∗ the payoffs given by x and assign all the leftovers zero. Consider the payoff vector, say y∗, that is the
average of all the vectors y. For all sufficiently large r, y∗ will be in the 2ε-core of the game (Nr, Vr). Another way is
to define the weak ε-core and take r sufficiently large so that (|L|/|Nr|) ≤ ε, as is done in the proof of Theorem 1 of
this paper. A third way, taken to prove Theorem 2 of this paper is to assume the compensation property and then ‘tax’
the non-leftovers to subsidize the leftovers; this has the same implication as assuming convexity—it permits payoffs
of similar players to be equalized.

A.2. Proof of Theorem 1

Proof of Theorem 1. Suppose the conclusion of the Theorem is false. Suppose first, for the purposes of obtaining
a contradiction, that there is an ε0 > 0 and a sequence of populations {(Sν, αν)} such that, for each positive integer
ν, |Sν| ≥ ν and the ε0-core of (Sν, Vαν ) is empty.

We consider first the case where Ω is finite, say Ω = {ω1, . . . , ωT }. Let sν denote the profile of (Sν, αν). By passing
to a subsequence if necessary we may assume that (1/||sν||)sν converges, say to s ∈RT+.

We now consider the case where, additionally, s is rational-valued. Let m1 be an integer such that m1s is integer-
valued. Define g = m1s. Consider a sequence of populations (S̄�, β�) where |S̄�| = ||�g|| and β� satisfies the property
that the profile of (S̄�, β�) is �g, i.e.

|{β�(i) = ωt : i ∈ S̄�}| = �g(ωt) for each t = 1, . . . , T.

Taking the definition of a payoff set for each subset of S̄� as given by φ, the pair (S̄�, β�) describes a NTU game in
coalitional form, say (S̄�, W�). We can now apply results from Wooders (1983) and Shubik and Wooders (1983) to the
sequence {(S̄�, W�)} and conclude that for some positive integer m0, for all positive integers r the (equal treatment)
uniform (ε0/2)-core of (S̄rm0 , Wrm0 ) is nonempty.

From Lemma A.1, there is an integer η((ε0/2), g) such that for all ν ≥ η((ε0/2), g), for some integer rν we have

rν(m0g) + �ν = sν and
||�ν||
||sν|| <

ε0

2
.

Let xν ∈ Vν(Sαν
) have the property that, for some subset S̄ν ⊂ Sν with profile rν(m0g), it holds that xν

ν is in the uniform
Please cite this article in press as: Wooders, M., Small group effectiveness, per capita boundedness and nonemptiness of
approximate cores, J Math Econ (2008), doi:10.1016/j.jmateco.2007.06.006

S̄

(ε0/2)-core of a subgame with player set S̄ν and where S̄ν has profile rν(m0g). Then xν is in the weak ε-core of the
game induced by the population (Sν, αν), which yields a contradiction for the case of s having rational components.

We next relax the assumption that s has rational components. Let h be a profile satisfying the conditions of Lemma
A.1; for each ν sufficiently large, for some integer rν and profile �ν we have rνh + �ν = sν and (||�ν||/||sν||) < (ε0/2).

dx.doi.org/10.1016/j.jmateco.2007.06.006
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rom the case considered above, for all ν sufficiently large, a game with the profile of the total player set equal to rνh

as a nonempty uniform (ε0/2)-core. This, and the fact that (||�ν||/||sν||) < (ε0/2), yields a contradiction.
Now we turn to the general case where Ω is a compact metric space. We approximate Ω by a finite set of types,

nd apply our result above to obtain a contradiction. Let δ(ε0/2) be a positive real number with the property that if
S, α), (S, β) ∈ F (Ω) with d(α(i), β(i)) ≤ δ(ε0/2) for each i ∈ S, then

H1(φ(S, α), φ(S, β)) <
ε0

2
|S|.

rom per capita continuity there exists such a δ(ε0/2). Let Ω1, . . . , ΩT be a partition of Ω such that if ω, ω′ ∈ Ωt

or any t, then d(ω, ω′) < δ(ε0/2). For each t = 1, . . . , T arbitrarily select ωt ∈ Ωt . For each (Sν, αν) define another
opulation (Sν, βν) where βν(i) = ωt for all i ∈ Sν with αν(i) ∈ Ωt . From our result for the finite-type case, for all suffi-
iently large ν, say ν ≥ ν0, each derived game (Sν, Vβν ) has a nonempty weak (ε0/2)-core. For ν ≥ ν0, let xν be in the
eak (ε0/2)-core of (Sν, Vβν ). From continuity and comprehensiveness we have yν = xν − (ε0/2)1Sν ∈ φ(Sν, αν).

t follows that yν is in the weak ε0-core of a game (Sν, Vαν ), a contradiction. This completes the proof of
heorem 1. �

.3. Proof of Theorem 2

roof of Theorem 2. Suppose that the Theorem is false. Then there is a positive real number ε0 > 0 and a sequence
f populations {(Sν, αν)} and derived games (Sν, Vαν ) with the properties that |Sν| → ∞ as ν → ∞ and the uniform
0-core of each derived game is empty for each game in the sequence. Without any loss of generality we may assume
hat ε0 < c, given in the definition of compensation.

Case A: Ω is finite and strict small group effectiveness is satisfied. We first consider the case where Ω is a finite set
nd, in addition, all gains to collective activities can be realized by groups bounded in size. Let Ω = {ω1, . . . , ωT }.
uppose that there is a bound B such that for all populations (Sν, αν) it holds that:

H1(φetp(Sν, αS), ∪�φetp(Skν, αSkν)) = 0,

here the union is taken over all partitions {Skν} of Sν with |Skν| ≤ B for each element Skν in the partition.
We will use the following notation and observations. Let (p1, p2, . . . , pL) be the set of all vectors p� ∈ZT+ with the

roperties that
∑T

t=1p
�
t ≤ B. Notice that each p� can be interpreted as the profile of some population whose members

ave attributes in {ω1, . . . , ωT } and which contains no more than B players. Also observe that given any population
S, α) and any partition {Sk} as above, we can describe the partition by a vector (m1, . . . , mL) where m� is the number
f elements Sk in the partition with |α−1(ωt) ∩ Sk| = p�

t for each ωt ; that is, m� is the number of subsets in the
artition with profile p�. Since {Sk} is a partition of S, it will hold that

∑L
�=1m�p

�
t = |α−1(ωt) ∩ S|. Moreover, any

alanced collection {Bν} of subsets of S, each satisfying |Bν| ≤ B, can be described by a vector (γ1, . . . , γL) ∈RT+

here γ� ∈R+ is the (total) balancing weight assigned to subsets Bν with profile p� (and
L∑

�=1

γ�p
�
t = |α−1(ωt ∩ S)| for

ach ωt, t = 1, . . . , T ).30

We now consider a sequence of balanced cover games {(Sν, Ṽαν )} derived from the games (Sν, Vαν ). For each ν, let
ν ∈RSν

be an equal treatment payoff vector in the core of the game (Sν, Ṽαν ). Since the game is balanced there exists
uch a payoff vector.

From the definition of (Sν, Ṽαν ) there is a balanced collection of subsets {Bνq} of Sν such that xν ∈ Vαν (Bνq) for each
νq � T �
Please cite this article in press as: Wooders, M., Small group effectiveness, per capita boundedness and nonemptiness of
approximate cores, J Math Econ (2008), doi:10.1016/j.jmateco.2007.06.006

ubset in the collection. As discussed above, each subset B can be represented by a vector p ∈Z+, where pt is the
he number of players with attribute ωt in Bνq. Since the collection is balanced, there are balancing weights, γν� ∈R+
or � = 1, . . . , L, where γν� is the total weight assigned to subsets Bνq with profile p� and where γν� = 0 if there are
o subsets in the collection {Bνq} with profile p�. For each ν let rν� denote the largest integer less than or equal to γν�.

30 Describing subsets of players by their profiles, and partitions of a group of players by profiles of elements of the partition, are now common
echniques in the theory of cooperative games with many players, in papers dating from Wooders (1977, 1983) to Kovalenkov and Wooders (2003)
nd beyond. The same holds holds for balanced collections of subsets of a set.

dx.doi.org/10.1016/j.jmateco.2007.06.006
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Let Ŝν ⊂ Sν be a group with the property that Ŝν is the disjoint union of rν� groups with profile p�, � = 1, . . . , L. That
is, there is a partition of Ŝν into

∑
�r

ν� groups where, for each �, there are rν� subsets in the partition with profile p�.
Denote these subsets by {Bνqj} Observe that xν

Bνqj ∈ Vαν (Bνqj). Since the game is superadditive, xν

Ŝν ∈ Vαν (Ŝν). Since

xν is in the core of (Sν, Ṽαν ), no subset of Ŝν can be improve upon xν

Ŝν .

Now observe that, since rν� is the largest integer less than or equal to γν�, it holds that
∑L

�=1(γν� − rν�) ≤ L and
thus, |Sν \ Ŝν| ≤ LB. that is, the number of players who cannot be accommodated in groups Bνqj is uniformly bounded.
From compensation, we can construct another payoff vector, xν − ε01Sν that is in the uniform ε0-core of the game,
which is a contradiction.

Case B: Ω is finite and small group effectiveness (not necessarily strict) is satisfied. Let Ω = {ω1, . . . , ωT }. From
small group effectiveness (for NTU games), there is an integer η3(ε0/8) such that for every population (S, α) it holds
that

H1(φetp(S, α), ∪�φetp(Sk, αSk )) <
ε0

8
|S|

where the union is taken over all partitions {Sk} of S with |Sk| ≤ η3(ε0/8) for each member Sk of the partition. Let
B = η3(ε0/8).

We define another pregame (Ω, φB) satisfying strict small group effectiveness. For any population (S, α) with

|S| ≤ B define φB(S, α)
def=φ(S, αν) and for any population (S, α) with |S| ≤ B define φB(S, α)

def= ∪ �φ(Sk, αSk ) where
the union is taken over all partitions {Sk} of S with |Sk| ≤ B for each member Sk of the partition.

Now consider the original sequence of populations (Sν, αν) but with derived games (Sν, Wαν ) where Wαν (S) =
φB(Sν, αν). From Case A, there is an integer ν0 such that, for all ν ≥ ν0, there is a payoff vector yν in the uniform
(ε0/2)-core of the game (Sν, Wαν ). It is routine to verify that this vector is in the uniform ε0-core of the game (Sν, Vαν ).
Thus the conclusion of Theorem 2 holds for the class of pregames treated in this case.

Case C: Ω is an arbitrary compact metric space and small group effectiveness (not necessarily strict) is satisfied. Let
δ(ε0/2) be a positive real number with the property that for all populations (S, α), (S, β) ∈ F (Ω) with d(α(i), β(i)) < δ

for each i, it holds that

H1(φ(S, α), φ(S, β)) <
ε0

2
|S|.

From per capita continuity there exists such a δ(ε0/2). Let Ω1, . . . , ΩT be a partition of Ω such that if ω, ω′ ∈ Ωt for any
t, then d(ω, ω′) < δ(ε0/2). For each t = 1, . . . , T arbitrarily select ωt ∈ Ωt . Now from the sequence of games (Sν, αν)
construct another sequence of games (Sν, βν) where, for each t = 1, . . . , T , αν(i) ∈ Ωt if and only if βν(i) = ωt . The
conclusion of Case B applies to the sequence of derived games (Sν, Vβν ). Thus, there is an integer ν1 such that for all
ν ≥ ν1 there is an equal treatment payoff vector zν in the (ε0/2)-core of the game (Sν, Vβν ).

We claim that, for each ν ≥ ν1, the payoff vector zν − ε01Sν is in the equal treatment uniform ε0-core of the
game (Sν, Vαν ). To obtain a contradiction, suppose that for some (Sν, Vαν ) there is a coalition C ⊂ Sν for which
zν
C − ε01C ∈ intVαν (C). Now let (C, β) be a population where β(i) = ωt if and only if αν(i) ∈ Ωt , t = 1, . . . , T . Then,

from per capita continuity, it holds that zν
C − (ε0/2)1C ∈ intVβν (C′), which is a contradiction to the conclusion of Case

B. From per capita continuity it also follows that zν − ε1Sν ∈ Vαn (Sν). This is a contradiction for the general case and
concludes the proof of the Theorem. �
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