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Abstract

We introduce a model of network formation whose primitives consist of a feasible set of networks, player preferences, rules of
network formation, and a dominance relation on feasible networks. Rules may range from noncooperative, where players may only
act unilaterally, to cooperative, where coalitions of players may act in concert. The dominance relation over feasible networks
incorporates player preferences, the rules of network formation, and the degree of farsightedness of players. A specification of
the primitives induces an abstract game consisting of (i) a feasible set of networks, and (ii) a path dominance relation. Using this
induced game we characterize sets of network outcomes that are likely to emerge and persist. Finally, we apply our approach and
results to characterize the equilibrium of some well-known models and their rules of network formation, such as those of Jackson
and Wolinsky, and Jackson and van den Nouweland.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction
1.1. Overview of the questions, the model and the main results

In many economic and social situations the totality of interactions between individuals and coalitions can be mod-
eled as a network. We address the following question: given preferences of individuals and rules governing network
formation, what networks are likely to emerge and persist? To address this question we introduce a model of network
formation whose primitives consist of a feasible set of networks, player preferences, the rules of network formation,
and a dominance relation. The rules of network formation may range from noncooperative, where players may only act
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unilaterally, to fully cooperative, where coalitions consisting of multiple players may act in concert. The dominance
relation may be either direct or indirect. Under direct dominance players are concerned with immediate consequences
of their network formation strategies whereas under indirect dominance players are farsighted and consider the even-
tual consequences of their strategies. As we will discuss, our framework can accommodate a wide variety of social
and economic situations.?

A specification of the primitives induces an abstract game consisting of (i) a feasible set of networks and (ii) a path
dominance relation defined on the feasible set of networks.* Under the path dominance relation, a network G path
dominates another network G if there is a finite sequence of networks, beginning with G and ending with G’ where
each network along the sequence dominates its predecessor.’ Using this induced abstract game as our basic analytic
tool we demonstrate that for any set of primitives the following results hold:

1. The feasible set of networks contains a unique, finite, disjoint collection of nonempty subsets each constituting
a strategic basin of attraction. Given preferences and the rules of governing network formation, these basins of
attraction are the absorbing sets of the process of network formation modeled via the game.

2. A stable set (in the sense of von Neumann—Morgenstern, 1944) with respect to path dominance consists of one
network from each basin of attraction.

3. The path dominance core, defined as a set of networks having the property that no network in the set is path
dominated by any other feasible network, consists of one network from each basin of attraction containing a
single network. Note that the path dominance core is contained in each stable set and is nonempty if and only if
there is a basin of attraction containing a single network.® As a corollary, we conclude that any network contained
in the path dominance core is constrained Pareto efficient. Thus, by considering the network formation game with
respect to path dominance—and thus by considering the long run—we identify networks that, given the rules of
network formation, are both stable and Pareto-efficient with respect to the original dominance relation.

4. From the results above it follows that if the dominance relation is transitive and irreflexive, then the path domi-
nance core is nonempty.

We also demonstrate specializations of our model to treat network formation games over linking networks as well
as hedonic games and we discuss how our results apply to these examples.

There are interesting connections between our notions of stability (basins of attraction, path dominance stable sets,
and path dominance core) and some of the basic notions of stability and equilibrium found in the existing literature—
such as, strong stability (Dutta and Mutuswami, 1997, and Jackson and van den Nouweland, 2005), pairwise stability
(Jackson and Wolinsky, 1996), consistency (Chwe, 1994), and Nash equilibrium. We show that in general (for all
primitives) the path dominance core is contained in the set of strongly stable networks. We conclude from our general
results therefore that, for all primitives, the existence of at least one basin of attraction containing a single network is
sufficient for the existence of a strongly stable network. We also demonstrate that, depending on how we specialize
the primitives of the model, the path dominance core is equal to the set of strongly stable networks, the set of pairwise
stable networks, or the set of Nash networks.

3 Our framework is essentially that of Chwe (1994) but applied to networks. Using Chwe’s framework we are able to take into account both rules
and preferences in the formation of networks.

4 To our knowledge, there are no prior papers formulating the problem of network formation as an abstract game. Because our abstract game is
induced from the Chwe primitives (preferences and effectiveness relations expressing the rules of network formation) our approach is very much
in the spirit of Chwe (1994) and other papers such as Gillies (1959), Harsanyi (1974), Inarra et al. (2005), Kalai and Schmeidler (1977), Moulin
and Peleg (1982), Rosenthal (1972), and Shenoy (1980).

5 Stated formally, given feasible set of networks G and dominance relation >, network G’ € G (weakly) path dominates network G € G, written
G’ >p G, if G’ = G or if there exists a finite sequence of networks {Gk}g:0 in G with G = Gy and G’ = G, such that fork=1,2,...,n

G > Gp_1.

The path dominance relation >, induced by the dominance relation > is sometimes referred to as the transitive closure of >.
6 put differently, the path dominance core is empty if and only if a/l basins of attraction contain multiple networks.
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Of particular interest are the connections between the rules of network formation, the dominance relation inducing
path dominance, and stability.” We provide a unified and systematic analysis of these connections. For example, we
show that:

(a) If path dominance is induced by a direct dominance relation (as opposed to an indirect dominance relation as in
(Chwe, 1994), for example), then the path dominance core is equal to the set of strongly stable networks.

(b) If, in addition, the rules of network formation are the Jackson—Wolinsky rules, then the path dominance core is
equal to the set of pairwise stable networks.3

(c) If path dominance is induced by a direct dominance relation and if the rules of network formation only allow
network changes brought about by individuals, then the path dominance core is equal to the set of Nash networks.

We then conclude from (3) above, the existence of at least one basin of attraction containing a single network is,
depending on how we specialize primitives, both necessary and sufficient for either (i) the existence of a strongly
stable network, or (ii) a pairwise stable network, or (iii) a Nash network.’

For path dominance induced by an indirect dominance relation as in Chwe (1994), we show that for all primitives—
and in particular for all rules of network formation—each strategic basin of attraction has a nonempty intersection with
the largest consistent set of networks (i.e., the Chwe set of networks, see Chwe, 1994).10 This fact, together with (2)
above, implies that there always exists a path dominance stable set contained in the largest consistent set. Thus, the
path dominance core is contained in the largest consistent set. In light of our results on the path dominance core and
stability (both strong and pairwise), we conclude that if path dominance is induced by an indirect dominance relation,
then any network contained in the path dominance core is not only consistent but also strongly stable, as well as
pairwise stable.!!

We remark that solution concepts defined using dominance relations have a distinguished history in the literature
of game theory. First, consider the von-Neumann-Morgenstern stable set. The vN-M stable set is defined with respect
to a dominance relation on a set of outcomes and consists of those outcomes that are externally and internally stable
with respect to the given dominance relation.!? Similarly, Gillies (1959) defines the core based on a given dominance
relation. These solution concepts, with a few exceptions, have typically been applied to models of economies or
cooperative games where the notion of dominance is based on what a coalition can achieve using only the resources
owned by its members (cf., Aumann, 1964) or a given set of utility vectors for each possible coalition (cf. Scarf,
1967). Particularly notable exceptions are Schwartz (1974), Kalai et al. (1976), Kalai and Schmeidler (1977) and
Shenoy (1980). Their motivations are in part similar to ours in that they take as given a set of possible choices of
a society and a dominance relation and, based on these, describe a set of possible or likely social outcomes called,
by Kalai and Schmeidler, the admissible set. While their examples treat direct dominance, their general results have
wider applications. We return to a discussion of the admissible set in our concluding section.

1.2. A further discussion of the model

In addition to introducing abstract games of network formation, our modeling approach contributes to the literature
by extending the class of primitives used in the analysis of network formation in three respects. These extensions,
listed below, significantly broaden the set of potential applications.

7" Although she treats a more specialized model, the questions addressed in Demange (2004) are related.

8 Under the J ackson—Wolinsky rules arc addition is bilateral (i.e., the two players that would be involved in the arc must agree to adding the arc),
arc subtraction is unilateral (i.e., at least one player involved in the arc must agree to subtract or delete the arc), and network changes take place one
arc at a time (i.e., in any one play of the game, only one arc can be added or subtracted). See Section 3.2.1 for a formal definition.

9 For Jackson—Wolinsky linking networks, Calvo-Armengol and Ilkilic (2005) provide necessary and sufficient conditions on the network link
marginal payoffs to ensure that the set of pairwise stable, pairwise Nash, and proper equilibrium networks coincide.

10 Consistency with respect to indirect dominance and the notion of a largest consistent set were introduced by Chwe (1994) in an abstract game
setting. We provide a detailed discussion of Chwe’s notion in Section 5.3.

11 Other papers on indirect dominance and consistency in games include Xue (1998), Diamantoudi and Xue (2003), and Mauleon and Vannetel-
bosch (2003).

12 Richardson (1953) gives properties an irreflexive dominance relation must satisfy relative to a given set of outcomes in order to guarantee the
existence of a VN-M stable set.
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1.2.1. Directed networks with heterogeneous arcs and multiple uses of arcs of the same type

First, we focus on directed networks rather than on linking networks'? and distinguish between nodes and decision
making players (i.e., the set of players and the set of nodes are not necessarily the same). Connections are represented
by arcs and each arc possesses an orientation or direction: arc a connecting nodes i and i’ must either go from node i
to node i’ or must go from node i’ to node i.'* For example, an individual may have links on his web page to the
web pages of all Nobel Laureates in economics but it may be that no Nobel Laureate has a link to that individual’s
web page. Connections between nodes (i.e., arcs), besides having an orientation, are allowed to be heterogeneous. To
illustrate, if the nodes in a given network represent players, an arc a going from player i to player i’ might represent
a particular type and intensity of interaction (identified by the arc label a) initiated by player i towards player i’.
Player i might direct great affection toward player i’ as represented by arc type a, but player i’ may direct only
lukewarm affection toward player i as represented by arc type a’.

Under our extended definition nodes are allowed to be connected by multiple, distinct arcs. Thus, we allow nodes to
interact in multiple, distinct ways. For example, nodes i and i’ might be connected by arcs a and a’, with arc a running
from node i to i’ and arc @’ running in the opposite direction (i.e., from node i’ to node ). If node i represents a
seller and node i’ a buyer, then arc a might represent a contract offer by the seller to the buyer, while arc a’ might
represent a counter offer or the acceptance or rejection of the contract offer. Finally, loops are allowed and arcs are
allowed to be used multiple times in a given network.!® For example, arc a might be used to connect nodes i and i’ as
well as nodes i’ and i”. Thus, under our definition nodes i and i’ as well as nodes i’ and i” are allowed to engage in
the same type of interaction as represented by arc type a.

Allowing each type of arc to be used multiple times makes it possible to distinguish coalitions by the type of
interaction taking place between coalition members and to give a network representation of such coalitions. For
example, if the nodes in a given network represent players, an ‘a-coalition’ could consist of all players i having an
a-connection with at least one other player i’. Such an a-coalition would then have a network representation as the
directed subnetwork consisting of pairs of nodes, i and i’, connected by arc type a.

Until now, most of the economic literature on networks has focused on linking networks (see Jackson, 2005 for
an excellent survey). In an undirected (or linking) network, an arc (or link) is identified with a nonempty subset of
nodes consisting of exactly two distinct nodes, for example, {i, i’}, i #i’. Thus, in an undirected network, a link has
no orientation and simply indicates a connection between two players. Moreover, links are typically not distinguished
by type (or by label)—that is, links are homogeneous. By allowing arcs to possess direction and the same type of arc
to be used multiple times and by allowing loops and nodes to be connected by multiple arcs, our definition makes
possible the application of networks to a rich set of economic environments. For example, a job opportunity market
model may embody the features introduced above; individuals may have different relationships with their superiors
in an organization and other individuals both within and outside of the organization. This may well affect social
interactions and job opportunities.

1.2.2. The rules of network formation

We explicitly model the rules of network formation and thus provide a systematic treatment of the relationship
between rules and stability. The rules of network formation specify which players must be involved in adding, sub-
tracting, or replacing an arc as well as how many and what types of arcs can be added, subtracted, or replaced in any
one play of the game.

In much of the literature, it is assumed (sometimes implicitly) that network formation is governed by the Jackson—
Wolinsky rules.!” Other rules are possible. For example, the addition of an arc might require that a simple majority

13 1n particular, we focus on the notion of directed networks introduced in Page et al. (2005).

14 We denote arc a going from node i to node i’ via the ordered pair (a, (i,i’)), where (i,i’) is also an ordered pair. Alternatively, if arc a goes
from node i’ to node i, we write (a, (i’,1)).

15 Under our extended definition, arc a’ might also run in the same direction as arc a. However, our definition does not allow arc a to go from
node i to node i’ multiple times.

16 A loop is an arc going from a given node to that same node. For example, given arc a and node i, the ordered pair (a, (i, 7)) is a loop.

17 Jackson—van den Nouweland (2005) focus on linking networks and assume that link addition is bilateral while link subtraction is unilateral.
But in their model, network changes are not required to take place one link at a time—multiple link changes can take place in any one play of the
game. We shall refer to these rules as the Jackson—van den Nouweland rules. Calvo-Armengol and Ilkilic (2005) also consider linking networks
under bilateral-unilateral rules and allow multiple link changes.
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of the players agree to the addition while the deletion of an arc might require that a two-thirds majority agree to the
deletion. Under our approach, such rules are allowed. We achieve this flexibility by representing the rules of network
formation via a collection of coalitional effectiveness relations, {— s}s, defined on the feasible set of networks. Given
feasible networks G and G’, if the relation G —g G’ holds, the players in coalition S can change network G to
network G’. In constructing our abstract game of network formation, we will equip the feasible set of networks with
a dominance relation which incorporates—or represents—both the preferences of individuals and coalitions and the
rules of network formation as represented via the coalitional effectiveness relations {— g}s. Thus, the stability results
we obtain using the path dominance relation will reflect both preferences and rules.

1.2.3. The dominance relation defined on feasible networks
While all of our main results (Section 4) hold for path dominance induced by any binary relation, we will focus
primarily on path dominance induced by either direct dominance or indirect dominance (Sections 3.3.1 and 3.3.2).

1.3. Examples

To demonstrate the flexibility of our approach and the wide applicability of our results, we consider three examples.
Our first example treats noncooperative network formation games and shows that any such network formation game
possessing a potential function has basins of attraction each consisting of a single network—and thus shows that any
noncooperative network formation game possessing a potential function has a nonempty path dominance core. Our
second example demonstrates how our approach can be applied to Jackson—Wolinsky linking networks and provides
necessary and sufficient conditions for nonemptiness of the set of pairwise stable linking networks. Finally, our third
example, proposed to us by Salvador Barbera and Michael Maschler in private correspondence, shows how our frame-
work also encompasses hedonic games—games where players’ preferences are defined over the set of coalitions in
which they may be members. The example illustrates how, through indirect dominance, outcomes in a game might
move from one hedonic core point to another. From our prior results, this demonstrates that, even though the hedonic
core, that is the core with respect to direct dominance, is nonempty, the hedonic farsighted core, that is the core with
respect to indirect dominance, is empty. (In related work Diamantoudi and Xue, 2003 also investigate hedonic games
with indirect dominance, but with a different set of effectiveness relations than we consider here.)

2. Directed networks
2.1. The definition

Let N be a finite set of nodes, with typical element denoted by i, and let A be a finite set of arcs types (or simply
arcs), with typical element denoted by a. Arcs represent potential types of connections between nodes, and depending
on the application, nodes can represent economic players or economic objects such as markets or firms. The following
definition is from Page et al. (2005).

Definition 1 (Directed networks).
Given node set N and arc set A, a directed network, G, is a nonempty subset of A x (N x N). The collection of
all directed networks is denoted by P(A x (N x N)).

A directed network G € P(A x (N x N)) specifies how the nodes in N are connected via the arcs in A. Note
that in a directed network order matters. In particular, if (a, (i,i’)) € G, this means that arc a goes from node i to
node i’. Also, note that loops are allowed—that is, we allow an arc to go from a given node back to that given node.
For example, in a network model of journal citations loops could represent self-cites.!® Finally, an arc can be used
multiple times in a given network and multiple arcs can go from one node to another. However, under our definition
an arc a is not allowed to go from a node i to a node i’ multiple times.

18 Other examples could be developed. For example, in a network model of information sharing, the fact that each player knows his own informa-
tion would be represented by a loop.
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Fig. 1. Network G.

The following notation is useful in describing changes in networks and the properties of networks. Given directed
network G € P(A x (N x N)), let GU (a, (i,i’)) denote the network obtained by adding arc a from node i to node i’
to network G, and let G\(a, (i,i")) denote the network obtained by subtracting (or deleting) arc a from node i to
node i’ from network G. Also, let

G(a):={(i,i’) € N x N: (a, (i,i")) € G},
and (1)
G(i) :={a € A: for some i’ € N either (a, (i,i")) € G or (a, (i’,i)) € G}.

Thus, G(a) is the set of node pairs connected by arc a in network G, and G (i) is the set of arcs going from node i or
coming to node i in network G.

Note that if for some arc a € A, G(a) is empty, then arc a is not used in network G. Moreover, if for some node
i € N, G(i) is empty then node i is not used in network G, and node i is said to be isolated relative to network G.

Suppose that the node set N is given by N = {iy, i, ..., i5}, while the arc set A is given by A = {ay, a2, ..., as,
ag, a7}. Consider network G in Fig. 1.

Note that in network G nodes i1 and i, are connected by two a; arcs running in opposite directions and that nodes i
and i3 are connected by two arcs, a1 and a3, running in the same directions from node i3 to node i;. Thus, G(a;) =
{(i1,12), (i2,01), (i3,i1)} and G(a3) = {(i3,i1)}. Observe that (ag, (i4,i4)) € G is a loop. Thus, G(ag) = {(is,i4)}.
Also, observe that arc a7 is not used in network G. Thus, G (a7) = @J. Finally, observe that G (i4) = {aa, as, as}, while
G (is) = ¥. Thus, node is is isolated relative to G."°

Throughout we shall take as the feasible set of networks some nonempty subset G of P(A x (N x N)).

2.2. Linking networks, directed graphs, and directed networks

As before, let N denote a finite set of nodes. A linking network, say g, consists of a finite collection of subsets of
the form {i,i’}, i #i’. Thus, {i, i’} € g means that nodes i and i’ are linked in network g. For example, g might be
given by g = {{i,i’}, {i’,i"}} for i,i’, and i” in N. Note that all connections or links are the same (i.e., connection
types are homogeneous), direction does not matter, and loops are ruled out. Letting gV denote the collection of all
subsets of N of size 2, the collection of all linking networks given N is given by P(g") where P(g") denotes the
collection of all nonempty subsets of gV (e.g., see the definition in Jackson and Wolinsky, 1996).2°

A directed graph, say E, consists of a finite collection of ordered pairs (i,i’) € N x N. For example, E might be
given by E = {(i, i), (i’, i)} for (i,i") and (i’,i’) in N x N. Stated more compactly, a directed graph E is simply a
subset of N x N. Thus, in any directed graph connection types are again homogeneous but direction does matter and
loops are allowed.

19 If the loop (a7, (is, i5)) were part of network G in Fig. 1, then node i5 would no longer be considered isolated under our definition. Moreover,
we would have G (i5) = {a7}.
20 In Section 6.3, we show how our approach to network formation games, as well as some of our main results, can be applied to linking networks.
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Under our definition, a directed network G is a subset of A x (N x N), where as before A is a finite set of arcs. Thus,
in a directed network, say G € P(A x (N x N)), connection types are allowed to be heterogeneous (distinguished by
arc labels), direction matters, and loops are allowed.

Formally, linking networks are not a special cases of directed networks. However, any linking network can be given
an alternative representation as a directed network. To see this, consider linking network g € P(g") and suppose
nodes i and i’ are linked in network g (i.e., {i, i’} € g). Next consider a directed network G € P(A x (N x N)) where
the set of arc types A contains one arc, A = {1}, and say that nodes i and i’ are directly linked in G if and only if there
is an arc from i to i’ and another arc from i’ to i.2! We say that directed network G is an alternative representation of
linking network g provided

{i,i’} € g if and only if i and i’ are directly linked in G.

With multiple arc types, directed networks allow us to differentiate links by types or intensity levels, and thus allow
us to consider a richer collection of links between nodes. For example, suppose that A contains multiple arc types
each specifying a type of connection or an intensity level of a connection. We say that i and i’ are a-linked in network
G € P(A x (N x N)) provided both (a, (i,i")) and (a, (i’,i)) are in G. Thus, various sorts of links between players
can be modeled and analyzed.

As we shall show in Section 6.2, in addition to the fact that linking networks can be given alternative representations
as directed networks, the game theoretic approach to network formation we shall develop here can be applied directly
to linking networks.

3. Preferences, rules, and dominance relations
3.1. Preferences

Let D denote the set of players (or economic decision making units) with typical element denoted by d, and let
P (D) denote the collection of all coalitions (i.e., nonempty subsets of D) with typical element denoted by S. Note
that, the set of players D and the set of nodes N are not necessarily the same set.

Given a feasible set of directed networks G € P(A x (N x N)), we shall assume that each player’s preferences
over networks in G are specified via an irreflexive binary relation 4. Thus, player d € D prefers network G’ € G
to network G € G if G’ =; G and for all networks G € G, G ¥4 G (irreflexivity). Coalition S’ € P(D) prefers
network G’ to network G, written G’ =g G, if G' =4 G for all players d € S’.

In many applications, a player’s preferences are specified via a real-valued network payoff function, v, (-). For each
player d € D and each directed network G € G, vy(G) is the payoff to player d in network G. Player d then prefers
network G’ to network G if vg(G’) > vy(G). Moreover, coalition S’ € P(D) prefers network G’ to network G if
v7(G") > v4(G) for all d € §’. Note that the payoff vs(G) to player d depends on the entire network. Thus, the player
may be affected by directed links between other players even when he himself has no direct or indirect connection
with those players. Intuitively, ‘widespread’ network externalities are allowed.

Remark 1. All of our results on basins of attraction, path dominance stable sets, and the path dominance core (Theo-
rems 1-4 below) remain valid even if coalitional preferences {>s}scp(p) over networks are based on weak preference
relations {=g}q4ep. If G’ -4 G then player d either strictly prefers G’ to G (denoted G’ >, G) or is indifferent be-
tween G’ and G (denoted G’ ~; G). Given weak preferences {=4}4ecp, coalition S’ € P(D) prefers network G’ to
network G, written G’ >g¢ G, if for all players d € ', G’ -4 G and if for at least one player d’ € S, G' =, G. Note
that if coalitional preferences {>s}scp(p) are defined in this way (i.e., using weak preferences {:Za4}qep), then they
are irreflexive (i.e., G %5 G for all G € G and S € P(D)).

21 Thus, nodes i and i’ are directly linked in G if and only if (1, (i,i")) and (1, (i’, 1)) are in G. Whereas, nodes i and i’ are connected if and only
if (1, (i,i")) or (1, (i’, 1)) is in G (i.e., mutual arcs raise a connection to the level of a link).
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Network G'1 Network Go

Fig. 2.

3.2. Rules

The rules of network formation are specified via a collection of coalitional effectiveness relations {— s}scp(p)
defined on the feasible set of networks G. Each effectiveness relation — g represents what a coalition S can do. Thus,
if G — g G’ this means that under the rules of network formation coalition S € P(D) can change network G € G to
network G’ € G by adding, subtracting, or replacing arcs in G.

3.2.1. Examples of network formation rules
Jackson—Wolinsky rules. To illustrate, consider Fig. 2 depicting two networks G| and G, in which the nodes repre-
sent players. Thus, D = N = {iy, i», i3}.

Observe that

G2:G1U(al,(i3,i1)) and G]ZGQ\(al,(i3,i1)).

Assume that

(i) adding an arc a from player i to player i’ requires that both players i and i’ agree to add arc a (i.e., arc addition
is bilateral);
(ii) subtracting an arc a from player i to player i’ requires that player i or player i’ agree to subtract arc a (i.e., arc
subtraction is unilateral);
(iii) for any pair of networks G and G’ in G, if G — g G’, then G # G’ and

either G’ =G U (a, (i, ")) for some (a, (i,i")) € A x (N x N)
or
G’ =G\(a, (i,i")) for some (a, (i,i")) € A x (N x N).

For the case D = N (i.e., players = nodes), we shall refer to rules (i)—(iii) above as Jackson—Wolinsky rules. Note that
rules (i)—(iii) imply that if G — g G’, then 1 < |S| < 2. Referring to Fig. 2, the effectiveness relations over networks
G1 and G under Jackson—Wolinsky rules are given by

G, — Gy G, — Gy G,— G| G,—> G,
{i1.i3} {i1.i3} {i1} {i3}

Jackson—van den Nouweland rules. Consider networks Go and G3 depicted in Fig. 3 and again suppose that nodes
represent players.
Observe that
G3=(Go\(a1. (i2.11))) U (a1, (i3.i1)) U (a3, (i3, 11))

and

Go=(G3\((a1. (i3,iD) U (a3, (i3,i1)))) U (a1, (2, i1)).
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Network Gg Network G

Fig. 3.

Assume that

(i) adding an arc a from player i to player i’ requires that both players i and i’ agree to add arc a (i.e., arc addition
is bilateral);

(ii) subtracting an arc a from player i to player i’ requires that player i or player i’ agree to subtract arc a (i.e., arc
subtraction is unilateral);

For the case D = N (i.e., players = nodes), we shall refer to rules (i)—(ii) above as Jackson—van den Nouweland
rules. Thus, the Jackson—van den Nouweland rules are the Jackson—Wolinsky rules without the one-arc-at-a-time
restriction. Note that if arc addition is bilateral and arc subtraction is unilateral (i.e., if rules (i) and (ii) hold), then
G — s G’ implies that G’ is obtainable from G via coalition S, that is,

() (a,(,i") € G and (a, (i,i")) ¢ G
={i,i"}CS;
(i) (a, (i,i")) ¢ G" and (a, (i,i")) € G
=, i'YNS#0.

Referring to Fig. 3, the effectiveness relations over networks G and G3 under Jackson—van den Nouweland rules are
given by

Gy — G3 Gy — G3 Gz — Gy G3 —> Gy.
{i1,i2,i3} {i1,i3} {i1,i2} {i1,i2,i3}

Noncooperative rules. Again suppose that nodes represent players and assume that

(i) adding an arc a from player i to player i’ requires only that player i agree to add the arc (i.e., arc addition is
unilateral and can be carried out only by the initiator, player i);
(ii) subtracting an arc a from player i to player i’ requires only that player i agree to subtract the arc (i.e., arc
subtraction is unilateral and can be carried out only by the initiator, player i);
(iii) G — 5 G’ implies that | S| = 1 (i.e., only network changes brought about by individual players are allowed).

We shall refer to rules (i)—(iii) as noncooperative. Our specification of noncooperative rules is similar to that given by
Bala and Goyal (2000). Note that a player i can add or subtract an arc to player i’ without regard to the preferences
of player i’. Thus in general under noncooperative rules, effectiveness relations display a type of symmetry, and in
particular, if G 7 G’, then G’ 7 G.

1 14

Under noncooperative rules, the effectiveness relations over networks G and G in Fig. 2 are given by

G1—> Gy G, — G.
{i3} {i3}
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Note that under noncooperative rules, networks Gy and G3 in Fig. 3 are not related under the effectiveness relations
{—1{i}}ien. However, referring to the networks in Figs. 2 and 3, under the noncooperative rules we have, for example,
the following effectiveness relations

G3 — i) G2 G2 —i3) Go
and
G() —>{i3} Gz Gz —>{in} G3.

(%, %)-voting rules.  All of the rules above require that arc addition and arc subtraction involve at least one player
who is a party to the arc. Consider now arc addition and arc subtraction based on voting. If nodes represent players,
then under certain voting rules, arcs can be imposed on players. To see this, consider the following rules for arc
addition and arc subtraction.

(i) adding an arc a from player i to player i’ requires a simple majority agree to add arc a;
(ii) subtracting an arc a from player i to player i’ requires a % majority agree to subtract arc a;
(iii) for any pair of networks G and G’ in G, if G — s G’, then G # G’ and

either G’ =G U (a, (i,i")) for some (a, (i,i)) € A x (N x N)
or
G'=G\(a, (i,i")) for some (a, (i,i")) € A x (N x N)

(i.e., networks changes take place one arc at a time).

We shall refer to rules (i)—(iii) above as (%, %)-voting rules. Thus, under rules (i)(iii), if G —g G’, then G # G’
and either

G'=GU(a,(i,i") for some (a, (i,i")) € A x (N x N) and % >

1
D[~ 2

or
G'=G\(a, (i,i") for some (a, (i,i")) € A x (N x N) and {5 > 3.

Referring to Fig. 2, the effectiveness relations over networks G| and G, under (%, %)—voting rules are given by

G — Gy G — Gy G — Gy Gy — G»
{i1,iz} {i1,i3} {iz,i3} {i1,i2,i3}
and

G2 —> G] .
{i1,02,i3}
Note that under (%, %)—Voting rules the move from network G; to network G, may involve the imposition of arc
ay from player i3 to player i; upon player i; by players i» and players i3. Also, note that under (%, %)-voting rules
in order to move from network G, back to network G (i.e., in order to remove arc a; from player i3 to player i)
requires the agreement of all three players.

Nonuniform rules and the Network Representation of Network Formation rules. 1In all of the examples above, the
rules for arc addition and arc subtraction are uniform across pairs of networks. In some applications, such uniformity
is not present. One very concise way to write down such nonuniform network formation rules is to use a network
representation. In particular, suppose we write

(5.(G,G))ifand only if G -5 G'.

Thus, (S, (G, G")) if and only if under the rules coalition S € P(D) can change network G to network G'. Letting the
set of arcs be given by the collection of all coalitions P (D) and letting the set of nodes be given by the feasible set of
networks G, the rules of network formation can be represented by a network G C P(D) x (G x G). Then the set of
all possible network formation rules is given by the set of all such networks.
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3.3. Dominance relations

We will focus primarily on two types of dominance relations on the feasible set of networks G C P(A x (N x N)),
direct and indirect dominance.

3.3.1. Direct dominance
Network G’ € G directly dominates network G € G, sometimes written G’ 1> G, if for some coalition § € P (D),

G <s G’
and

G—G'.
s

Thus, network G’ directly dominates network G if some coalition S prefers G’ to G and if under the rules of network
formation coalition S has the power to change G to G’.

3.3.2. Indirect dominance
Network G’ € G indirectly dominates network G € G, written G’ I>1> G, if there is a finite sequence of networks,

GO7 Gl 9 * Gh’
with G = Gy, G' = Gj, and Gy € G for k=0, 1, ..., h, and a corresponding sequence of coalitions,
Sl b SZ’ AR ] Sl”,)

suchthatfork=1,2,...,h

Gr—1— G,
Sk
and

Gr-1 <5, Gp.

Note that if network G’ indirectly dominates network G (i.e., if G’ >> G), then what matters to the initially deviating
coalition Sy, as well as all the coalitions along the way, is that the ultimate network outcome G’ = G}, be preferred.
Thus, for example, the initially deviating coalition S; will not be deterred from changing network G to network G
even if network G is not preferred to network G = G, as long as the ultimate network outcome G’ = G, is preferred
to Gy, that is, as long as G <, G,z

3.3.3. Path dominance

Each dominance relation > induces a path dominance relation on the set of networks. In particular, corresponding to
dominance relation > on networks G there is a corresponding path dominance relation >, on G specified as follows:
network G’ € G (weakly) path dominates network G € G with respect to > (i.e., with respect to the underlying
dominance relation >), written G’ > p G, if G’ = G or if there exists a finite sequence of networks {Gk}ZZO in G with
G, =G"and Gog= G such thatfork=1,2,...,h

Gy > Gi_q.

We refer to such a finite sequence of networks as a finite domination path and we say network G’ is >-reachable from
network G if there exists a finite domination path from G to G’. Thus,

..
G >, G if and only if { (G;/ i (>; -reachable from G, or )
If network G is reachable from network G, that is, if there is a finite domination path from G back to G then we call
this path a circuit. Finally, if network G is not reachable from any network in G and if no network in G is reachable
from G, then network G is isolated (i.e., network G € G is isolated if there does not exist a network G’ € G with
G >2,GorG>,G).

22 In order to capture the idea of farsightedness in strategic behavior, Chwe (1994) analyzes abstract games equipped with indirect dominance
relations in great detail, introducing the equilibrium notions of consistency and largest consistent set. The basic idea of indirect dominance goes
back to the work of Guilbaud (1949) and Harsanyi (1974).



EH. Page, Jr, M. Wooders / Games and Economic Behavior 66 (2009) 462—487 473

:

Fig. 4. Directed graph of dominance relation >.

3.3.4. The directed graph of a dominance relation

It is often useful to represent the dominance relation over networks using a directed graph. For example, Fig. 4
depicts the graph of dominance relation > on the feasible set of networks G = {Gg, Gy, ..., G7}.

The arrow (or >-arc) from network G3 fo network G4 in Fig. 4 indicates that G4 dominates G3. Given primitives
(G, {>s}, {— s}, >)sep(p) and given that > is a direct dominance relation, the >-arc from network G3 to network G4
means that for some coalition S, G4 is preferred to Gz and more importantly, that coalition S has the power to change
network G3 to network G4. Thus, G3 <5 G4 and G3 — 5 G4. But notice also that there is a >-arc in the opposite
direction, from network G4 to network G3. Thus, G3 also dominates G4, and thus for some other coalition S’ distinct
from coalition S, that is, some coalition §’ with S'N S =0, G4 <g G3 and G4 — g G3.23

Note that network G3 is >-reachable from network G3 via two paths. Thus, the graph of dominance relation >
depicted in Fig. 4 contains two circuits. Defining the length of a domination path to be the number of >-arcs in the
path, these two circuits are of length 4 and length 2.

Because networks G, and G5 in Fig. 4 are on the same circuit, G5 is >-reachable from G; and G, is >-reachable
from Gs. Thus, Gs path dominates G (i.e., G5 =, G2) and G, path dominates G5 (i.e., G2 = Gs). The same
cannot be said of networks G and Gs in Fig. 4. In particular, while G5 >, G, it is not true that Gy >, G5 because
G is not >-reachable from G5. Finally, note that network Gy is isolated.

4. Network formation games and stability

We can now present our main results. Using the abstract network formation game with respect to path dominance
given by the pair
(G, 2p) 3)

and induced by primitives

(G (=5} 1= 51 >) s peoy- @)

we introduce and characterize the notions of (i) strategic basins of attraction, (ii) path dominance stable sets, and (iii)
the path dominance core. All of the results presented in this section hold for any path dominance relation induced by

23 Note that if preferences over networks are weak as in Remark 1, then the statement, for some other coalition S’ distinct from coalition S can be
weakened to for some other coalition S’ not equal to coalition S. With this weakening, the requirement that the intersection of S and S’ be empty
is no longer required.
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an irreflexive dominance relation constructed from coalitional preferences, {>s}secp(p) and coalitional effectiveness
relations, {— s}sep(D) R

4.1. Networks without descendants

If Gy 2, Go and Gg =) G1, networks G and G are equivalent, written G1 =, Gy. If networks G and G are
equivalent then either networks G1 and G coincide or G| and G are on the same circuit (see Fig. 4 for a picture of
a circuit). If Gy >, Go but G and Gy are not equivalent (i.e., not G1 =, Gy), then network G is a descendant of
network G and we write

G| >, Go. &)

Referring to Fig. 4, observe that network G5 is a descendant of network G1, that is, G5 >, G1.
Network G’ € G has no descendants in G if for any network G € G

G >, G implies that G =, G'.

Thus, if G’ has no descendants then G > » G’ implies that G and G’ coincide or lie on the same circuit.?
In attempting to identify those networks which are likely to emerge and persist, networks without descendants are
of particular interest. Here is our main result concerning networks without descendants.

Theorem 1 (All path dominance network formation games have networks without descendants).
Let (G, >)) be a network formation game. For every network G € G there exists a network G' € G such that
G' >, G and G’ has no descendants.

Proof. Let G be any network in G. If G has no descendants then we are done. If not choose G such that G| >, Go.
If G has no descendants then we are done. If not, continue by choosing G2 >, G. Proceeding iteratively, we can

generate a sequence, Go, G, G2, .... Now observe that in a finite number of iterations we must come to a network G/
without descendants. Otherwise, we could generate an infinite sequence, { Gy}, such that for all k,
G >p Gr-1.

However, because G is finite this sequence would contain at least one network, say G/, which is repeated an infinite
number of times. Thus, all the networks in the sequence lying between any two consecutive repetitions of G would
be on the same circuit, contradicting the fact that for all k, Gy is a descendant of G (i.e., Gk >p Gk—1). O

By Theorem 1, in any network formation game (G, > ), corresponding to any network G € G there is a network
G’ € G without descendants which is >-reachable from G. Thus, in any network formation game the set of networks
without descendants is nonempty. Referring to Fig. 4, the set of networks without descendants is given by

{Go, G2, G3, G4, G5, G7}.

We shall denote by Z the set of networks without descendants.
4.2. Basins of attraction

Stated loosely, a basin of attraction is a set of equivalent networks to which the strategic network formation process
represented by the game might tend and from which there is no escape. Formally, we have the following definition.

Definition 2 (Basin of attraction).
Let (G, =) be a network formation game. A set of networks A C G is said to be a basin of attraction for (G, >,)
if

24 In fact, all the results in this section hold for any abstract game (G, > p) Where G 1is a finite set of outcomes and > p 1s a path dominance relation
induced by any binary relation on G.
25 Note that any isolated network is by definition a network without descendants (e.g., network G in Fig. 3).
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1. the networks contained in A are equivalent (i.e., for all G’ and G in A, G’ = p G) and for no set A’ having A as a
strict subset is this true that all the networks in A’ are equivalent,26 and
2. no network in A has descendants (i.e., there does not exist a network G’ € G such that G’ >, G for some G € A).

As the following characterization result shows, there is a very close connection between networks without descen-
dants and basins of attraction.

Theorem 2 (A characterization of basins of attraction).
Let (G, =) be a network formation game and let A be a subset of networks in G. The following statements are
equivalent:

1. A is a basin of attraction for (G, = ).
2. There exists a network without descendants, G € Z, such that

A=(G' eZ: G'=,G).
Proof. (1) implies (2): Because the sets A and {G' € Z: G’ =, G}, G € Z, are equivalence classes, A #{G’ €
Z: G' =), G} implies that
AN{G' € Z: G'=,G}=@forall G € Z.

Thus, if (2) fails, this implies that A contains a network with descendants. Thus, A cannot be a basin of attraction for
(G, >p), and thus, (1) implies (2).?
(2) implies (1): Suppose now that

A={G'€Z: G'=,G)

for some network G € Z. If A is not a basin of attraction, then for some network G” € G, G” >, G’ for some G’ € A.
Butnow G” >, G’ and G’ =, G imply that G” >, G, contradicting the fact that G € Z. Thus, (2) implies (1). O

In light of Theorem 2, we conclude that in any network formation game (G, >,), G contains a unique, finite,
disjoint collection of basins of attraction, say {Aj, Ay, ..., A, }, where foreachk=1,2,...,m (m > 1)
Ay =Ag: Z{G/ eZ: G’ =p G}

for some network G € Z. Note that for networks G’ and G in Z such that G’ =, G, Ag' = Ag (i.e. the basins of
attraction A and Ag coincide). Also, note that if network G € G is isolated, then G € Z and

Ag:={G' €Z: G'=, G} ={G}
is, by definition, a basin of attraction—but a very uninteresting one.
Example 1 (Basins of attraction).
In Fig. 4 above the set of networks without descendants is given by
Z={Go, G2, G3, G4, Gs, G7}.

Even though there are six networks without descendants, because networks G2, G3, G4, and G5 are equivalent, there
are only three basins of attraction:

Ay ={Go}, A> ={G2,G3,G4,Gs}, and A3 ={G7}.
Moreover, because G», G3, G4, and G5 are equivalent,

AGZ = AG3 ZAG4 = AG_S = {G27 G37 G49 GS}'

26 A is a strict subset of A’ if

A C A" and A"\A #£7.

27 Note thatif G € Z and G’ =, G, then G’ € Z.
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4.3. Stable sets with respect to path dominance

The formal definition of a > -stable set is as follows.28

Definition 3 (Stable sets with respect to path dominance).
Let (G, =) be a network formation game. A subset V of networks in G is said to be a stable set for (G, > ) if

(a) (internal > ,-stability) whenever Go and G are in V, with Go # G, then neither G| >, Go nor Go >, G hold,
and
(b) (external > -stability) for any Gq ¢ V there exists G| € V such that G1 >, Gy.

In other words, a nonempty subset of networks V is a stable set for (G, >,) if Go and G| are in V, with G # G,
then G is not reachable from G, nor is G reachable from G1, and if Gg ¢ V, then there exists G| € V reachable
from Gy.

We now have our main results on the existence, construction, and cardinality of stable sets.??

Theorem 3 (Stable sets: existence, construction, and cardinality).
Let (G, =p) be a network formation game, and without loss of generality assume that (G, =) has basins of
attraction given by

{A17A27"'7Am}7

where basin of attraction Ay contains |Ay| many networks (i.e., |Ay| is the cardinality of Ay). Then the following
statements are true:

1. VC G is a stable set for (G, =) if and only if V is constructed by choosing one network from each basin of
attraction, that is, if and only if V is of the form

V:{Gl,GZ,...,Gm},

where G € Ay fork=1,2,...,m.
2. (G, =p) possesses

ALl - |Ag] - |Ap| =M
many stable sets and each stable set, Vy, g =1,2, ..., M, has cardinality
Vol = (A1, Ao, A} = m.

Proof. It suffices to prove (1). Given (1), the proof of (2) is straightforward. To begin, let
V={G1,Ga,...,Gn},

where G € A fork =1,2,...,m, and suppose that for G and Gy in V, Gy >, G. Since G € Ay has no descen-
dants, this would imply that Gy =, G. But this is a contradiction because G, € Ay and Gy € Ay and the basins of
attraction Ay and Ay are disjoint. Thus, V is internally > ,-stable. Now suppose that network G is not contained in V.
By Theorem 1, there exists a network G’ € G without descendants such that G’ > » G. By Theorem 2, G’ is contained
in some basin of attraction A; and therefore G’ = p G where Gy is the kth component of {G1, G2, ..., Gy} Thus,
we have Gy >, G’ =p G implying that G; >, G, and thus V is externally > ,-stable.

Suppose now that V C G is a stable set for (G, >). First note that each network G in V is a network without
descendants. Otherwise there exists G’ € G\V such that G’ > » G. But then because V is externally > ,-stable, there

28 By equipping the abstract network formation game with the path dominance relation rather than the original dominance relation, we entirely
avoid the famous Lucas (1968) example of a game with no stable set. A similar approach is taken by Inarra et al. (2005). Also, see van Deemen
(1991).

29 These results can be viewed as applications of some classical results from graph theory to the theory of network formation games (e.g., see
Berge, 2001, Chapter 2).
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exists G” € V, G” # G, such that G” >, G’ implying that G” >, G and contradicting the internal > ,-stability of V.
Because each G € V is without descendants, it follows from Theorem 2 that each G € V is contained in some basin
of attraction A;. Moreover, because V is internally > ,-stable and because all networks contained in any one basin of
attraction are equivalent, no two distinct networks contained in V can be contained in the same basin of attraction. It
only remains to show that for each basin of attraction, Ay, k=1,2,...,m,

VA #0.

Suppose not. Then for some k', VN Ay = (. Because all networks in Ay are without descendants, for no network
G € Ay is it true that there exists a network G’ € V such that G’ > p G. Thus, we have a contradiction of the external
> p-stability of V. O

Example 2 (Basins of attraction and stable sets).
Referring to Fig. 4, it follows from Theorem 3 that because

[A1] - |Az] - |Az]=1-4-1=4,

the network formation game (G, >,) has 4 stable sets, each with cardinality 3. By examining Fig. 4 in light of
Theorem 3, we see that the stable sets for (G, > ) are given by

V1 ={Go, G2, G7},
V2 ={Go, G3, G7},
V3 ={Go, G4, G7},
V4 ={Go, G5, G7}.

4.4. The path dominance core

Definition 4 (The path dominance core).
Let (G, >,) be a network formation game. A network G € G is contained in the path dominance core C C G if
and only if there does not exist a network G’ € G, G' # G, such that G’ >, G.

Our next results give necessary and sufficient conditions for the path dominance core of a network formation game
to be nonempty, as well as a recipe for constructing the path dominance core.

Theorem 4 (Path dominance core: nonemptiness and construction).
Let (G, >p) be a network formation game, and without loss of generality assume that (G, >p) has basins of
attraction given by

{A1, Ag, . Apd,
where basin of attraction Ay contains |Ay| many networks. Then the following statements are true:
1. (G, =) has a nonempty path dominance core if and only if there exists a basin of attraction containing a single

network, that is, if and only if for some basin of attraction Ay, |Ax| = 1.
2. Let

{AklvAkZﬂ ...,Akn} C{A, Ay, ..., Ay},

be the subset of basins of attraction containing all basins having cardinality 1. Then the path dominance core C
of (G, =) is given by

C={Gy,,Giy, ..., Gy, },
where Gy, € Ay, fori=1,2,...,n.
Proof. It suffices to show that a network G is contained in the path dominance core C if and only if G € Ay for some

basin of attraction Ay, k = 1,2, ..., m, with |Az| = 1. First note that if G is in the path dominance core, then G is
a network without descendants. Thus, G € A; for some basin of attraction Ay. If |Az| > 1, then there exists another
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Fig. 5. Graph of a different dominance relation >.

network G’ € Ay such that G’ =, G. Thus, G’ >, G contradicting the fact that G is in the path dominance core.
Conversely, if G € A, for some basin of attraction Ay with |A;| = 1, then there does not exist a network G’ # G such
that G' >, G. O

Remark 2. If coalitional preferences {>s}scp(p) over networks are based on weak preference relations {ZZ4}aep
rather than on strong preference relations {>;}4ep (see Remark 1 above), then the corresponding path dominance
core—the weak path dominance core—is contained in the path dominance core based on strong preference relations.

Example 3 (Basins of attraction and the path dominance core).
It follows from Theorem 4 that the path dominance core of the network formation game (G, > ) with feasible set
G ={Go, Gy,...,G7}
and path dominance relation >, induced by the dominance relation depicted in Fig. 4 is
C={Go, G7}.

Fig. 5 contains the graph of a different dominance relation on G = {Go¢, Gy, ..., G7}.
Denoting the new dominance relation by >, the network formation game (G, > p) with respect to the path domi-
nance relation >, induced by the dominance relation > has 3 circuits and 2 basins of attraction,

A1 ={G2,G3,G4,Gs} and A, ={Gg, G7}.

Because |A1| =4 and |A;| = 2, by Theorem 4 the path dominance core of (G, >,) is empty. By Theorem 3, G, > »)
has 8 stable sets each containing 2 networks (i.e., each with cardinality 2). These stable sets are given by

V1 =1{G2, G¢},
V2 ={G3, Ge},
V3 ={G4, Ge},
V4 =1{Gs, Ge},
Vs ={G2, G7},
Ve ={G3, G7},
V7 ={G4, G7},
Vs ={Gs, G7}.

4.4.1. The path dominance core and constrained Pareto efficiency
Given primitives (G, {>s}, {— s}, >)sep(p), we say that a network G € G is constrained Pareto efficient if and
only if there does not exist another network G’ € G such that (i) some coalition S can change network G to network G’
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(that is, G — ¢ G’ for some coalition S € P(D)) and (ii) G’ is preferred by all players (that is, G <4 G’ for all players
d € D). Letting E denote the set of all constrained Pareto efficient networks, it is easy to see that the path dominance
core C of network formation game (G, > ) is a subset of E, that is, C C E.

Under the classical notion of Pareto efficiency, a network G is said to be Pareto efficient if and only if there does
not exists another network G’ such that G <4 G’ for all players d € D, regardless of whether or not some coalition §
can change network G to network G’. Letting PE denote the set of all classically Pareto efficient networks, it is easy to
see that PE C [E. Note, however, that if under primitives (G, {>s}, {— s}, >)scp(p), any network G can be changed
to any other network G’ via the actions of some coalition S, then the notions of constrained Pareto efficiency and
classical Pareto efficiency are equivalent. Thus, if the collection of coalitional effectiveness relations {— s}sep(p)
on G is complete, that is, if for any pair of networks G and G’ in G, G — g G’ for some coalition S € P(D), then
PE =E, and we have C C PE =E.

5. Other stability notions for network formation games
5.1. Strongly stable networks
We begin with a formal definition of strong stability for abstract network formation games.

Definition 5 (Strong stability).
Given primitives (G, {>s}, {—s}, >)sep(p) and network formation game (G, > ), network G € G is said to be
strongly stable in (G, >)) if forall G’ € G and S € P(D), G — s G’ implies that G A5 G'.

Thus, a network is strongly stable if whenever a coalition has the power to change the network to another network,
the coalition will be deterred from doing so because not all members of the coalition are made better off by such a
change.3? If nodes represent players and arc addition is bilateral while arc subtraction is unilateral, then our definition
of strong stability is essentially that of Jackson—van den Nouweland but for directed networks rather than linking
networks. Note that under our definition of strong stability a network G € G that cannot be changed to another
network by any coalition is strongly stable.

We now have our main result on the path dominance core and strong stability. Denote the set of strongly stable
networks by SS.

Theorem 5 (The path dominance core and strong stability).
Given primitives (G, {>s}, {— s}, >)sep(p) and network formation game (G, =), where path dominance = is
induced by either a direct relation or an indirect dominance relation, the following statements are true.

1. If the path dominance core C of (G, =) is nonempty, then SS is nonempty and C C SS.
2. If the dominance relation > underlying >, is a direct dominance relation, then C =SS and SS is nonempty if
and only if there exists a basin of attraction containing a single network.

Proof. 1.Let C C G, C# ¢, be the path dominance core of (G, > ) and let network G be contained in C. Then there
does not exist a network G' € G, G’ # G, such that G’ >, G. If for some coalition S and some network G’ € G,
G —s G’ and G <5 G’, then G’ >, G trivially, a contradiction. Thus, for G contained in C, G — g G’ for coalition §
implies that G As G’, and thus G € C implies G € SS.

2. To see that SS C C if the dominance relation > underlying >, is a direct dominance relation, consider the
following. If G ¢ C, then there exists a network G’ # G which path dominates G, that is, G’ > p G. This implies that
there exists a network G” such that G’ >, G” > G. Because > is a direct dominance relation, for some coalition §

30 Our definition of a strongly stable network differs slightly from the definition given in Jackson—van den Nouweland (2005). In particular, under
their definition, a network is strongly stable if whenever a coalition has the power to change the network to another network, the coalition will be
deterred from doing so because at least one member of the coalition is made worse off by the change. If coalitional preferences, {>g}secp(p) are
based upon weak players preferences, {:~4}qep, then our definition of strong stability is equivalent to that of Jackson—van den Nouweland (see
Remark 1). As it stands, our definition is closely related to that given by Dutta and Mutuswami (1997).
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we have G -5 G” and G <5 G”. Thus, G ¢ SS. By part 1 of Theorem 4, C =SS is nonempty if and only if there
exists a basin of attraction containing a single network. 0O

Note that the set of strongly stable networks is contained in the set of constrained Pareto efficient networks. Thus,
CcSSCE.

5.2. Pairwise stable networks

The following definition is a formalization of Jackson—Wolinsky (1996) pairwise stability for abstract network
formation games.

Definition 6 (Pairwise stability).

Given networks P(Ax(N x N)) where nodes represent players (i.e., N = D) and given feasible networks G C
P(AX(N x N)) and primitives (G, {>s}, {— s}, >)scp(p), network G € G is said to be pairwise stable in network
formation game (G, >)) if for all (a, (i,i")) € A x (N x N),

1. G —y,in GU(a, (i,i") implies that G A iy G U (a, (i,i"));
2. (a) G — ;) G\(a, (i,i")) implies that G Ay;; G\ (a, (i,i")), and
(b) G =i G\(a, (i, i")) implies that G A1y G\ (a. (i.i")).

Thus, a network is pairwise stable if there is no incentive for any pair of players to add an arc to the existing network
and there is no incentive for any player who is party to an arc in the existing network to dissolve or remove the arc.
Note that under our definition of pairwise stability a network G € G that cannot be changed to another network by
any coalition, or can only be changed by coalitions of size greater than 2, is pairwise stable.

Let PS denote the set of pairwise stable networks. It follows from the definitions of strong stability and pairwise
stability that SS C PS. Moreover, if the full set of Jackson—Wolinsky rules are in force, then SS = IPS. Jackson—van
den Nouweland (2005) provide two examples of the potential for strong stability to refine pairwise stability (i.e., two
examples where SS is a strict subset of PS). However, under Jackson—Wolinsky rules because network changes can
occur only one arc at a time and because deviations by coalitions of more than two players are not possible such
refinements are not possible driving SS and PS to equality.>!

We now have our main result on the path dominance core and pairwise stability.

Theorem 6 (The path dominance core and pairwise stability).

Given primitives (G, {>5s}, {— s}, >)sep(p) where nodes represent players (i.e., N = D) and given network for-
mation game (G, >,), where path dominance >, is induced by either a direct relation or an indirect dominance
relation, the following statements are true.

1. If the path dominance core C of (G, =) is nonempty, then PS is nonempty and C C PS.

3 particular, under Jackson—Wolinsky rules, if
G—>gG,
then there are only three possibilities:
(i) G'=GU(a, (i,i")) forsomeac Aand S = {i,i'};

(ii) G\(a, (i,i")) forsome a € A and S = {i}; or
(iii) G\(a, (i,i")) forsome a € A and S = {i'}.

Thus, under Jackson—Wolinsky rules, if a network is not strongly stable, automatically it is not pairwise stable—and thus under Jackson—Wolinsky
rules

PS CSS.
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2. If the dominance relation > underlying > is a direct dominance relation and if the Jackson—Wolinsky rules hold,
then C = PS and PS is nonempty if and only if there exists a basin of attraction containing a single network.

Proof. The proof of part 1 follows from part 1 of Theorem 5 and the fact that SS € PS. For the proof of part 2,
note that under the Jackson—Wolinsky rules SS = PS. Thus, we have C C SS = PS. If in addition the path dominance
relation is induced by a direct dominance relation, then we have PS =SS C C. Thus, if the path dominance is induced
by a direct dominance and if the Jackson—Wolinsky rules hold, then we have C =SS = PS. By part 1 of Theorem 4,
C =SS =PS is nonempty if and only if there exists a basin of attraction containing a single network. O

Theorem 6 can be viewed as an extension of a result due Jackson and Watts (2002) on the existence of pairwise
stable linking networks for network formation games induced by Jackson—Wolinsky rules. In particular, Jackson
and Watts (2002) show that for this particular class of Jackson—Wolinsky network formation games, if there does
not exist a closed cycle of networks, then there exists a pairwise stable network. Our notion of a strategic basin of
attraction containing multiple networks corresponds to their notion of a closed cycle of networks. Thus, stated in our
terminology, Jackson and Watts show that for this class of network formation games, if there does not exist a basin
of attraction containing multiple networks, then there exists a pairwise stable network. Following our approach, if we
specialize to this class of Jackson—Wolinsky network formation games, then by part 2 of Theorem 6 the existence of
at least one strategic basin containing a single network is both necessary and sufficient for the existence of a pairwise
stable network.

5.3. Consistent networks
We begin with a formal definition of farsighted consistency (Chwe, 1994).

Definition 7 (Consistent sets).
Let (G, > ) be a network formation game where path dominance >, is induced by an indirect dominance relation
>r>. A subset F of directed networks in G is said to be consistent in (G, > ) if

for all Gy € F,
Go —s, G for some G| € G and some coalition S; implies that
there exists G, € F
with G, = G or G, >> G such that,
Go As, G2.

In words, a subset of directed networks IF is said to be consistent in (G, >,) if given any network Go € F and
any deviation to network G| € G by coalition S; (via adding, subtracting, or replacing arcs in accordance with effec-
tiveness relations — ), there exists further deviations leading to some network G, € F where the initially deviating
coalition S is not better off—and possibly worse off. A network G € G is said to be consistent if G € F where F is a
consistent set in (G, > ).

There can be many consistent sets in (G, >,). We shall denote by F* the largest consistent set. Thus, if F is a
consistent set, then F C F*. By Proposition 1 in Chwe (1994) there exists uniquely a largest consistent set in (G, > ).
Moreover, by Theorem 1 in Page et al. (2005) the largest consistent set is nonempty and externally stable with respect
to indirect dominance >I>. This Theorem is essentially a network rendition of the Corollary to Proposition 2 in Chwe
(1994).32

We now have our main result on the relationship between basins of attraction, stable sets, the path dominance core,
and the largest consistent set.

32 Page and Kamat (2005) provide an alternative proof of the nonemptiness and external stability of the largest consistent set (with respect to
indirect dominance). In particular, Page and Kamat modify the indirect dominance relation so as to make it transitive as well as irreflexive. They
then show that the unique stable set with respect to path dominance induced by this new transitive indirect dominance relation is contained in the
largest consistent set—and in this way show that the largest consistent set is nonempty and externally stable.
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Theorem 7 (Basins of attraction, the path dominance core, and the largest consistent set).

Given primitives (G, {>s}, {— s}, >)sep(p) and given network formation game (G, > ,),where path dominance is
induced by an indirect dominance relation >0>, assume without loss of generality that (G, > ,) has nonempty largest
consistent set given by F* and basins of attraction given by

{A1, Ao, ..., Ap ).

Then the following statements are true:

1. Each basin of attraction Ay, k =1,2, ..., m, has a nonempty intersection with the largest consistent set F*, that
is

F*NAy#0, fork=1,2,....,m.
2. If (G, =) has a nonempty path dominance core C, then
C CF*.

Proof. In light of Theorem 4, (2) easily follows from (1). Thus, it suffices to prove (1). Suppose that for some basin
of attraction Ay

F*N Ay =0.

Let G’ be a network in Ay. Because F* is externally stable with respect to the indirect dominance relation >[>,
G’ ¢ F* implies that there exists some network G* € F* such that G* >1> G'. Thus, G* >, G’. Because the networks
in Ay are without descendants, it must be true that G’ > p G*. But this implies that G* =, G’, and therefore that
G* € Ay, a contradiction. O

Remark 3. Recently, Herings et al. (2006) introduced a notion of pairwise farsighted stability. If in our model coali-
tional preferences {>g}scp(p) over networks are based on weak preference relations {ZZ4}sep (see Remark 1 above),
if nodes represent players (i.e., N = D), and if the dominance relation underlying the path dominance relation is
indirect, then under Jackson—Wolinsky rules the corresponding weak path dominance core is contained in the set of
pairwise farsightedly stable networks.

5.4. Nash networks

Definition 8 (Nash networks).
Given primitives (G, {>-s}, {—s}, >)sep(p) and network formation game (G, =), network G € G is said to be a
Nash network in (G, =) if for all G’ € G and S € P(D) such that [S| =1, G —5 G’ implies that G A5 G’.

Thus, a network is Nash if whenever an individual player has the power to change the network to another network,
the player will have no incentive to do so. We shall denote by NE the set of Nash networks. Note that our definition
of a Nash network does not require that the network formation rules, as represented via the effectiveness relations
{— s}sep(p), be noncooperative (see Section 3.2.1). Also, note that under our definition any network that cannot be
changed to another network by a coalition of size 1 is a Nash network. Finally, note that the set of strongly stable
networks SS is contained in the set of Nash networks NE.

We now have our main result on the path dominance core and Nash networks.

Theorem 8 (The path dominance core and Nash networks).
Given primitives (G, {>s}, {— s}, >)sep(p) and network formation game (G, =), where path dominance >, is
induced by either a direct dominance relation or an indirect dominance relation, the following statements are true.

1. Ifthe path dominance core C of (G, =) is nonempty, then NE is nonempty and C C NE.

2. If the dominance relation > underlying > p is a direct dominance relation and if the rules of network formation
are such that G — g G’ implies that |S| = 1, then C = NE and NE is nonempty if and only if there exists a basin
of attraction containing a single network.
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Proof. The proof of part 1 follows from part 1 of Theorem 5 and the fact that SS € NE. For the proof of part 2,
note that if the rules of network formation are such that G — g G’ implies that |S| = 1, then SS = NE. Thus, we have
C CSS=NE. If in addition the path dominance relation is induced by a direct dominance relation, then we have
NE =SS € C, and we conclude that C =SS = NE. Thus, if the path dominance is induced by a direct dominance
and if the rules are such that G —g G’ implies that |S| = 1, then we have C =SS = NE. By part 1 of Theorem 4,
C =SS = NE is nonempty if and only if there exists a basin of attraction containing a single network. O

We close this section by noting that if the dominance relation > underlying >, is a direct dominance relation and
if the rules of network formation are such that G — g G’ implies that |S| = 1, then the set of Nash networks NE is
contained in the set of constrained Pareto efficient networks E. Thus, for this case we have C =SS = NE C E.

6. Examples

In the abstract games, (G, > p), that we have considered, the set of outcomes G 1is a set of directed networks
and we have focused on path dominance induced by either direct dominance or indirect dominance. However, our
main results, Theorems 1-4, hold for any abstract game with a finite set of outcomes equipped with path dominance
induced by any dominance relation. With this in mind, in this section we will demonstrate the flexibility of our
approach and the wide applicability of our results by first considering network games with a potential function and
then considering games where the set of outcomes is, in one case, a set of linking networks and, in another case, a
set of coalition structures, and where the path dominance relation is induced by a dominance relation other than a
direct or an indirect dominance relation (as defined in Sections 3.3.1 and 3.3.2). In particular, in our first example,
we consider noncooperative network formation games and show that any noncooperative network formation game
possessing a potential function has basins of attraction each consisting of a single network and thus has a nonempty
path dominance core. In our second example, we show how our approach can be applied to Jackson—Wolinsky linking
networks and we provide necessary and sufficient conditions for nonemptiness of the set of pairwise stable linking
networks. Finally, we show via an example proposed to us by Salvador Barbera and Michael Maschler (2006) how our
approach can be used to analyze hedonic games, and in particular, we show how farsightedness can lead to instability
(i.e., emptiness of the path dominance core) in hedonic games.

6.1. Noncooperative network formation games possessing a potential function
Suppose the primitives (G, {>s}, {— s}, >)sep(p) underlying the network formation game (G, > ) are such that:

1. the set of nodes N and the set of players D are one and the same (i.e., N =D and G C P(A x (D x D)));
2. preferences {>g}secp(p) over networks G are specified via player payoff functions vy(-), that is, coalition S’ €
P (D) prefers network G’ to network G if v4(G') > vg(G) forall d € §'33;
3. effectiveness relations {— s}scp(p) over networks G are such that,
(i) adding an arc a from player i to player i’ requires only that player i agree to add the arc (i.e., arc addition is
unilateral and can be carried out only by the initiator, player i),
(ii) subtracting an arc a from player i to player i’ requires only that player i agree to subtract the arc (i.e., arc
subtraction is unilateral and can be carried out only by the initiator, player i), and
(iii) G — s G’ implies that |S| =1 (i.e., only network changes brought about by individual players are allowed);
4. the dominance relation > over G is given by a direct dominance relation >, that is, G’ > G if and only if for
some player d’ € D, vy (G') > vy (G) and G — 4 G'.

We say that the noncooperative network formation game (G, =) is a potential game if there exists a function
P():G—R
such that for all G and G” with G — 4 G’ for some player d’,
vy (G") > vy (G) if and only if P(G') > P(G).

33 Thisisa frequently used way of defining payoffs to coalitions; see for example, Jackson (2005) and van den Nouweland (2005).
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It is easy to see that any noncooperative network formation game (G, >,) possessing a potential function has no
circuits, and thus possesses strategic basins of attraction each consisting of a single network without descendants.?*
Thus, we can conclude from our Theorem 4 that any noncooperative network formation game possessing a potential
function has a nonempty path dominance core. In addition, we know from our Theorem 8§ that in this example the path
dominance core C is equal to the set of Nash networks NE.33

6.2. Jackson—Wolinsky linking networks

Consider primitives (G, {>s}, {— s}, >)sep(p) With corresponding network formation game (G, >,) where G
is given by a feasible set of linking networks, coalitional preferences {>gs}scp(p) are based on weak preferences
(see Remarks 1 and 2 above), effectiveness relations {— s}sep(p) are specified via Jackson—Wolinsky rules, and the
dominance relation > is direct. In particular, assume that the set of nodes N and the set of players D are equal, let gV
denote the collection of all subsets of N of size 2, and let G be a nonempty subset of P(g"), where P(g") denotes
the collection of all nonempty subsets of gV (i.e., the set of all linking networks—see the definition in Jackson and
Wolinsky, 1996). To simplify comparisons, we use the standard notation for linking networks and let g denote a typical
linking network.

Under Jackson-Wolinsky rules, if g —¢ g’ then g # ¢’ and either (i) g’ = g U {i,i’} (a link is added between
players i and i") and S’ = {i,i’} or (ii) g’ = g\{i, i’} (the link between players i and i’ is removed) and S’ = {i}
or 8" ={i"} or &' = {i,i’}. Moreover, if coalitional preferences {>s}sep(p) are based on weak preference relations
{=d}aep, then coalition S” € P(D) prefers network g’ to network g, written g’ =g g, if for all playersd € §', g’ =4 g
and if for at least one player d’ € §', g’ >4 g.3¢ Finally, if the dominance relation > is direct with underlying weak
preferences, then g’ > g if and only if either (i) g —;i} ¢’ and g’ >{; iy g where g’ = g U {i, "} or (ii) (a) g =i} &’
and g’ >} g where g’ = g\{i, i’} or (b) g —(;ry ¢’ and g’ >/} g where g’ = g\{i,i'}.

It follows from our Theorem 4 that any network formation game (G, > ) induced by Jackson—Wolinsky primitives
(i.e., primitives as specified above) has a nonempty path dominance core if and only if there is at least one strategic
basin of attraction containing a single network. Moreover, it follows from our Theorem 6 that for any such network
formation game the path dominance core is equal to the set of pairwise stable networks (as defined for linking networks
in Jackson and Wolinsky, 1996).

6.3. Hedonic games

Consider a hedonic game where a move from one coalition structure to another can be initiated by any group of
players defecting from the original structure, but in order for the change to prevail all players in coalitions augmented
or created by the defecting players must prefer their new coalitions to their old coalitions—or must prefer their
eventual coalitions to their old coalitions if players are farsighted. Call the path dominance core with respect to direct
dominance, the hedonic direct core and the path dominance core with respect to indirect dominance the hedonic
farsighted core. Note that the hedonic direct core is equivalent to the usual hedonic core. As the following example
will show, the hedonic farsighted core may be empty even when the hedonic core is not.

34 As has been shown by Monderer and Shapley (1996), potential games are closely related to congestion games introduced by Rosenthal (1973)—
also see Holzman and Law-Yone (1997).

35 Page and Wooders (2007b) introduce a club network formation game which is a variant of the noncooperative network formation game described
above and show that this game possesses a potential function (see also Page and Wooders, 2007a). Prior papers studying potential games in the
context of linking networks include Slikker et al. (2000) and Slikker and van den Nouweland (2002). These papers have focused on providing the
strategic underpinnings of the Myerson value (Myerson, 1977).

36 Recall from Remark 1 that if &' =4 g then player d either strictly prefers g’ to g (denoted g’ >4 g) or is indifferent between g’ and g (denoted

g ~a 9.
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Consider the following hedonic game proposed to us by Barbera and Maschler (2006). Let the player set be given
by D ={1,2,3,4,5,6,7, 8}. Player preferences over coalitions are as follows:

player 1 (1,2,3,4) (1,2,3) (1,2) (1)
player2 (1,2,3,4) (1,2,3) (1,2) (2)
player 3 (1,2,3,4) (3,4,5,6) (1,2,3) (3) (3,6)
player4 (1,2,3,4) (3,4,5,6) (4,5 &)
player 5 (3,4,5,6) (5,6,7,8) (4,5 (5)

player 6 (3,4,5,6) (5,6,7,8) (6,7,8) (6) (3,6)
player 7 (5,6,7,8) (6,7,8) (7,8) (7)
player 8 (5,6,7,8) (6,7,8) (7,8) (8)

Players’ Preferences Over Coalitions

Consider the row for player 1 in the table above. The interpretation is that 1 prefers the coalition (1,2, 3,4) to the
coalition (1, 2, 3), to the coalition (1, 2), and so on. Player 1’s preferences over the remaining coalitions are irrelevant
to the following example so they are not specified. The same interpretation applies to the rows corresponding to other
players.

A partition of the player set is in the hedonic core if there does not exist a coalition that is preferred by all its
members to their coalitions of membership in the original partition (i.e., a partition is in the hedonic core if it is not
directly dominated by another partition). Consider the partition ((1, 2, 3, 4), (5, 6,7, 8)) € G. This is a core point for
the hedonic game because the only coalition that is preferred by players 5 and 6 is (3, 4, 5, 6) but two members of this
coalition, 3 and 4, do not prefer it (i.e., ((1, 2), (3,4, 5, 6), (7, 8)) does not directly dominate ((1, 2, 3, 4), (5, 6,7, 8))).
If players 4 and 5 are farsighted, however, and domination is indirect, 4 and 5 can decide to form a coalition (4, 5)—
thus bringing about the partition ((1, 2, 3), (4, 5), (6,7, 8)). Now players 3, 4, 5, and 6 could all benefit from forming a
coalition. This brings us to the partition ((1, 2), (3,4, 5, 6), (7, 8)) a hedonic core point in which 4 and 5 are better off
than in the original hedonic core point. Thus, ((1,2), (3,4, 5, 6), (7, 8)) indirectly dominates ((1, 2, 3,4), (5,6, 7, 8)).
But the story is not finished. Starting from ((1, 2), (3,4, 5,6), (7, 8)), players 3 and 6 can separate and form their
own coalition. Using an argument similar to the one above, this move by 3 and 6 can then lead back to the original
partition. Thus, ((1, 2, 3,4), (5, 6,7, 8)) indirectly dominates ((1, 2), (3,4, 5, 6), (7, 8)).

We see here that, even though the hedonic core is nonempty, the hedonic farsighted core is empty. Another point
illustrated is that for path dominance, it is only necessary that a coalition perceive some path that would lead to a
preferred situation; it is not required that a coalition perceive some preferred final (and presumably stable) outcome.
The example also suggests for those special cases of hedonic games where the hedonic direct core (i.e., the hedonic
core) is non-empty and not a singleton, then the path dominance core with respect to indirect dominance (i.e., the
hedonic farsighted core) is empty. (See Diamantoudi and Xue, 2003 for related work applying indirect dominance to
hedonic games.)3’

7. Conclusions

From the viewpoint of the path dominance core with direct or indirect dominance, there are a number of potential
questions to be addressed. For example, what is the relationship, if any, between basins of attraction and the path
dominance core and partnered (or separating) collections of coalitions, as in for example Page and Wooders (1996),
Reny and Wooders (1996) or Maschler and Peleg (1967) and Maschler et al. (1971)? Or what is relationship between
basins of attraction and the path dominance core and the inner core, as in Qin (1993, 1994)?

37 In brief, the effectiveness relations in Diamantoudi and Xue differ from the effectiveness relations in our rendition of the Barbera—Maschler
example. In particular, in Diamantoudi and Xue all defecting players must form a coalition in the new partition, whereas in the Barbera—Maschler
example, defecting players can join already existing coalitions in forming the new partition. Moreover, in Diamantoudi and Xue only defecting
players must prefer their new coalition in order for the change to take place, whereas in the Barbera—Maschler example, not only must defecting
players prefer their new coalitions, but also all players in coalitions joined by the defecting players must prefer their new coalitions in order for the
change to take place.
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To conclude, we return to the prior research introducing concepts similar to the abstract game defined in this paper
and the union of basins of attractions; see Schwartz (1974), Kalai et al. (1976), Kalai and Schmeidler (1977) and
Shenoy (1980).3® For specificity, we focus on Kalai and Schmeidler (1977). These authors take as given a set of
feasible alternatives, denoted by S, a dominance relation, denoted by M, and the transitive closure of M, denoted
by M. Their admissible set is the set AS,M):={xeS: ye S and ny imply xMy} 39 Besides non-emptiness of
the admissible set, they also shown that the admissible set is equal to the union of certain subsets—in our terminology,
basins of attraction. While Kalai and Schmeidler apply their concept to cooperative games and games in normal
(strategic) form, they do not consider networks, the focus of our research. Once our model of network formation is
developed, then our abstract game is a particular case of the abstract game of these earlier authors. Our contribution
differs in that we develop the network framework and characterize several equilibrium concepts from network theory
in terms of their relationships to each other and to basins of attraction and the path dominance core. In addition,
we characterize the set of von Neumann—Morgenstern solutions and the path-dominance core (a case of the abstract
core notion introduced in Gillies, 1959) in terms of their relationships to basins of attraction. It may well be that the
insightful examples developed by these authors will lead to new sorts of examples for networks, a question we are
currently addressing. Also, Kalai and Schmeidler (1977) allow an infinite set of possibilities, which, in a network
framework, introduces a host of new questions. We plan to address some of these in future research.

Acknowledgments

We are especially grateful to Michael Maschler and Salvador Barbera for stimulating discussions and for an ex-
ample. We also wish to thank John Conlon, Anne van den Nouweland and participants at various conferences where
this paper was presented for their interest and comments. Finally, we wish to thank two anonymous referees whose
careful reading and thoughtful comments led to many improvements in the paper. This paper continues our earlier
work presented at the CTN Workshop on Coalitions and Networks held at the University of Warwick in June of 2001.
The current version of the paper was substantially completed while both authors were visiting CERMSEM at Paris 1
during the summers of 2005 and 2006. Both authors are grateful to CERMSEM and Paris 1 for support and hospitality.

References

Aumann, R.J., 1964. Markets with a continuum of traders. Econometrica 32, 39-50.

Bala, V., Goyal, S., 2000. A noncooperative model of network formation. Econometrica 68, 1181-1229.

Barbera, S., Maschler, M., 2006. Private correspondence.

Berge, C., 2001. The Theory of Graphs. Dover, Mineola, NY. Reprint of the translated French edition published by Dunod, Paris, 1958.

Calvo-Armengol, A., Ilkilic, R., 2005. Pairwise stability and Nash equilibria in network formation. Working paper 34.05, FEEM.

Chwe, M., 1994. Farsighted coalitional stability. J. Econ. Theory 63, 299-325.

Demange, G., 2004. On group stability and hierarchies in networks. J. Polit. Economy 112, 754-778.

Diamantoudi, E., Xue, L., 2003. Farsighted stability in hedonic games. Soc. Choice Welfare 21, 39-61.

Dutta, B., Mutuswami, S., 1997. Stable networks. J. Econ. Theory 76, 322-344.

Gillies, D.B., 1959. Solutions to general non-zero-sum games. In: Tucker, A.W., Luce, R.D. (Eds.), Contributions to the Theory of Games, vol. 4.
Princeton Univ. Press.

Guilbaud, G.T., 1949. La theorie des jeux. Econ. Appl. 2, 18.

Harsanyi, J.C., 1974. An equilibrium-point interpretation of stable sets and a proposed alternative definition. Manage. Sci. 20, 1472-1495.

Herings, P.J.-J., Mauleon, A., Vannetelbosch, V., 2006. Farsightedly stable networks. Meteor Research Memorandum RM/06/041.

Holzman, R., Law-Yone, N., 1997. Strong equilibrium in congestion games. Games Econ. Behav. 21, 85-101.

Inarra, E., Kuipers, J., Olaizola, N., 2005. Absorbing and generalized stable sets. Soc. Choice Welfare 24, 433-437.

Jackson, M.O., 2005. A survey of models of network formation: Stability and efficiency. In: Demange, G., Wooders, M.H. (Eds.), Group Formation
in Economics: Networks, Clubs, and Coalitions. Cambridge Univ. Press.

Jackson, M.O., van den Nouweland, A., 2005. Strongly stable networks. Games Econ. Behav. 51, 420-444.

Jackson, M.O., Watts, A., 2002. The evolution of social and economic networks. J. Econ. Theory 106, 265-295.

Jackson, M.O., Wolinsky, A., 1996. A strategic model of social and economic networks. J. Econ. Theory 71, 44-74.

Kalai, E., Schmeidler, D., 1977. An admissible set occurring in various bargaining situations. J. Econ. Theory 14, 402-411.

Kalai, E., Pazner, A., Schmeidler, D., 1976. Collective choice correspondences as admissible outcomes of social bargaining processes. Economet-
rica 44, 233-240.

3% We thank Sylvia Thoron for brining this to our attention.
39 Kalai and Schmeidler (1977) also cite Schwartz (1974) for the origins of this concept.



EH. Page, Jr, M. Wooders / Games and Economic Behavior 66 (2009) 462—487 487

Lucas, W.F,, 1968. A game with no solution. Bull. Amer. Math. Soc. 74, 237-239.

Maschler, M., Peleg, B., 1967. The structure of the kernel of a cooperative game. SIAM J. Appl. Math. 15, 569—-604.

Maschler, M., Peleg, B., Shapley, L.S., 1971. The kernel and bargaining set for convex games. Int. J. Game Theory 1, 73-93.

Mauleon, A., Vannetelbosch, V., 2003. Farsightedness and cautiousness in coalition formation. Working paper 52.03, FEEM.

Monderer, D., Shapley, L.S., 1996. Potential games. Games Econ. Behav. 14, 124-143.

Moulin, H., Peleg, B., 1982. Cores of effectivity functions and implementation theory. J. Math. Econ. 10, 115-145.

Myerson, R.B., 1977. Graphs and cooperation in games. Math. Operations Res. 2, 225-229.

Page Jr., FH., Kamat, S., 2005. Farsighted stability in network formation. In: Demange, G., Wooders, M.H. (Eds.), Group Formation in Economics:
Networks, Clubs, and Coalitions. Cambridge Univ. Press.

Page Jr., EH., Wooders, M., 1996. The partnered core and the partnered competitive equilibrium. Econ. Letters 52, 143—-152.

Page Jr., EH., Wooders, M., 2007a. Networks and clubs. J. Econ. Behav. Organ. 64, 406—425.

Page Jr., EH., Wooders, M., 2007b. Club networks with multiple memberships and noncooperative stability. Indiana University typescript. Paper
presented at the International Conference on the Formation of Social Networks, Paris, Carre des Sciences, June 28-29.

Page Jr., EH., Wooders, M.H., Kamat, S., 2005. Networks and farsighted stability. J. Econ. Theory 120, 257-269.

Qin, C.-Z., 1993. A conjecture of Shapley and Shubik on competitive outcomes in the cores of NTU market games. Int. J. Game Theory 22,
335-344.

Qin, C.-Z., 1994. The inner core of an N-person game. Games Econ. Behav. 6, 431-444.

Reny, PJ., Wooders, M., 1996. The partnered core of a game without side payments. J. Econ. Theory 70, 298-311.

Richardson, M., 1953. Solutions of irreflexive relations. Ann. of Math. 58, 573-590.

Rosenthal, R.-W., 1972. Cooperative games in effectiveness form. J. Econ. Theory 5, 88—101.

Rosenthal, R.-W., 1973. A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2, 65-67.

Scarf, H., 1967. The core of an N-person game. Econometrica 35, 50-69.

Schwartz, T., 1974. Notes on the abstract theory of collective choice. School of Urban and Public Affairs, Carnegie-Mellon University.

Shenoy, P.P., 1980. A dynamic solution concept for abstract games. J. Optim. Theory Appl. 32, 151-169.

Slikker, M., van den Nouweland, A., 2002. Network formation, costs, and potential games. In: Borm, P., Peters, H. (Eds.), Chapters in Game
Theory. Kluwer Academic.

Slikker, M., Dutta, B., van den Nouweland, A., Tijs, S., 2000. Potential maximizers and network formation. Math. Soc. Sci. 39, 55-70.

van Deemen, A.M.A., 1991. A note on generalized stable sets. Soc. Choice Welfare 8, 255-260.

van den Nouweland, A., 2005. Models of network formation in cooperative games. In: Demange, G., Wooders, M.H. (Eds.), Group Formation in
Economics: Networks, Clubs, and Coalitions. Cambridge Univ. Press.

von Neumann, J., Morgenstern, O., 1944. Theory of Games and Economic Behavior. Princeton Univ. Press, Princeton.

Xue, L., 1998. Coalitional stability under perfect foresight. Econ. Theory 11, 603-627.



	Strategic basins of attraction, the path dominance core, and network formation games
	Introduction
	Overview of the questions, the model and the main results
	A further discussion of the model
	Directed networks with heterogeneous arcs and multiple uses of arcs of the same type
	The rules of network formation
	The dominance relation defined on feasible networks

	Examples

	Directed networks
	The definition
	Linking networks, directed graphs, and directed networks

	Preferences, rules, and dominance relations
	Preferences
	Rules
	Examples of network formation rules
	Jackson-Wolinsky rules.
	Jackson-van den Nouweland rules.
	Noncooperative rules.
	(12,34)-voting rules.
	Nonuniform rules and the Network Representation of Network Formation rules.


	Dominance relations
	Direct dominance
	Indirect dominance
	Path dominance
	The directed graph of a dominance relation


	Network formation games and stability
	Networks without descendants
	Basins of attraction
	Stable sets with respect to path dominance
	The path dominance core
	The path dominance core and constrained Pareto efficiency


	Other stability notions for network formation games
	Strongly stable networks
	Pairwise stable networks
	Consistent networks
	Nash networks

	Examples
	Noncooperative network formation games possessing a potential function
	Jackson-Wolinsky linking networks
	Hedonic games

	Conclusions
	Acknowledgments
	References


