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Individuals of different types can form groups, i.e. jurisdictions, for the purposes of collective 

consumption and production of local public goods by the members of the jurisdictions. Also, the 

utility of an individual may be affected by the composition and size of the jurisdiction of which 

he is a member. Jurisdiction formation is endogenous. Trade of private goods can occur within 

jurisdictions and within collections of jurisdictions. A stable partition of individuals is shown to 

exist for all sufficiently large economies. This stability depends, partially, upon the extent of 

‘satisficing’ behavior or alternatively, jurisdiction formation costs, both of which can be made 

arbitrarily small. The major noteworthy assumption is that positive outputs cannot become vir- 

tually free in per-capita terms as the economy is replicated; this ensures that the public goods are 

‘local’ rather than ‘pure’; otherwise assumptions on production sets are minimal and, in par- 

ticular, convexity is not required. To obtain stability with coalition formation costs, additional 

assumptions are made ensuring that there is a ‘minimum efficient scale’ for coalitions. 

Key words: Jurisdiction; public goods; utility; economies; local; convexity; minimum efficient 

scale. 

1. Introduction 

It is not difficult to imagine that the jointness in consumption of a local public 
good entails interaction among the consumers. It is typically assumed that this inter- 
action can be captured by having preferences depend on the number of consumers.’ 
However, it is clear that, in addition to the size of the group, consumers may also 
be affected by the composition of the group of agents jointly consuming the good.2 

’ See Bewley (1981) for some review of the literature. 

’ See Shaked (1982) and Schweizer (1983) for examples of situations where only composition of the 

group matters. 
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For example, swimmers are affected not only by the number of people in the pool 
but also by the types of swimming activities chosen. Production of local public 
goods may also involve interaction by the producers/consumers. If the production 
possibility set for the good involves increasing and then decreasing returns to group 
size for some relevant region, then the importance of group size is clear. Different 
abilities and complementarities in skills may make the composition of the agents in- 
volved in production an important factor. In this paper we consider a situation 
where preferences and/or production possibilities depend on both the size and com- 
position of the group for (and by) whom the goods are provided. 

A model of a replica economy with endogenous jurisdiction formation is develop- 
ed and it is shown that stable states of the economy exist for all sufficiently large 
replications. A stable state of the economy, which includes a partition of the set of 
agents into jurisdictions as one of its components, has the property that no coalition 
of agents could, using only its own resources, significantly improve upon that state 
for its own membership. The existence of stable states is partially due to satisficing 
behavior or, alternatively, coalition formation costs. Both the extent of satisficing 
behavior and coalition formation costs are parametrized by a positive number, E, 
and E can be allowed to become arbitrarily small for sufficiently large economies. 
As E goes to zero, in the case of satisficing behavior the ‘extent’ of satisficing (i.e., 
the difference from exact optimization) becomes small, and, in the case of coalition 
formation costs, these costs go to zero. 

Very informally, the concepts of stability involve some pseudo-dynamics. A state 
of the economy is given and coalitions of agents then determine whether or not it 
is worthwhile to attempt to rearrange themselves into different jurisdiction struc- 
tures (partitions of the agents in the coalitions) and reallocate their endowments. 
This ‘pseudo-dynamic’ approach becomes apparent in the case of coalition forma- 
tion costs when one perceives that in the given state of the economy, agents can 
achieve levels of satisfaction which would not be achievable if they had to ‘move’ 
to that state from another state - they would have to use up resources in jurisdiction 
formation. 

Obviously, both concepts of stability are related to the core and, if E = 0, a stable 
state of the economy is in the core. 

In addition to whether or not stable states of the economy exist, a natural ques- 
tion to ask is to what extent these states can be supported by competitive prices. Ad- 
dressing this question is beyond the scope of this paper. However, in another paper, 
Wooders (1986), a notion of a competitive equilibrium is developed, and the results 
herein are used to show existence of the equilibrium. Essentially, it is shown that 
if a state of the economy and all replications of that state are stable, then the state 
is an approximate competitive equilibrium. From results herein it follows that such 
states exist. 

Compared to the situation where only the size of a group affects preferences 
and/or production, the introduction of complementarities between types of agents 
greatly complicates the problem of existence of stable states. With only one private 
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good or if prices for private goods are given, when only group size is relevant all 
states of the economy in the core have homogeneous jurisdictions. In these cases, 
one can determine a ‘type-optimal’ jurisdiction size, which maximizes the utility of 
a representative agent of the given type, for each type of agent separately. Then the 
nonemptiness of approximate cores of sufficiently large economies is relatively 
straightforward (see Wooders, 1980). However, when complementarities are pre- 
sent, the optimal composition of a jurisdiction depends on the relative abundance 
of agents of each type and the problem does not separate into a number of simpler 
problems, one for each type of agents. Therefore the arguments must be more essen- 
tially of a ‘general equilibrium’ nature. 

In this paper, we utilize results in Wooders (1983) concerning approximate cores 
of large replica games without side payments to obtain our stability results. In that 
paper, conditions are demonstrated under which large replica games have non- 
empty approximate cores and a number of useful lemmas are proven. No ‘balanced- 
ness’ assumptions are required. The conditions are that the sequence of games is 
superadditive and per-capita bounded, and that the payoff sets are convex.3 With 
the exception of the convexity requirement, these conditions are satisfied by se- 
quences of games derived from a broad class of sequences of replica economies, for 
example, ones with private goods, coali:ion production, and local public goods. It 
was conjectured that the results could be applied to replication models of economies 
whose derived games do not necessarily satisfy the convexity requirement if there 
is an infinitely divisible good that is a substitute for every other good. This paper 
illustrates such an application. It appears that the overall strategy of the proofs can 
be applied to obtain analogous theorems to those therein for diverse economic 
models. 

Relative to a given jurisdiction structure, our assumptions on consumption sets 
and preferences are standard and intended to keep the arguments relatively straight- 
forward. To ensure per-capita boundedness and to model focal public goods rather 
than pure, we assume that positive outputs of public goods do not become virtually 
free in per-capita terms as the group producing the goods becomes large, and we 
assume that individuals do not derive more and more utility from belonging to larger 
and larger groups. Otherwise our assumptions on both private and public goods 
production sets are minimal; in particular, non-convexities are allowed. Also, it is 
possible that public goods can be produced only in indivisible units - for example, 
only integral numbers of units. To obtain stability with arbitrarily small coalition 
formation costs, we in addition require that all ‘increasing returns to coalition size’ 
are achieved by some finite economy, i.e. there is a minimum efficient scale for 
coalitions. 

Before concluding this introduction, a few remarks relating to the extent literature 
on local public goods economies may be helpful. The model and results of this paper 
significantly extend the nonemptiness of approximate core results in Wooders 

3 These terms are formally defined later. 
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(1980), (where preferences and production possibilities depend only on numbers of 
agents in groups). In conjunction with Wooders (1986), the model, concepts and 
results extend those in Wooders (1980) and manifest, in a general setting, ‘competi- 
tive’ aspects of economies with local public goods. The overall approach differs 
from (most of) the examples considered by Bewley (198 1) in that our results are for 
large economies (ones with many agents) and endogenous formation of relatively 
small jurisdictions, whereas Bewley considers only ‘fixed size’ economies.4 

In an insightful paper, Schweizer (1983) shows that allocations which satisfy a cer- 
tain notion of ‘within-club efficiency’ can be characterized by prices. A complete 
description of Schweizer’s model and the relationship of his work to ours is beyond 
the scope of this paper. However, we remark that our results, again in conjunction 
with Wooders (1986), extend those of Schweizer to a situation with a total popula- 
tion constraint and with the endogenous determination of both public goods provi- 
sion and jurisdiction structures. 

The paper contains 5 sections. In the following section, the model is developed. 
The third section contains the stability results; these are proven in the fourth section. 
In Section 5, we discuss some extensions of the results. 

2. The model 

The following notation and terminology will be used; R”: the n-dimensional 
Cartesian product of the real numbers; R:: the non-negative orthant of R”; R”,,: 
the positive orthant of R”; given a set S, IS[ denotes the cardinal number of S. The 
unit vector in R” is denoted by 1 =(1, 1, . . . . l)eR”. 

We follow the convention that given x and y in R”, x?y means XiZyi for all i; 
x>y means xry and, for at least one i, xj>yi; and xay means xi>yi for all i. 

Given XE R”, llxll= maxi lXi[ where lxil is the absolute value of the ith coordinate 
of x. 

2. I. Agents 

The set of agents of the rth replica economy is denoted by N,= ((1, l), . . . , 

(t*d,..-, (T,r)) where (t, q) is called the qth agent of type t. Given N, and 
tE{l,..., T}, let Itl,={(t,q):qE{l,..., r}}; the set [tlr is the set of agents of type 

t of the rth replica economy. 
Given ScN,, let s be the vector whose tth coordinate is defined by s,= [Sfl [t],l; 

s is called the profile of S and is simply a list of the numbers of agents of each type 
in S. When S has profile s, we write Q(S) = s. Let Z denote the T-fold Cartesian pro- 
duct of the non-negative integers excluding the zero vector; then for every r and 

4 Although Bewley has, in some examples, a continuum of consumers, he has a fixed finite number 

of relatively large jurisdictions. See Wooders (1986) for further discussion. 
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every non-empty SCN,, sel where s=Q(S). W’e denote the set of elements of Z 
whose tth coordinate is non-zero by Z(t); a member of Z(f) is the profile of a subset 
containing an agent of type t. The set of profiles of subsets of N, is denoted by 
Z,= {s~Z:srr~} and the set of profiles of subsets of N, containing an agent of 
type t is denoted by Z,(~)={SEZ:SEZ(~)~)Z,). 

2.2. Goods 

The economy has K private goods and M public goods. A vector of the public 
goods is denoted by x= (x,, . . . ,x,, . . . . x,,,) E R’” and a vector of private goods, by 

u=(u ,,...,yk ,... ,YK)ER~. 

2.3. Endowments and preferences 

It is assumed that each agent has a positive endowment of each private good and 
that there are no endowments of the public goods. Write w;~ for the endowment 
of the (t, q)th agent of the kth private good and let wlq = (~14 . . . , wLq, . . . , ~2). All 
agents of type t are assumed to have the same endowment. 

The utility function of the (f,q)th agent is denoted by ufq(. , . , .) and maps 
Z(t) x Rpx Rf+ into R,.’ The utility functions of all agents of type t are identical: 
let u’( . , . , .) denote the utility function of a representative agent of type t. 

We require the following assumptions on u’(. , . , .): 

(a) For any s~Z(t), ~‘(s,.,. ) is a continuous, quasi-concave function, 
(b) Given any SE Z(t), (x, y) E Ry x Rc+ wherey’>y, we have u’(s,.u,y’)>r!‘(s,x,y) 

(monotonicity), 
(c) Given any s~Z(t), s’~Z(t), (x,y)~Ryx Rf+ and x’ER~, there is a y’~Rf+ 

such that u’(s,x’,y’)~u’(s’,x,y), 
(d) For each t, we have u’(s,O, w’)>O when s is the profile with s;= 1 if t’=t and 

s,, = 0 otherwise, and 
(e) There is an r* such that for any r, any (t, q) EN,, and any (x, y) E Ry x R:+, for 

some s~Z,.(t) we have ~‘~(.s,x,y)~u~~(s’,x,y) for all s’~Z(f). 
Assumption (c) above ensures that agents in ‘less desirable’ jurisdictions can be 

compensated by increased allocations of the private goods; an analogous assump- 
tion is used in Wooders (1980, p. 1470). Assumption (d) is simply so that the results 
of Wooders (1983) can be more easily applied and is non-restrictive. Assumption (e) 
limits increasing returns to group size; individuals do not derive more and more 
utility from being part of a larger and larger group. 

Given (f, q) and any two subsets containing (f,q). say S and S’, we write 
ufq(S,x,y)>ufq(S’,x’,y’) if urq(s,x,y)>ufq(s’,x’,y’) and ~‘~(.S,x,y)=u’~(S’,x’,y’) 
if ~~~(s,x,y)=~‘~(.s’,x’,y’) where e(S)=s and ,~(s’)=s’. 

s The assumption that the domain of u’~(s,x, .) is RF+ IS more restrictive than required. Essentially, 

what is needed is the presence of one infinitely divisible good which is necessary for consumption. 
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2.4. Jurisdiction structures 

A jurisdiction structure of SCN, is a partition of S, denoted by S= {S,, . . . , 

S,, ***, S,}. A jurisdiction structure of N, is called simply a jurisdiction structure 
and denoted by N,= {J,, . . . . Jg, . . . . JG}. 

Given (t,q)ES and S={S, ,..., S, ,..., S,}, a jurisdiction structure of S, define 
~‘~(S,x,y)=u’~(S’,x,y) where S’ES and (t,q)ES’; this definition does nothing 
more than simplify notation. 

2.5. Allocations 

Given a non-empty subset S of N, and S, a jurisdiction structure of S, an al/oca- 
tion for S relative to S, or simply an allocation for S, is a pair (x’, ys) where 
xs E Rys and ysRfs such that for each S’E S and for all (t, q) and (I’, q’) in S’, we 
have x’~ =x”~’ (all agents in each jurisdiction are allocated the same amount of the 
public goods). 

Given an allocation for S relative to S, say (xs,ys), the associated total con- 
sumption of the agent (t, q) is (S,x’4 yIq). 

2.6. Production 

The production possibility set for public goods available to a jurisdiction depends 
on the profile of that jurisdiction. We take as given a correspondence, Ye, from the 
set of profiles I to closed,6 non-empty subsets of RF x - R$ An element of Ye(s) 
is denoted by (x, z) where x represents outputs of the public goods and z represents 
inputs of private goods. We assume that Y,(~)flRf’~= (0). Given a non-empty 
subset S of N, for some r with e(S)=s, we define Ye(S)= Ye(s). 

The production possibilities for the public goods relative to a jurisdiction struc- 
tures={& ,..., S ,,..., S,} of S will be denoted by Y,(S). We assume that Ye(S) = 
n,k, Ye(&); there are no externalities in production between jurisdictions. An ele- 
ment of Ye(S) is denoted by /3(S). Note that, given /3(S), for some (x,, z,) E Ye(&) 
for each I, we have /3(S)= n,“=, (x,,z,). 

We now impose restrictions on Ye to ensure that in the derived games, all ‘in- 
creasing returns to coalition size’ are eventually exhausted.’ 

(a) There is a closed, convex cone Yz with Y,*nRp+K = (0)) and if (x, z) E Ye(S), 
then (/S~X,Z)E Yc for any non-empty subset S of N, and for any r. 

We observe that no convexity assumptions are made on the production sets them- 
selves either for private or public goods production. 

’ The closedness property simplifies the proofs but is not essential. 

’ These assumptions are discussed and illustrated in Shubik and Wooders (1986) for the transferable 
utility case. 
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The production possibility set for private goods is not dependent upon the juris- 
diction structure. We denote this production possibility set by Y, and an element of 
Y, is denoted by t E R K. We assume that Y, flRf= (0) and that Y, is closed. To 
rule out ‘free production’ in the limit as coalitions become large, we assume: 

(b) there is a closed, convex cone Y* such that 

(i) Y, C Y*, 
(ii) Y*nRf= (0). 
The (entire) production possibility set for S relative to the jurisdiction structure 

S is denoted by Y(S) where Y(S) = Y,(S) x Y, . An element of Y(S) is called a pro- 
duction for S relative to S or simply a production for S and is denoted by (P(S),t) 
where p(S) E Y,(S) and I E YI . 

2.7. States of the economy 

Given a non-empty subset SC N,, and S= {S,, . . . , S,, . . . , SL }, a jurisdiction 
structure of S, a state of the economy for S relative to S is an ordered pair a(S)= 
((x’, ys), (p(S), z)) where (x”, ys) is an allocation for S relative to S and (p(S), z) is 
a production for S relative to S such that, given /I(S) = n,“=, (x,, z,), for each S, we 
have x1 =x’~ for all (t, q) E S, (the consumption of the public goods by the members 
of each jurisdiction equals output of the public goods by that jurisdiction). The state 
of the economy for S relative to S is feasible for S if 

L 

c (p- w’q42+ c z/. 
lqes /=I 

3. Stability 

We introduce two concepts of stability and demonstrate conditions under which 
stable states of the economy exist for all sufficiently large replications of the 
economy. 

3. I. s(e)-stability 

We will define a feasible state of the economy as s(e)-stable if no coalition of 
agents could ‘significantly’ improve upon that state for the membership of the coali- 
tion where whether or not an improvement is ‘significant’ depends on E. In other 
words, a feasible state is s(e)-stable if it is stable with ‘satisficing’ and the extent of 
satisficing is determined by E. 

Formally, given ~20, a replication number r, and a feasible state of the rth 
economy, say c&V,), the state is s(e)-stable if for all non-empty subsets S of N, 
there does not exist a feasible state for S, say a’(S), with ~‘~(S,x”4 Y”~)> 
u ‘q(~,, ~‘4 ylq) + E for all (t, q) E S where (x”; y”‘) is the allocation associated with 
I&V,) and (x”,y”) is that associated with a’(S). 
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Theorem 1. Given E > 0 there is an r’ such that for all r 1 r’, an s(e)-stable state of 
the economy exists. 

We note that Theorem 1 does not require that all ‘increasing returns to coalition 
size’ are exhausted by somefinite economy (i.e. there is no ‘minimum efficient scale’ 
property, defined in the next subsection). 

3.2. c(s)-stability 

This notion of stability is based on the view that coalition formation is costly. As 
stated in the introduction this concept implicitly involves ‘pseudo-dynamics’ since 
no resources are used up in establishing a given stable state while to move to another 
state involves coalition formation costs. One could imagine the given state as having 
been created ‘last period’ and the resources required to form the state used up then. 

We take as given a mapping c from Ix R: to R K. Given s E I and E E Ri, c(s; E) 

represents the vector of inputs of private goods required by a subset S with profile 
s to form a jurisdiction consisting of the members of S. We follow the convention 
that inputs are non-positive so c(s; E) E - Rf. We assume that there is a .ZE RK 
where z<O such that given any profile s, we have c(s; E) = &lslf where /sI = Cf=, s,, 

so jurisdiction formation costs are linear’ in IsI. 
Given SC&‘,, we define c(S; E) by c(S; E) =c(s; E) when e(S)=s. 
Given a non-empty subset S of N,, and a state of the economy for S relative to 

S= {S,, . . . . S,}, say w(S) = ((xs,usX (P(S),z)) where P(S) = fl,“= 1 61, :I), the state is 
c(e)-feasible for S if 

c cy’q--tq)cz+ i .q+ f: c(S,; E). 
tqes /=I I=1 

Given &LO and a replication number r, a feasible state of the economy I&V,) 
with associated allocation (xNr,uN,) is c(e)-stable if there does not exist a non- 
empty subset S of N, and a c(e)-feasible state of the economy for S relative to S 
with associated allocation (x’~,Y’~) such that 

u’q(S,x”~,y”q)>~fq(Nr,xfq,y’4) for all (f,q)ES. 

Informally, a feasible state is c(e)-stable if no coalition S can improve upon the 
state after using up the resources required for coalition and jurisdiction formation. 

For the following theorems, we assume that there is a minimum efficient scale for 
jurisdictions (MES). Specifically, we assume that there is an r* such that given 
rzr*, for any ~10 if I+v(N,) is a c(a)-feasible state of the economy with associated 
allocation (x”; yN) then there is a c(e)-feasible state of the economy for N,, say 
w(ZV:) with associated allocation, (x’~;Y’~,) such that 

s This assumption is more restrictive than required, but facilitates the proofs. 
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(a) ~‘~(N~,x”~,y”~)Lu’~(N,,x’~,y’~), 
(b) for all SE Ni we have Q(S) I Q(N,.). 
We call r* an MES bound. 
Informally, the assumption of a minimum efficient scale for jurisdictions ensures 

that all increasing returns to jurisdiction size can be realized by jurisdiction struc- 
tures where the profile of each jurisdiction is bounded above by some given profile. 
This assumption is made in this form for convenience and is more restrictive than 
actually required. For the next theorem, what is essential are assumptions ensuring 
that, for E>O, the set of equal-treatment payoffs derived from the c(e)-feasible 
states are bounded away from those derived from the feasible states. Theorem 3 re- 
quires that the equal-treatment payoffs of the derived balanced cover games are 
eventually non-increasing (a property of games derived from replication models of 
private-goods-exchange economies). 

Theorem 2. Assume there is a minimum efficient scale for jurisdictions. Given E > 0 
there is a replication number r’ such that for all rzr’, a c(e)-stable state of the 
economy exists. 

Theorem 3. Assume there is a minimum efficient scale for jurisdictions. Given any 
~10 there is an r” such that the rjth economy has a c(e)-stable state where rj= Ire 
for all positive integers I. 

4. Proofs of the theorems 

4.1. An introduction to the proofs 

Since the model and additional notation which will be required are complicated, 
the overall strategy of the proofs may be difficult to perceive. Consequently, before 
beginning the proofs, we provide an overview. 

First, we construct the sequence of games derived from the c(e)-feasible states of 
the economy. A game in this sequence is an ordered pair (IV,, V,“) where V,, is a cor- 
respondence mapping non-empty subsets of N, into RrT and V,!(S) represents the 
payoffs, in terms of utilities, achievable by the coalition S. When E=O, we denote 
V,, simply by V,. Also, we can represent equal-treatment payoffs as subsets of RT, 
say E(r; E) and E(r) for the games (N,, V,“) and (iv,, V,) respectively. We denote the 
associated balanced cover games’ by (iv,, r,!) and (N,, vr) and their equal-treatment 
payoffs by l?(r; E) and E(r). We first show that the derived games are per-capita 
bounded; i.e. there is a compact subset K of RT such that E(r; ~)flRc and 
l?(r; E)~TR~ are contained in K for all r and E. 

9 These are formally defined later. For now, we note that the balanced cover games have non-empty 

cores (Scarf, 1967). 
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Some of the results in Wooders (1983) now apply. In particular, 
(1) E(r; e)cE(r; c); 
(2) E(r; E) C E(f + 1; e) for all r; 
(3) the sequence (E(r; E)) has a closed limit; 
(4) given any r’ there is an no such that for all positive integers I we have 

&‘; &)CE(/n”r’; E). 
It is a consequence of (3) that given any E>O there is an r’ such that, for some 

(Y e&r’), a represents an equal-treatment payoff in the &-core of (!C;, rr) for all 
rlr’. (This result is obtained in Wooders, 1983.) 

We now describe the strategy of the proof of Theorem 1. From the preceeding, 
there is an r’ and an a* in &‘) such that a* represents an equal treatment payoff 
in the e/2-core of (N,, pr), i.e., a feasible payoff which cannot be improved upon 
by more than ~12 for all members of any coalition. Note that, from (4), for some 
rr’, f?(r')~E(n~r'). Given any rrn’r’, write r=nr’+j, where n is the largest in- 
teger such that rz nr’. Let Bj= (N,--IV,,,.); informally, we can think of agents in Bj 
as ‘left-overs’, who may not be able to realize payoffs as large as a*. Since those 
agents in N,,. (or any subset of N, with the same profile) can do at least as well as 
any payoff in 6(Y), we can take away a small amount of private goods, say dy, 
from each agent in N,,, without significantly affecting them. The total amount of 
private goods taken away from agents in N,,. can be given to agents in Bj. Since 
nr’Tdy becomes arbitrarily large, since the number of agents in Bj is bounded 
([Bjl SIT), and, from overriding desirability of the private goods (assumption 
(2.3(c)), eventually the agents in Bj become as well-off as those in LV~,, and no coali- 
tion can significantly improve upon the given payoff. From the construction of the 
derived games, this shows existence of an s(e)-stable state. (It also shows that the 
closed limit of (E(r; a)) equals that of E(r; E) for any ~10.) 

The basic idea behind the proof of Theorem 2 is in showing that, given .s>O, for 
all r sufficiently large ,!?(r; e)cE(r). Then there is a state of the rth economy which 
is associated with an equal-treatment payoff, say a*, of (N,, V,), and this state is 
c(e)-stable since a* is not in the interior of V:(S) for any coalition S. The relation- 
ship ,!?(r; E) cE(r) follows from monotonicity and the fact that for E> 0, C(E)- 
feasibility is more restrictive (i.e., fewer resources can be used in consumption) than 
feasibility and, for r large, taking the balanced cover does not significantly change 
the set of equal-treatment payoffs. 

Through the remainder of the paper, given r and SCN,, it is to be understood 
that S#[zr. Also we continue to write 1 =(l, 1, . . . . 1) for the vector of l’s and the 
dimension of the vector is to be inferred from the context - this should create no 
confusion. 

4.2. Some game-theoretic definitions and results 

In this subsection we review some game-theoretic results which will be used in the 
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proofs in the next subsection. For convenience, some results are stated in slightly 
different forms than they originally appeared. 

A game without side payments, or simply a game, is an ordered pair (A, V) where 
A, called the set of players, is a finite set and V is a correspondence from the set 
of non-empty subsets of A into subsets of RA such that 

(i) for every non-empty SCA, V(S) is a non-empty, proper, closed subset of RA 
containing some member, say, cz, where a%O; 

(ii) if ok V(S) and a/ERA with ai=a” for all iES, then a’E V(S); 

(iii) V(S) is bounded relative to Rs i.e., for each S, there is a vector ME RA, 
where, for all a E V(S), a’s@(S) for all ic S. 

The above definition differs from the usual definitions of a game in that we’ve 
required each payoff set V(S) to contain a strictly positive member. This require- 
ment is simply for technical convenience. 

Let (A, V) be a game. A vector aE RA, where the coordinates of (r are super- 
scripted by the members of A, is called a payoff for the game. A payoff cz is feasible 
if a E V(A). Given a payoff (Y and players i and j, let a[a; i,j] denote the payoff 
formed from a by permuting the values of the coordinates associated with i and j. 
Players i and j are substitutes if: for all SC A where ie S and jr3 S, given any 
aE V(SU(i)), we have a[a; i,j]E V(SU{j}); and, for all SCA where iES and 
Jo S, given any (Y E V(S), we have a[a; i, j, ] E V(S). The game is superadditive if 
whenever S and S’ are disjoint, non-empty subsets of A, we have V(.S)fl V(S’)C 
V(SUS’). It is comprehensive if for any non-empty subset S of A, if aE V(S) and 
a’sa then a’E V(S). 

Given a game (A, V) and E L 0, a payoff ar is in the e-core of (A, V) if (a) a is feasi- 
ble and if, (b) for all non-empty subsets S of A, there does not exist an a’E V(S) 
such that a’% a + ~1. When E = 0, the e-core is simply the core. 

We review the concepts of balancedness and the balanced cover of a game. Let 
(A, V) be a game. Consider a family p of subsets of A and let pi = {SE p: i E S}. A 
family p of subsets of A is balanced if there exists positive ‘balanced weights’ o, 
for S m p with CseA ws= 1 for all in A. Let B(A) denote the collection of all 
balanced families of subsets of A. Define v(A)= IJBEB(Aj nSEP V(S). Define 
r(S) = V(S) for all SC A with S# A. Then P maps subsets of A into RA and is 
called the balanced cover of V. The game (A, P) is called the balanced cover of 
(A, V). If the game (A, V) has the property that r(A)= V(A), the game (A, V) is 
balanced, and from Scarf’s theorem (1967). the core of the game is non-empty. 

Let (A,, I’,),“=, be a sequence of games where, for each r, A,CA,+I and A,= 
{(t,q):tE{l,..., T}, qE{l,..., r}}. Write a=(a, ,..., aq ,..., a,) for a payoff for 
the rth game where aq=(alg, . . ..afq. . . . ,aTq) and afq is the component of the 
payoff associated with the (f,q)th player. Given r and t, define [t], by [t],= 

{(Sq)EA,:qE{l,..., r}}; the set [t], consists of the players of type t of the rth 
game. The sequence (A,, V,),“=, is a sequence of replica games if: 
(a) for each r and each t = 1, . . . . T, all players of type t of the rth game are substi- 

tutes for each other; 
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(b) for any r’ and r” where r’cr” and any SCA,,, we have VF(S)c V’,!?(S) where 
VP(S) denotes the projection of V,(S) onto RS (i.e., the set of utility vectors 
achievable by the coalition S does not decrease as r increases). 

Let (A,, I’,),“=, be a sequence of replica games. A payoff for the (A,, V,) is said 
to have the equal treatment property if, for each t, we have arq’= alq” for all q‘ and 
q”; players of the same type are allocated the same payoff. The sequence of games 
is superadditive if (A,, V,) is a superadditive game for all r. The sequence is per- 
capita bounded if there is a constant K such that for all r and for all equal-treatment 
payoffs a in Vr(A,) we have at41 K. 

A sequence of games (A,, I’,),“=, is said to satisfy the assumption of minimum 
efficient scale (for coalitions), MES, if there is an r* such that for all TL~* given 
a E v&4,) there is a balanced collection fi of subsets of A, with the properties that 
(1) e(S)l&I,.) for all Se/3 and (2) aE nsEp V,(S). We call r* an MES BOUND. 

Let (A,, V,),“=I be a sequence of replica games. We say that the sequence has a 
non-empty strong approximate core if given any E > 0 there is an r* sufficiently large 
so that for all rzr*, the a-core of (A,, V,) is non-empty. The sequence has a non- 
empty weak approximate core if given any a>0 and any 1 >O there is an r* such 
that for all rzr*, for some 8~ R*’ and some aE V,(A,), we have 

(a) 

and 
(b) d cannot be a-improved upon by any coalition S; i.e. there does not exist an 

SC& and an a’E V,(S) such that a’%a+ei. The next two theorems are variations 
of theorems in Wooders (1983). 

Theorem 4. Let (A,, V,),"= , be a sequence of superadditive replica games with MES 
bound r*. For any r>r*, the core of the game (AI, vr) is non-empty and contains 
a payoff with the equal treatment property. 

The non-emptiness of the core in Theorem 4 is Scarf’s Theorem (1967). 
In Wooders (1983), Theorem 3 is stated with the additional assumption of quasi- 

transferable utility, QTU, - the payoff sets are assumed to not have segments of 
their boundaries in the positive orthant parallel to the coordinate planes. However, 
it is shown that a game can be approximated by one with QTU property. The 
original theorem can be applied to obtain an equal-treatment payoff in the core of 
the approximating game. A limit of some subsequence of the payoffs in the cores 
of the approximating games is an equal-treatment payoff in the core of the game. 

Before stating the next theorem we introduce the following notation and defini- 
tions. Let (A,, V,),“=, be a sequence of the replica games. 

Define: E(r) = a E R’: fi aE WA,) and 
i=l 

fi aE VJA,) . 
i=l 
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In Wooders (1983) it is shown that if (A,, V,),“=, is a superadditive, per-capita 
bounded sequence of replica games, then the closed limit” of (g(r)) exists; denote 
this limit by L(z). Let l/V, Wlj d enote the Hausdorff distance (with respect to the 
sup norm) between two subsets V and W of R”. 

Theorem 5. Let (A,, V,),“=, be a sequence of per-capita bounded, superadditive 
replica games with the property that IIE(r). L(f?)Il ---t 0 as r+ 00. Then given E > 0 there 
is an r* such that for ail rzr*, the e-core of (A,, V,.) is non-empty, i.e., the se- 
quence has a non-empty strong approximate core. 

We remark that in Wooders (1983) this theorem is stated requiring convexity of 
the payoff sets V,(A,) for each r rather the convergence of E(r) to L(E). The only 
role of convexity however is in showing that IIE(r), L(E)11 +O as r-+ 03. In this paper, 
we will use properties of the economies underlying the derived games to show that 
for these games l/E(r), L(f?)/I +O as r-03. 

The next theorem is proven in Shubik and Wooders (1983a). 

Theorem 6. Let (A,, I”,),“=, be a sequence of superadditive, per-capita bounded 
replica games. Then the weak approximate core is non-empty. 

4.3. The derived games 

Throughout the remainder of the paper we assume that for some e’>O, we have 
ECE’ and e” is sufficiently small so that -e’.Z< w’ for each type t where t is the 
vector satisfying c(s, E) = EISIL. (Note that this implies that for any r and any subset 
S of N,, we have -c(S,e)< CIqES w’~; any coalition has enough resources to form 
a jurisdiction.) We also require that for each type t, we have u’(s, 0, wr4- cot)>0 
where s is the profile with s,= 1 and s,,=O for all t’ft; this is possible from 
assumptions 2.3(a) and 2.3(d). These assumptions entail no loss of generality since 
if a state of the economy is e-stable (either s(e)-stable or c(e)-stable) then it is E’- 
stable for all E’ZE. 

Given r and ~20 we associate a correspondence fi: with the rth economy where 
v;” maps subsets S of N, into RNr. For each subset S of N,, define v;E(S) as the set 
of vectors CY E R Nr with the property that for some jurisdiction structure S of S 
and some c&)-feasible state of the economy for S relative to S, say t&S) with 
associated allocation (x”, y’), we have of45 u’~(,!?,x’~, ytq) for each (t, q) ES. 

The coordinates of a E p:(S) are superscripted by the members of N, and ordered 
a=(a” ,..., a” ,..., aT’ ,..., alq ,..., a’q ,..., aTq ,..., air ,..., a” ,..., aT’). The coordi- 
nate afq of a is called the payoff of the (t, q)th player and a is called a payoff. 

We remark that p,!(S) is non-empty for any r and any subset S of N, since there 
is an a%0 in v:(S) with a’q=u’q(S’,O, wtq --Ez) where S’= {(t, q)} for each (t,q) in 

lo See Hildenbrand (1974). pp. 15-17 for a definition of the closed limit and some properties. 
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S. Also, V,!(S) contains all its limit points except those for sequences of payoffs 
whose associated states of the economy have # converging to zero from some k 
and some (f, Q) E S. More formally, let ~~(5’~) = ((CC,?, $), (Pj(Sj>, z+)) be a sequence 
of states of the economy for S and let oj be a payoff where ai’” = ufq(Sj,x~, ujq). 
If Clj converges to some vector (Ye, and if, for some convergent subsequence of 
(y:), the limit of the subsequence is strictly greater than zero, then (Y~E V:(S). If 
the limit of every convergent subsequence of ($) has a coordinate equal to zero, 
then o. may not be in v,!(S). These observations follow from closedness of pro- 
duction sets and the fact that the consumption set is Ry x R,k+ (so, of course, the 
consumption sets are not closed). 

When c=O, we denote v:(S) simply by v;(S). 
For each T, let I’,” be the correspondence mapping subsets S of N, into subsets of 

RN1 where V,!(S) is the closure of the set p;(S). Similarly, let I$ be the cor- 
respondence mapping subsets S of N, into subsets of RNr where V,(S) is the 
closure of V;(S). 

It is straightforward to verify that the sequence of derived games (N,, k’,“),“=r is 
a sequence of superadditive replica games. Moreover, the games are comprehensive. 

Given c=O, we let the rth derived game be denoted by (N,, I’,). The balanced 
covers of the games (N,, V,“) (for any E>O) and (N,, V,) are denoted by (N,, v:“, 
and (N,, vr) respectively. 

The sets of equal treatment payoffs of (N,, V,“) and (N,, I’,), represented as sub- 
sets of Rr, are denoted and defined, as follows. Given r and ~10, let E(r; E) = 
{aeRT: nf=, a~ V,“(N,)) and l?(r;~)={a~R~: fir=, (YE v,f(N,)}, and for E=O, 
let E(r)={acRT: n,?,a~ V,(N,)}, and l?(r)={a~R~: n,?=, a~ rr;(N,)}. We 
denote the closed limits of these sets, which are shown to exist, by f.((E(.s)), L.@?(E)), 
L(E) and L(g) respectively. 

Lemma 1. Given E r 0, the sequence of games (N,, V,"),"= , is superadditive and per- 
capita bounded. 

Proof. To verify superadditivity is straightforward so the proof is omitted. To show 
per-capita boundedness, we need only consider the sequence of games (N,, I',.),"= , . 
This is because, from monotonicity, we have Vj(N,)C V,(N,) for all ELO so if 
(N,, V,>,“= , is per-capita bounded, then (N,, V,“) is per-capita bounded for any E ~0. 

To show per-capita boundedness of (N,, Vr)F=, we construct a related sequence 
of economies, called the *-economies, and consider the sequence of games, denoted 

by (N,, I?),“= I, derived from the sequence of *-economies. We construct the 
*-economies so that V,(N,)c V:(N,) for all r and show that (N,, Vr*),“, satisfies 
per-capita boundedness to obtain the conclusion of the lemma. Informally in the 
*-economies, we have the ‘most favorable’ possible constraints on feasibility in 
terms of production possibility sets and partitions of agents. The constraints, in this 
case, are sufficiently similar to standard ones on sequences of private goods eco- 
nomies so that we can easily obtain per-capita boundedness. 
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Given r, for each ScN, define Y~(S)={(X,Z)ER~+~: (~S~X,Z)E Y:} and 
observe that Y#)c Y:(S). Given SCN,, let S= {St, . . . . S,, . . . . S,} be a juris- 
diction structure of S where each jurisdiction S, contains one and only one agent. 
Let S’= {S;, . . . . S;, . . . . S;} be any other jurisdiction structure of S. Observe that 
if fl,“l, (x’,z’) E n,“l, r:(S;>, then there is #=, (x,z) E flf= t Ye(&) such that if 
(6 4) E &f-Is;,, then xl =x;, for all (t, 4) ES, and Cf: I z;= Cf= I zl; there are ‘constant 
returns’ to productive coalitions. 

For each T, for the rth *-economy, let the private goods production set be Y*. 
For each type t, let the utility function of each agent (f,q) be defined by 

u*‘9(x~y)=~~a:l,u’(s,x,Y) 
7. 

where r* satisfies assumption 2.3(e) for each (x, y) E R,” x Rf+. Observe that from 
assumptions 2.3(a) and (e), the utility functions u*‘~(. , .) are well defined and are 
quasi-concave. Also, it is clear that given any (3,x, y) E I(t) x Ry x Rt+, we have 
u*‘~(x, y) > u ‘9(s,x, y). This completes the construction of the sequence of *- 
economies. 

Let A: be the set of allocations (xNr,yN,) such that for some feasible state 
of the rth *-economy, (xN;yN7) is the associated allocation and, for each t, 
u*‘9(x’9,yt9)=u*t9’ (xt9’,yt9’) for all q and q’, i.e., the allocations have the equal- 
treatment property (in terms of utilities). Let K be a real number such that 

K> sup sup u*‘t(x”,y”); 
(x”l,y”i)EA; l 

from the closedness of the production sets and quasi-concavity there is such a real 
number. We claim K is a per-capita bound, i.e., for all r, if a~ VT(N,) and cz has 
the equal-treatment property, then or9 < K for all (t, q) EN,. 

Suppose not. Then for some r’, we can select an a’~ V:(,4,,) where (i) (Y’ has the 
equal-treatment property, (ii) 01 ‘r’9> K for some t’ (and all q = 1, . . . , r’), and (iii) for _ 
some feasible state of the r’th *-economy, say w(N,,) = ((xNr’, yNQ (J(N,,), z)) 
where N,,= (((f,q)} : (t,q)~N,,}, we have ~*‘~(x’~,y~~)~cr~ for each t and all q. 

We denote the components of b(N,.) by (xt9, zr9) for each (t, q) EN,,. Define R’ =; 
C~=,xtq/r’ and p’= Ei=rytq/r. Since u*‘(.,.) is quasi-concave, u*‘~(x’,_$)z 
~*‘~(x~~,y~~) for all q and for each t. Since Y* is a closed convex cone, (l/r’)z E Y*. 
From the convexity of Yc and construction of rz( .), we have l-I,‘=, (x’,z’) E 
Y,*(Nt) where N, = {(f,q)} : (?,q)~ N,} and, for each t, z’= Cz=, ~‘~/r’. For each 
(t, q) E N,, let Zt9 = X’ and pt9=y’. Since w(N,,) is feasible, we have 

$XN otq-wt+;[Z+ c 
T’ (t, 9) EN,, 

and therefore 

c (f9- 

Ct. 4) E NI 
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Consequently, the state of the economy w(N,) = ((R”~,J,“), (/~(N,),z/I’)) is feasible 

where /RN, ) = II,,, qj E ,%, (_F’4, Z’). Also for each (f, 4) EN,, we have II’~(.%?‘,~‘~) 2 
U “q. This is a contradiction to the assumption that a’@>K. C 

The following notation and definitions are used in the proof of the next lemma. 
We require concepts of replications of a state of the economy and its components. 
Given N,.= {J,, . . . . Jg, . . . . JG}, a jurisdiction structure of N,,, and a positive integer 
n, let r=nr’. Let n(N+) be a jurisdiction structure of N, containing nG jurisdic- 
tions, say n(,V,,)={J,,:g=l,..., G,j=l,..., n}, with Jti= {(I, q) E h.T,: for some 
(t,q’)~J~, q=(j- l)r’+q’} for each gE{l,...,G} and j~{l,...,n). informally, 
n(Nr,) consists of n ‘copies’ of N,,. Note that for each j, the profile of Jgj equals 
the profile of J,. We call n(N,,) the n th replica of Nr.. This definition of a replica 
of a jurisdiction structure is more restrictive than is actually required. Essentially, 
we need only that the n th replica of N,, contains n jurisdictions with the same pro- 
file as Jg E N,, for each Jg . The additional restriction, that (& 4) E Jgj when (f, 4’) E Jg 
and 4 = (j- l)r+ 4’. simplifies notation, subsequent definitions, and proofs. 

Given T’, let (x.\“,u”“) be an allocation for the r’th economy where r=nr’, and 
where, for each (& 4) EN,,, we have (x”“: yPt4’) = (x’4_vtq) for all q’= q, Zq, . . . , nq. 

Then (x’“; Y’,‘~) is called the n th replica of (x”~; uNr’) and is denoted by n(~‘~,‘, yh’,‘). 
We similarly define replications of productions. Given r’, let IV,,= {J,, . . . . 

J gr . . . . JG} be a jurisdiction structure and let (n,“=, (x,,.z~))=P(N~,). Given n, the 
n th replica of /I(N,,) is denoted by /3,(N,,) = nr=, #=, (xg, zg) E &(n(N,.)). Let 
ZE Y,; then the nth replica of z is n.z. 

Given r’, a positive integer n, and a state of the r’th economy w(N,,)= 
((.v.L;;yN”), (p(N,,),z)), let n(v(N,,)) denote the nth replica of w(N,,) where 

n(y/(N,,)) = (n(~.“; .+‘), (P,(N,O, nz)). 
In the following lemma, we prove that E(r) converges to L(g). We remark that 

in the proof of Theorem 1 in Wooders (1983) it is shown that for sequences of 
replica games, when the payoff sets for the sets of all players in each game are con- 
vex, the equal-treatment payoffs of the games converge to those of the balanced 
cover games. It was stated in that paper that for games derived from sequences of 
economies an assumption which would ensure such convergence without convexity 
is that of an infinitely divisible good with ‘over-riding desirability’ (i.e., a substitute 
for every other good), with which everyone is initially endowed. Informally, this 
assumption ensures a certain degree of ‘sidepaymentness’ of the derived games. In 
this paper, it is the case that private goods are substitutes for both public goods and 
the group with whom an agent produces and consumes the public goods, which 
leads to the required convergence (see assumption 2.3(c)). 

We first note that, as is obvious, E(r; &)C&r; E) for all r and for all ~10. Also, 
from comprehensiveness of the payoff sets, it suffices to prove that for some 6> 0, 
for all r sufficiently large, f.((B+)CE(r) + Sl where L(J?‘+) = L.(J?)nRI. 

Lemma 2. Given 6>0, there is an r” such that for all rzr’, L(E)CE(r)+61. 
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Proof. Choose T” such that for all rz /‘, we have f.(l?)Cf?(r) + fdi; this is possible 
from Wooders (1983, Lemma 8). 

From Wooders (1983, Lemmas 3 and 5), given T” we can choose a replication 
number r’ such that l?(r”)CE(nr’) for all positive integers n. 

From the per-capita boundedness assumption and closedness of V,(A,), we have 
E+(r) compact for all r where E+(r)=l?(r)nR~. Let {(Y’, . . ..a*. . . ..aQ} be a set of 
members of &“) such that given any aEf?+(r”), there is a 4 such that IIcz- oq/]< 
614. Given q, we now show that there is a replication number r4 such that for all 
rzr,, we have aq-+6J in E(r). 

Since V&V,,) is the closure of pr,(N,,) (where E = 0) and since ,!?(r”) c&r’) there 
is a jurisdiction structure N,, of N,, and a feasible state of the economy for N,., 
relative to N,., say w(N,,) = ((xN~;yNr), (/3(N,,), z)), such that ~‘~(N,~,x’~,y~~)> 
a, - d/4 for all (I, q) E N,, . Since I,Y(N,,) is feasible, yfqs 0 for all (t, q) EN,,. Since 
utility functions are continuous, there is a dye RK such that dys0, yfq-dy+O 
for all (t,q) E N,,, and u’q(N,~,~‘q,yrq-dy)>a~-iV2. 

Given rzr’, in the following we let n and j be non-negative integers such that 
r=nr’+j wherejE{l,...,r’-11). 

Given r = nr’+j, let Bj = {(t, q) E N,,, : nr’<q<r}. Let Bj be a jurisdiction struc- 
ture of Bj and let W(Bj) = ((x~,yB~), (P’(Bj), 2’)) be a feasible state of the economy 
for Bj relative to Bj. Let t,u(N,) = ((x*~~,Y*“~ ),(p*(N,),z*)) be a state of the 
economy for N, of N, where 

(a) N,=n(N,.)UBj (agents in N,,,, are in a jurisdiction structure which is the nth 
replica of N,, and agents in Bj are in the jurisdiction structure which is identical 
tO Bj); 

(b) for all (f, q) E N,,. we have x*lq =xfq’ and Y*‘~ =y’@- Sy where (f, q’) EN,, and 
q=q’,2q’,..., nq’. 

(c) for all (t, q) E Bj, we have x*‘~ =x’Iq and Y*‘~ =y’lq + (nr’dy/jT); 

(d) P*(N,)=&(N,,)XP(Bj) and 
(e) z*=nz+z’. 

From the free-disposal assumption, and the fact that what has been ‘given’ to the 
members of Bj equals what has been ‘taken away from’ the members of Nnr,, it 
follows that y/(N,) is feasible. Given j, we can choose rj such that if r= nr’+j and 
rrrj then u”(N,,x*‘~, _Y*‘~)> a:- 612 for all (t, q) E Bj, this follows from the 
assumption that private goods can substitute for public goods and crowding effects 
(2.3(c)). Let 

fq = max rj. 

js(l.....r’-1) 

Thus, for all rzr,, we have (aq-+di)cE(r). Let rO=maxq rq. Given any TTY’ 
and a Al?+, we have (a-+81) EE(~); this follows from the facts that given 
any a Al?+, there is an a4 such that [Ia- a411 <d/4 and an a’EE(r) such that 
llaq-a’ll<6/2. 

For all rzr” we now have 
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E+(f) c E(r) + +sj c E(r) + $31 

(since E(r) C f?(r) for all r) and f.(E) C &“) + *SC E(r) + 61 from comprehensive- 
ness so, for all rzre, we have L(E)CE(r)+6!. 3 

Note that from Lemma 2, we have IIE(r).f?(r)ll -0 as r+ 00. Also, the same 
proof as used in Lemma 2 can be used to show that for any E>O we also have 
llE(r; E), E(r; &)/I -+ 0 as r+ 00. 

Proof of Theorem 1. The proof of Theorem 1 is now essentially the proof of 
Theorem 1 in Wooders (1983). Using the fact that E(r)+&-) and Theorem 5, 
(stated herein), it follows as in Wooders (1983, Theorem 1) that given &>O for all 
r sufficiently large, the a/2-core of (N,, V,) is non-empty and contains an equal- 
treatment payoff. Since V, is the closure of vr, there is an rw*~E(r) where flT=, (Y* 
is in the e-core of (N,, k’,) and for some feasible state of the economy, t&N,) = 
((xNr, yNr), p(N,),z), for each t we have ~‘~(N,,x~e,y’~)z c$ for all q. Therefore 
I+Y(N,) is s(e)-stable. 0 

Throughout the remainder of this section, we assume r* is an MES bound for the 
sequence of economies. It is obvious that r* is also an MES bound for the sequence 
of derived games. Also, recall that given e>O we assume that E is sufficiently small 
so that -c(S; &)@I < wlq for all (t,q) ES and for all SCN,*. 

Our next two lemmas, along with the preceding one, will enable us to show that 
there are feasible states of the economy which cannot be improved upon by any 
coalition, given that the coalition faces coalition formation costs. 

Lemma 3. Given E > 0 there is a 6 > 0 such that for all r we have E(r; E) + 261 C E(r). 

Proof. First, note that from the specification of jurisdiction formation costs, given 
any r and any jurisdiction structure iv, of N,, we have Cs,,c(S; E)=ETTZ. Let 
dy= -&.z. 

Suppose the claim of the lemma is false. Then there is an a* in the boundary of 
L(E) where a*>0 and a sequence (a’) where a’EE(r; E) for each r and a’+a* as 
r-+ 00. We will show that this contradicts the assumption that a* is in the boundary 
of L(E). 

Since are E+(r; E) for each r, there is a sequence of c(e)-feasible states, say 
v(N,)) with associated allocations (x,“;yy>, such that ~‘~(N,,x~~,y~~)~a~ for 
each I and all q. Without loss of generality, we can assume ~(s)r,o(N,*) for all 
SE N, and for all r. It can be demonstrated using standard arguments and, as in 
Lemma 1, taking the ‘most favourable’ possible production possibilities sets, that for 
all (t,q) in N, and for all r, (~:~,y:‘~) is contained in a compact subset KCR”+K. 

For each r, there is a feasible state of the economy with jurisdiction structure N, 
and associated allocation (xF,yPNr) where _Y:‘~ =y:q + dy for each (t, q) EN,. 
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Now for each t, define 

where the inf is taken over the set I,,(f)x(Kn(R:‘,uR~+)). From continuity 
and monotonicity, 6,>0 for each t. Let 26= min 6,. It follows that cr{< 
~‘~(N,,x:~,y:~)+264u’~(N,,x:~,y:~+ny) for all r. Therefore o* is in the interior 
of L(E), which is a contradiction. q 

Lemma 4. Given E > 0 there is a 6 > 0 such that for all r sufficiently large we have 

E(r; iz) + Sl Cl?(r). 

Proof. From Lemma 2 we have the closed limit of (E(r; E)), L(E(e)), equal to the 
closed limit of @(r; E)), denoted by t@(s)). 

Let 6 satisfy the requirements of the preceding lemma. Since E(r; E) + 261 CE(r) 

for all r, we have 

L(&))+2d~CL(E(r)). 

Therefore for all r sufficiently large, 

B(r; e) C E(r). 0 

Proof of Theorem 2. From Theorem 4, for all r>r* the core of (R;,, p;“) contains 
payoffs with the equal treatment property. Let r’ be sufficiently large so that for 
all rz r’ we have 

E(r; e) + Si C E(r) for some 6 > 0. 

Given r-2 r’, let a E l?(r; E) be such that nl=, a is in the core of (N,, v:). Now let 
t&V,) be a feasible state of the economy with associated allocation (xv: yNr) such 
that utq(IVr,xtq, yfq) > cr, for all (t, 4) EN,; this is possible from the preceding lemma. 
Since nr=, a is in the core of (iv,, v:), it follows that t&V,) is c(e)-stable. 0 

Proof of Theorem 3. Given any &LO, from the MES assumption it follows that 
,!?(r*; E) =l?(r; E) for all rzr*. From results in Wooders (1953), there is an no such 
that l?(r*; .z)cE(ln’r*; E) for all positive integers 1. Therefore each economy in the 
sequence of economies with agents N,,,o,.) has a c(e)-stable state. II 

We remark that the c(e)-stable states in the above theorem can be chosen so that 
for each I the c(e)-stable states of the In’r*th economy and the payoffs derived 
from these c(e)-stable states have the equal-treatment property. To show this, simply 
choose a vector in l?(r*; E) which represents an equal-treatment payoff in the core 
of the rth derived game for all r; this can be done by choosing the limit, say a*, 
of some subsequence of (a’) where ar represents an equal-treatment payoff in the 
core of the rth game. Then a*EE(n”r*; E). There is a state of the n’r*th economy 
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associated with a* and the Ith replica of this state is a c(e)-stable state of the 
/n’r*th economy. 

5. Some extensions and remarks 

Remark 1. We first remark that the Shubik-Wooders (1983a) approximate core 
theorem can be applied immediately to the class of economies considered. To obtain 
that result, we need only per-capita boundedness of the derived sequence of games, 
which was demonstrated in Lemma 1. Restating the result in terms of the sequence 
of economies underlying the derived sequence of games we have: 

Theorem 7. Given any E > 0 and any I > 0 there is an r’ such that for all r 2 r’, for 
some feasible state of the economy w(N,) and some state of the economy w’(N,), 
with associated allocations (x”: yNr) and (x’“; yjNr) respectively we have 

(a) ({(t,q)~Nr:u’q(N,,x’q,y’4)#u’q(Nr,x”q,y”q)}~<~~Nr/ and 
(b) w’(N:) cannot be E-improved upon by any coalition S; i.e. there does not 

exist an SC N, and a feasible state of the economy w”(S) with associated allocation 
(xns, y”‘) such that u’~(.!$x”‘~ ry”‘q)>u’q(N~,x”q,y”q)+& for all (r,q)~S. 

Informally, there is a feasible state of the economy, and a state of the economy 
which cannot be e-improved upon by any coalition, with the property that most 
agents have identical payoffs in both states. Another way of stating Theorem 7 is 
to say that given h > 0 there is an r’ sufficiently large such that for all rz r’, there 
is a state of the economy and an associated payoff a for the derived game such that 
for some No c N,, (II cannot be E-improved upon by any coalition S contained in No 
and INol/lNrI > 1 -A. 

In Shubik and Wooders (1983b), another approximate core theorem was obtained 
for coalition production economies. A similar theorem can be obtained for the class 
of economies considered herein. 

Theorem 8. Given any E>O, there is a A E Rf and an r’ such that for all rz r’for 
some state of the economy w(N,.) with associated allocation (x”~, y”) we have 

(a) -A 5 C,qeNr Cv’q- w’q)- C,“=, q-z5A, 
(b) the allocation cannot be E-improved upon by any subset S of N,, i.e. (b) of 

Theorem 7 is satisfied. 

Informally, in Theorem 7 it is, in a sense, the ‘improvement’ condition that is 
relaxed and in Theorem 8, it is feasibility which is relaxed (although in per-capita 
terms, the state is approximately feasible for larger). In the literature on approximate 
cores of economies, both these types of approximate cores appear. 

We note that neither of these theorems, 7 and 8, require the MES property. Also, 
they do not even require that the equal-treatment payoffs of the derived games con- 
verge to those of the balanced cover games. 
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Remark 2. The results herein depend primarily on three properties: per-capita 

boundedness, the presence of at least one infinitely divisible good which is a 

substitute for all other goods (‘some sidepaymentness’) and, for theorems on C(E)- 

stability, minimum efficient scale for jurisdictions. 

Many of the specifies of the model can be changed and the same results still ob- 

tained. in particular, in the model we require that 

(a) all agents in the same jurisdiction consume the same amounts of the public 

goods; 

(b) agents belong to one and only one jurisdiction, i.e., jurisdictions do not over- 

lap in the sense that no agent can consume the public goods available in tvvo or more 

jurisdictions; 

(c) agents are not permitted to be members of different jurisdictions for the con- 

sumption of different public goods; 

(d) public goods for a jurisdiction are produced by a production set determined 

by the membership of that jurisdiction. 

All these constraints on the model can be relaxed and/or varied without affecting 

the results.” As stated above, the essential features are per-capita boundedness, a 

certain degree of ‘sidepaymentness’ or ‘quasi-transferable utility’, and for some 

results, a minimum efficient scale for jurisdictions or coalitions. Both per-capita 

boundedness and some ‘sidepaymentness’ seem to be quite reasonable conditions. 

The minimum efficient scale would not hold in models with pure public goods or 

pure-public-good-like features which result in all increasing returns to coalition size 

being unrealizable by some finite economy. 
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