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Abstract

In this paper we develop a new model of a cooperative game with a
continuum of players. In our model, only finite coalitions — ones containing
only finite numbers of players — are permitted to form. Outcomes of
cooperative behavior are attainable by partitions of the players into finite
coalitions. This is appropriate in view of our restrictions on coalition
formation. Once feasible outcomes fare properly defined, the core concept
is standard — no permissible coalition can improve upon its outcome. We
provide a sufficient condition for the nonemptiness of the core in the case
where the players can be divided into a finite number of types, This
result is applied to a market game and the nonemptiness of the core of
the market game is stated under considerably weaker conditions (but with
finite types). In addition, it is illustrated that the framework applies to
assignment games with a continuum of players.

Key words: continuum of players; finite coalitions; measure-consistent
partitions; game in characteristic function form; f -core.
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1 Introduction

Models of games with a continuum of players have become widely used in game
and economic theory. Nevertheless there are still subtle questions that arise
in the interpretation of these models, in particular, the interpretation of the
individual player and the role of the individual player in cooperation. Also, the
existing framework is not easily adapted to model some important interesting
situations, for example assignment games. These considerations lead us to the
conception of a new model of a cooperative game with a continuum of players.
We develop and explore our model in this and subsequent papers. In this first
paper, we discuss our motivation, introduce our framework and provide some
basic results.
Our model differs from those currently in the literature in that only subsets

containing finite numbers of players are permitted to form coalitions. Consistent
with our restriction on coalition formation, outcomes of cooperative behaviour
must be attainable by partitions of the players into finite coalitions. The parti-
tions are required to be compatible with the distribution of players (described
by a measure on the player set). Outcomes are then defined relative to feasible
partitions. 1Once feasible outcomes are defined, the core concept is standard -
no permissible (i.e. finite) coalition can improve upon an outcome in the core,
called the f -core.
The motivation for our treatment of cooperative games with a continuum of

players arises, as suggested above, in part from the interpretations of the extant
models initiated by Aumann (1964). One interpretation is that only portions
of the total set of players are relevant; the individual player is some arbitrarily
small set of positive measure. Here it is the player that is approximated in
the continuum model. Once we have interpreted the player as an arbitrarily
small set of positive measure it is a consequence that the total set is interpreted
as an arbitrarily large but finite set (since the total set of players is given as a
continuum is means to approximate a situation with a large but finite player set.
Of course both interpretations are intended to approximate a situation with a
large but finite player set, but in the first, the approximation is via the player
and in the second, the player set.
The first interpretation comes from the analogy to mechanics, e.g. fluid

mechanics, where a continuum is used to approximate a situation with a large
but finite number of particles. In fluid mechanics this sort of treatment is
appropriate when it is not necessary to treat each particle as a distinct entity.

1Note added June 16, 2001. In hindsight, this paragraph is not as clearly written as it
could be. There are other models in the literature where essential coalitions are restricted
to be finite. We note particularly papers by Yakar Kannai (1969) and Hans Keiding (1974).
The difficulty with these papers is that no measurement-consistency requirments are imposed.
Thus, the relative scarcities that are embodied in well-known models of economies with a con-
tinuum of players are lost. The notions of, for example, “twice as much” of one commodity
as another disappear. A paper clarifying this comment is available from Myrna Wooders, the
author of this note. Keiding, H. (1976) “Cores and Equilibria in an Infinite Economy,” in
Computing Equilibrium: How and Why, J. Los and M.W. Los, eds. Noth Holland, Amster-
dam/Oxford/New Tork, p. 65-73.
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In game theory and in microeconomics, by definitions of the subjects each player
is a distinct entity - a separate decision making unit; thus the concept of the
player must be precise, as it is in the second interpretation.
If we take the view that cooperation arises from the actions of individual

players then it seems reasonable that individual players should be able to be
effective (i.e. non-negligible in its non-technical sense) members of coalitions.
Furthermore, if we take coalition formation costs into account, then individ-
ual players are less effective in larger coalitions. The first interpretation of the
individual player as a set of ‘small’ but positive measure may not violate the
requirement that individuals be non-negligible as members of coalitions (of pos-
itive measure). However if each point in a continuum of players is a distinct
player, an individual player can be regarded as negligible or non-effective in
coalitions of positive measure. In this sense standard core theory in continuum
models needs the first interpretation. (See also the discussion in Aumann and
Shapley, 1974, pp.176-178.)
In our model each point in the continuum represents an individual player

and coalitions are finite. Therefore the second interpretation fits and our ap-
proach is consistent with cooperation arising from the actions of individuals
(the effectiveness of an individual in coalition formation). Our approach allows
us to maintain the advantages of both the first and the second interpretation;
the individual is not negligible in finite coalitions and it is the total player set
that is an approximation. Our treatment of coalitions can also be compatible
with the postulate of coalition formation costs because we can restrict essen-
tial coalitions to be bounded, e.g. in an assignment game with a continuum of
players, sizes of essential coalitions are no more than two. In this fashion, we
attempt to maintain a precise concept of the player while capturing the idea of
the individual player as effective in facilitating cooperation.
The preservation of the precise concept of the individual player and the

restriction to finite coalitions allow us to view our model as the direct limit
version of the Debreu-Scarf (1963) and Shapley-Shubik (1966) models with the
total set of players approximated by a continuum. Our model can also be viewed
as a limit version of a model of large games with nonempty approximate cores
initiated by Wooders (1983) (see also Kaneko and Wooders, 1982; Shubik and
Wooders, 1983; and Wooders and Zame, 1984). This can be observed in part
in the proof of Theorem 1 of this paper. In Kaneko and Wooders (1985), we
further explore the connection between the f -core of a continuum game and the
approximate (epsilon) cores of large finite games.
In the next section of the paper we develop our model and the concept of the

f-core. Simple examples of assignment games are used to demonstrate several
of the concepts. Section 3 consists of an application of our model to a market
game. A proof of the non-emptiness of the f-core for a game with types is
provided in Section 4.
In a subsequent paper, Kaneko andWooders (1984b), we consider the nonempti-

ness of the f-core without the types assumption. The price we pay for removing
this assumption is that we need uniformly bounded coalition sizes and strong
comprehensiveness. In another paper, Hammond, Kaneko and Wooders (1985),
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in the contexts of private goods exchange economies with and without external-
ities, equivalence of the f-core and the A-core (Aumann’s) is further explored.
Finally in Kaneko and Wooders (1985), we obtain the result of convergence of
approximate cores of large finite games to the f -core of the continuum game.
In each paper the motivation is further developed.
We conclude this introduction with some ideas about future research. At this

point in our work we believe we have established and motivated our model and
provided results justifying our approach. Also we have carried out some natural
applications to assignment games and private goods exchange economies. It
would be desirable to have other applications, for example, to housing markets,
more generally, urban economics. We believe our framework may be fruitfully
applied to these and related situations. On a deeper, conceptual level, our
framework may be useful in investigating the noncooperative foundations of
cooperation, in particular carrying out Nash’s program (1951) to formulate co-
operative behaviour as moves in an extensive game. The second interpretation
of the individual player (and our approach) is consistent with approaches in non-
cooperative game theory, especially recent developments in continuum games in
extensive form (cf., Dubey and Kaneko, 1984). Also the second interpretation
seems compatible with Nash’s programme. Thus we hope our model may facil-
itate a bridge between cooperative and non-cooperative theories in continuum
models.

2 The Model of Continuum Games and the f-
core

2.1 The player set and feasible partitions

Let (N,B,µ) be a measure space, where N is a Borel subset of a complete
separable metric space; B the σ-algebra of all Borel subset of N ; and µ, a
non-atomic measure with 0 < µ +∞.2 Each element in N is called a player
and N is the player set. The measure µ represents the distribution of players.
The σ-algebra B is necessary for measurability arguments but does not play
any important game-theoretic role.
Let F be the set of all finite subsets of N. Each element S in F is called

a finite coalition or simply a coalition. As motivated in Section 1, only finite
subsets of players can form coalitions.

Remark 2.1. Since a singleton set is closed in N , every coalition is measur-
able.

Since only finite subsets of players are allowed to form coalitions, cooperative
outcomes are attained by partitions of the player set into finite coalitions. Some

2Under our assumptions, (N,B) is measure-theoretically isomorphic to ([0, 1], E), where
E is the σ-algegra of all Borel subsets of the interval [0, 1] (see Parthasarathy, 1967, pp.12-
14).
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conditions must be imposed to ensure that these partitions are compatible with
the distribution of players described by the measure µ. For example, consider a
marriage (assignment) game where the girls are the points in the interval [0, 1]
and the boys, those in the interval [1, 3], endowed with Lebesgue measure µ .
The set of coalitions {{i, 1+ 2i} : i ∈ [0, 1]} constitutes a partition of the set of
players into coalitions. See Figure 2. However it is reasonable to require that
the measure of girls who are married equals the measure of the boys to whom
they are married. The above example violates this requirement. We formulate
this requirement in a general manner in the following definition, which will rule
out the above example.
Let A and B be sets in B. A function Ψ from A to B is called a measure-

preserving isomorphism from A to B iff

(i) Ψ is a measure-theoretic isomorphism, i.e. Ψ is 1 to 1, onto, and measurable
in both directions, and

(ii) µ(C) = µ(C) = µ(Ψ(C)) for all C ⊂ A with C ∈ B. A partition p of N is
measure-consistent iff for any positive integer k,

Np
k ≡

!
S∈p
|S|=k

S is a measurable subset of N ;

and each Np
k (k = 1, 2, ...) has a partition {Np

kt}kt=1, where each Np
kt is measurable,

with the following property: there are measure-preserving
isomorphisms Ψpk1,Ψ

p
k2, ...,Ψ

p
kk from Np

k1 to Np
k12, ..., N

p
kk ,

respectively, such that {Ψpk1(i), ..., Ψpkk(i)} ∈ p for all i ∈ Np
k1 .

(1)

Figure 1

Without loss of generality, we can assume that Ψpk1 is the identity map from
Np
k1 to N

p
k1. In the following, we assume this without further remark.

Note that (1) implies that for any S ∈ p with |S| = k we have S =
{Ψpk1(i), ...,Ψpk1(i)} for some i ∈ Np

k1. Therefore, for each integer k , N
p
k consists

of all the members of k-player coalitions and Np
kt consists of the t

thmembers of
these coalitions. The requirement that all the sets Np

kt have equal measure then
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captures the idea that coalition of size k should have as ’many’ (i.e. the same
measure) first members as second members, as many second members as third
members, etc.
In Figure 1 we provide a schematic illustration. The set of players in k-

player coalitions is the union of the sets Np
k1, ..., N

p
kk, all of equal measure. The

isomorphism Ψpk1(i) maps i to himself; he is the ‘first member’ of the coalition
S = {Ψpk1(i), ...,Ψpkk(i))}. The second member is given by Ψpk2(i), etc.
Let Π denote the set of measure-consistent partitions.
We remark that some lemmas on measure-consistent partitions and outcome

space are contained in the Appendix. It follows from those lemmas that measure-
consistent partitions can be constructed.

Example 2.1. Consider the situation described above where the girls are the
points in [0, 1) and the boys, those in [1, 3) with Lebesgue measure. The
partition {{i, 1 + 2i} : i ∈ [0, 1)} violates (1). An example of a measure-
consistent partition is p = {{i, 2 + i} :∈ [0, 1)} ∪ {{i}} : i ∈ [1, 2)}. For
this partition p, we have

Np
i =

"
S∈p
|S|=1

S = [1, 2),

Figure 2 Figure 3

Np
2 =

"
S∈p
|S|=2

S = [0, 1) ∪ [2, 3), Np
21 = [0, 1) and N

p
22 = [2, 3);

then measure-preserving isomorphisms satisfying (1) are given by

Ψp11(i) = i, Ψ
p
21(i) = i and Ψp22(i) = i.

Figures 2 and 3 illustrate the partitions described above.
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2.1.1 A Characteristic Function Game without Side Payments

A characteristic function game V without side payments is a correspondence
on F which assigns to each coalition S ∈ F a subset V (S) of Rs with the
following properties:

V (S) is a nonempty, closed subset of Rs for all S ∈ F (2)

V (S)× V (T ) ⊂ V (S ∪ T ) for any S, T ∈ F with S ∩ T = φ ; (3)

inf supV ({i}) > −∞; (4)

for any S ∈ F, x ∈ V (S) and y ∈ R2 with y ≤ x imply y ∈ V (S); (5)

for any S ∈ F, V (S)−
"
i∈S
[(interior V ({i}))×Rs−{i}]

is nonempty and bounded.

These assumptions are all innocuous. We note only that (4) can always ben
obtained for a translation of a game, and that conditions (3) and (5) are called,
respectively, super-additivity and comprehensiveness.

2.2 Remark 2.2

Remark 2.2.Conditions (2.2) - (2.6) are not sufficient for a full formulation,
from a mathematical viewpoint, of our model. Since we are dealing with mea-
surable structures, a full formulation requires some measurability assumption
on V . In fact without the following condition one can develop counterexamples,
due to non-measurability, to the nonemptiness of the f -core. However, for this
paper the following condition is not required since for our nonemptiness theorem
we use a ‘types’ assumption and for market games, the structure of the economy
ensures measurability requirements are satisfied.
The condition is as follows. Let p be an arbitrary measure-consistent parti-

tion of N . For any positive integer k, we can regard ({ψpk1(i),ψpk2(i), ..., ψpkk(i)})
as a correspondence from Np

k1 to Rk, i.e.,

V : Np
k1 → 2R

k

i→ V ({ψpk1(i), ... , ψpkk(i)}).
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In this sense, we assume that V ({ψpk1(i) , ..., ψpkk(i)}) has an analytic graph3,
i.e. the set

{(i, x) ∈ Np
k1 ×Rk : x ∈ V ({ψpk1(i), ..., ψpkk(i)})} (7)

is analytic in Np
k1 ×Rk .

We next define the set of possible outcomes of the game. Some preliminary
definitions are required.
Given a measure-consistent partition p, define the set H(p) by

H(p) = {h ∈ L(N,R) : (h(j))j∈p(i) ∈ V (p(i)) for almost all i ∈ N}, (8)

where L(N,R) is the set of measurable functions from N to R and p(i) is the
element of the partition p containing player i; H(p) is the outcome set relative
to p. Note that H(p) *= φ for any partition p since h given by

h(i) = inf
j∈N

supV ({j}) for all i ∈ N
is in H(p). Let

H = ∪
p∈πH(p). (9)

Let
_
R = R ∪ {+∞}. Define the outcome set H∗ by

H∗ = {h ∈ L(N,
_
R) : for some sequence {hv} in H, {hv}

converges in measure toh} , (10)

where ‘{hv} converges in measure to h’ means that for any ε > 0,

µ({i ∈ N :| hv(i)− h(i) |> ε}) −→ 0 as υ −→∞ .

Note that H(p) ⊂ H ⊂ H∗ for all p ∈ π.

Note that since we take the closure H∗ ofH and work on H∗ instead ofH we
can, in fact, remove the ‘almost’ qualification in definition (8). For convenience,
however, we adopt the present definition of H.

Remark 2.3. In outcome space we allow h(i) =∞ but only on a null set since
hv in (10)) cannot take the value +∞. Allowing h ∈ H∗ to be in L(N,

_
R),

rather than L(N,R), is simply for notational and expository convenience. See
also Section 3.

3Every measurable set in the product σ-algebra B(Np
k1)⊗B(Rk) is analytic, where B(Np

k1)

and B(Rk) are the σ-algebras of Borel subsets of Np
k1 and R

k, respectively. For a definition
of analytic sets see Parthasarathy (1967) p.15 or Meyer (1966), p.34.
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Remark 2.4. If {hv} converges in measure to h, then {hv} has the subsequence
which converges pointwise to ha.e. and, conversely, if {hv} converges pointwise
to h.a.e., then {hv} converges in measure. Therefore H∗ can be defined by
pointwise convergence, and in our proofs we use whichever definition is conve-
nient. Note that H∗ is closed with respect to these convergences, i.e. if {hv}
in H∗ converges either pointwise or in measure to h, then h ∈ H∗; that is, H∗

is the closure of H. An example illustrating that H may not itself be closed
appears in Hammond, Kaneko and Wooders (1985). Taking the closure H∗ as
the set of feasible outcomes is an idealization.

Let h be a function in L(N,
_
R). We say that a coalition S in F can improve

upon h iff for some y ∈ V (S), yi > h(i) for all i ∈ S. Now the f-core of the
game V without side payments is defined to be the set Cf :

Ct = {h ∈ H∗ : no coalition in F can improve upon h} (11)

An outcome h in the f -core Cf is stable in the sense that no coalition can
improve upon h. It is approximately feasible in the sense that h is approximated
by exactly feasible outcomes, where ‘an outcome h$ is exactly feasible’ means
h$ ∈ H, i.e., h$ is actually achieved by some measure-consistent partition p.
Except for this feature that feasibility is approximate, the core notion is the same
as in infinite games - no permissible coalition can improve upon an outcome in
the core, the f -core. In this sense, the f-core is the limit version of approximate
cores, e.g., Shapley and Shubik (1966), Wooders (1983), Kaneko and Wooders
(1982), Shubik and Wooders (1983) and Wooders and Zame (1984).
One advantage of our framework is clear when we consider an assignment

game with a continuum of players. Assignment games with finite numbers of
players have been developed by Gale and Shapley (1962), Shapley and Shubik
(1972), Crawford and Knoer (1981) and Kaneko (1982). In these games essential
coalitions are pairs of players, one player from each side of the market. Since,
in the standard (Aumann) approach to modelling continuum games, coalitions
are sets of positive measure, this approach cannot naturally treat assignment
games. The following example illustrates the treatment of assignment games
with our framework.

Remark 2.5. Although we gave the formulation of a characteristic function
without sidepayments, the sidepayments case can be treated by our formulation
in the standard manner. For more details, see Kaneko and Wooders (1984a).

Example 2.2. We continue our marriage game example and describe the
f-core of the game.

Suppose the marriage4 of the ith girl and the jth boy yields a payoff of j
utils to the girl and i utils to the boy (there is no transferability of utility)

4Only marriages between boys and girls are allowed.
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while remaining single yields a payoff of zero. A finite coalition can realise only
those outcomes attainable by marriages between members of the coalition. An
outcome in the f-core is given by f where

h(i) =

 2 + i if i ∈ [0, 1)
0 if i ∈ [1, 2]

i− 2 if i ∈ [2, 3];
(12)

only the boys with high index numbers are married and, the higher one’s index
number, the higher the index number of one’s partner. Figure 4 depicts the
graph of h. The dotted lines join partners.
Formally, the characteristic function of the marriage game is defined as fol-

lows:

for any i ∈ [0, 3, V ({i}) = {xi : xi≤ 0};

for any i ∈ [0, 1) and j ∈ [1, 3), V ({i, j}) = {(xi, xj) : xi ≤ j, xj ≤
i}; (13)

for any S ∈ F, V (S) = ∪
Ps∈P (S)

&
T∈ps

V (T ),

where P (S) = {ps : ps is a partition of S such that |T | = 1 or | T ∩ [0, 1) |= 1
and | T ∩ [1, 3) |= 1) for all T ∈ ps}. Then this function V satisfies (2)-(6) (and
also (7)) and the outcome h given by (12) is in the f -core of V . Furthermore
the outcome h is the unique f -core outcome (up to sets of measure zero). The
outcome h is, of course, in H∗ and is, in fact, exactly attainable by the measure-
consistent partition {{i, 2 + i} : i ∈ [0, 1)} ∪ {{i} : i ∈ [1, 2)} .

2.3 Nonemptiness of the f-core in the finite type case

We are now in a position to discuss the main theorem of this paper: if the player
set N of a game can be partitioned into a finite number of types, then the game
has a nonempty f -core under non-restrictive conditions.
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Figure 4

To state the theorem, some preliminary definitions are required.
Let (N,B, µ) be as described in Section 2.1 and let V be a game without

side payments. Players i and j are called substitutes iff for any S ∈ F ,

if i, j /∈ S, then x ∈ V (S ∪ {i})⇔ x$ ∈ V (S ∪ {j}) where xl = x$l
for all l ∈ S and xi = x$j ; and (14)

if x ∈ V (S) and i, j ∈ S, then x$ ∈ V (S), where x$l = xl
for all l ∈ S−{i, j} and x$j = xi, x$i = xj . (15)

These conditions simply mean that the players i and j are completely identi-
cal with respect to the aspects described by the characteristic function V . The
game V has the r-property with respect to {Nt}kt=1 iff

{Nt}kt=1 is a partition of N with µ(Nt) > 0 for all t = 1, ..., k,
and all players in each (Nt(t = 1, ..., k) are substitutes. (16)

A game with the r-property is simply one with a finite number of types and
a positive measure of players of each type. Assume that V has the r-property
with respect to {Nt}kt=1 . For any S ∈ F, a payoff vector y ∈ V (S) has the
equal-treatment property (the ETP) iff

yi = yj for all i, j ∈ Nt∩S and t = 1, ..., k. (17)

The game V is per-capita bounded with respect to {Nt}kt=1 iff there is a
positive real number δ(0 < δ < 1) and a K such that

S ∈ F

(1 + δ µ(Nt)
µ(N) ≥ (1− δ)µ(Nt)

µ(N) ∀t = 1, ..., k
'
=⇒ xi < K for all i ∈ S.5 (18)

x ∈ V (S) has the ETP

That is, there is a constantK such that given any coalition S with approximately
the same percentage of players of each type as N and any payoff x with the ETP
in V (S), we have xi < K for all i ∈ S.

Theorem 1 (Nonemptiness Theorem). Let V be a game without side payments.
Assume V has the r-property and is per-capita bounded with respect to a
partition {Nt}. Then the f-core of the game is nonempty.

5 If (18) is true for some δ, then it is also true for any δ∗(0 < δ∗ < δ).
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The proof of Theorem 1 will be given in Section 4.

The r-property is intuitively clear, but the per-capita boundedness assump-
tion of Theorem 1 might need further explanation. If µ(N1) =...= µ(Nk) =
µ(N)/k, then (18) can be replaced by a weaker form:

S ∈ F,
| S ∩N1 |=...=| S ∩Nk |,
x ∈ V (S) has the ETP

 =⇒ xi < K for all i ∈ S. (18’)

When the size of the coalition increases uniformly with respect to the per-
centage of agents of each type, per-capita payoffs are bounded. Even though
condition (18’) is in the same spirit as (18), it cannot be applied directly because
the proportions of different types may vary.

Remark 2.6. As previously noted, our model provides a limit version of models
of large games for which nonemptiness of approximate cores is obtained. As will
be seen, our Theorem can be viewed as an extension of theorems on approximate
cores in Wooders (1983) and Shubik and Wooders (1983).

Remark 2.7. Scarf (1967) has shown that under certain balancedness assump-
tions finite games have nonempty cores. For sidepayment games, balancedness
is a necessary and sufficient condition (see Shapley, 1967) for nonemptiness. In
fact, even without sidepayments, balancedness is ’close’ to necessary and suffi-
cient. In our continuum framework, the assumptions of per-capita boundedness
and of the continuum ensure the nonemptiness, replacing balancedness.

In the next section we give a corollary to the theorem for market games.

3 Market Games

3.1 The f-core of a market game

We formulated our model in terms of an abstract characteristic function. Since
market games have been intensively studied as example of cooperative games,
it is desirable to show that our formulation can accommodate market games.
Specifically, we show that the f -core of a game derived from a market economy
coincides with the ‘f-core of the economy’, i.e. the f-core in allocation space.
We also apply Theorem 1 to a market game to obtain nonemptiness of the
f-core. The investigation of the f -core of a market game is continued in a
subsequent paper (Hammond, Kaneko and Wooders, 1985).
We consider a model of an exchange economy with m commodities where

the player set (N,B, µ) is as defined in the preceding section. Each player has
the same consumption set Ω where
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Ω is closed in Rm+ (endowed in the sup norm, /.·/); and for any
nonempty subset T ⊂ Ω, the vector aT , defined by its coordinates
aTc = inf{ac : a ∈ T}(c = 1, ...,m), is in Ω . (19)

For simplicity, we assume that 0 ∈ Ω. For example, one choice for Ω is
Ω = Im+ = I+ × · · · × I+ where I+ is the set of all-nonnegative integers; all
commodities are indivisible. Another choice is Ω = {0, e1, ..., em−1}×R+, where
ec is the cth unit vector; this is the assignment market situation where a player
wants at most one unit of one of the first m−1 indivisible commodities and the
mth commodity is divisible. (See, for example, Kaneko, 1982, for an assignment
market of this sort with a finite number of players).
Each player i ∈ N has an initial endowment vector ω(i) ∈ Ω and the function

ω : N −→ Ω is measurable and integrable. Also, each player i has a utility
function U(i, ·) on Ω and we assume that infi∈NU(i,ω(i)) > −∞.

Assumption A. The function U : N ×Ω −→ R is measurable with respect
to the product σ-algebra B ⊗B(Ω);

Assumption B. For each i ∈ N, U(i, ·) is continuous.

For the same purpose as the use of
−
R rather than R in the preceding section

(see Remark 2.3) and to simplify arguments, we extend Ω to

Ω = Ω∪{(∞, ...,∞)}. (20)

Then we assign +∞ to U(i, (∞, ...,∞)), i.e.,

U(i, (∞, ...,∞)) =∞ for all i ∈ N. (21)

A function f in L(N,Ω) is called an allocation with respect to a partition
p(p ∈ Π) iff*

j∈p(i)
f(j) ≤ *

j∈p(i)
ω(j) for almost all i ∈ N, (22)

where p(i) is the element of the partition p containing player i. An allocation f
with respect to p can be attained by trading commodities only within coalitions
in p. Define the sets F (p)(p ∈ Π), F and F∗ by

F (p) = {f ∈ L(N,Ω) : f is an allocation with respect to p}; (23)

F = ∪
p∈πF (p); (24)

F ∗ = {f ∈ L(N,
_
Ω) : for some sequence {fv} in F , {fv} (25)

converges in measure to f}.
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Note that F (p) ⊂ F ⊂ F∗ for all p ∈ Π and that F (p) *= φ since the initial
endowment function is in F (p) for each p. We call a function f in F ∗ simply
an allocation. Also, for any allocation f we can find a pointwise convergent
sequence {fv} in F where each fv in the sequence can be attained a.e. by
trades within finite coalitions.
Although we defined allocations in a quite different manner than the stan-

dard definition due to Aumann (1964), it is a remarkable fact that the sets of
allocations are equivalent. The following lemma holds.

Lemma 3.1. F ∗ = {f ∈ L(N,
−
Ω) :

+
N
f(i) ≤ +

n
ω(i))}.

Proof. Appendix.

This lemma states that any function f ∈ L(N,
−
Ω) with

+
N
f(i) ≤ +

N
ω(i)

is an allocation, i.e. for some partition of the players into finite coalitions the
allocation f is approximately attainable by trades within coalitions in the par-
tition. This lemma is crucial in that it enables us to compare the f -core, the
Walrasian allocations, and the A-core (Aumann’s core concept (1964)).6

We say that a coalition S in F can improve upon a function f in L(N,
−
Ω) iff

there is a vector (aj)j∈ssuch that

aj ∈ Ω for all j ∈ S; (26)*
j∈S
aj ≤ *

j∈S
ω(j); (27)

U(j, f(j)) < U(j, aj) for all j ∈ S. (28)

The f-core of the market game (in allocation space) is defined to be

CE = {f ∈ F∗ : no coalition in F can improve upon f}.

This definition (29) of the f -core of a market game is obviously a transla-
tion of the definition of the f -core of a game in characteristic function form to
allocation space. In the next section, we show that the f -core of the game in
allocation space is equivalent to the f -core of the derived characteristic function
game.

6One might be tempted to think this lemma provides justification for our approach. On
the contrary, this lemma should be interpreted as a justification for Aumann’s feasibility
condition in the context of market economies. See also the discussion in Hammond, Kaneko
and Wooders (1985).
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3.2 Characteristic function representation of the market
game

Define the characteristic function VM in the standard manner: for any S ∈ F ,

VM(S) = {x ∈ RS : for some S-allocation (ai)i∈S, xi ≤ U(i, ai) (30)

where an S-allocation is a vector (ai)i∈S satisfying (26) and (27). Then
the sets HM(p), HM and H∗

M are defined by (8), (9) and (10) and the f -core
Cf of the game VM , by (11).

Clearly, the game VM satisfies (2)-(6) . The game VM also satisfies the
measurability condition (7) in Remark 2.2; a proof is contained in Kaneko and
Wooders (1984a).

Lemma 3.2. For any p ∈ Π, if h ∈ HM(p), then there is an f ∈ F (p)
such that h(i) ≤ U(i, f(i)) a.e. in N .

Proof. Appendix.

We remark that, since the spaces HM(p) and F (p) are independently
defined, Lemma 3.2, although it seems obvious, requires a proof.
The following theorem ensures that the general formulation of a game in

characteristic function form given in Section 2 is adequate for the treatment of
a market game. In particular, if we demonstrate nonemptiness of the f -core
Cf of VM , then the f -core CE in allocation space is nonempty; in the next
section we show this non-emptiness.

Theorem 2

(i) For any h in the f-core Cf of the game VM there is an allocation
f in the f-core CE of the market game such that U(i, f(i)) ≥ h(i) for all
i ∈ N.

(ii) For any f in the f-core CE of the market game, the utility
representation h of f (i.e., h defined by h(i) = U(i, f(i)) for all i ∈ N)
belongs to the f-core Cf of the game VM .

Proof. Since the structure of ’can improve upon’ in the market game is
fully described by the characteristic function VM , it suffices to show that (i)
an outcome h in Cf can be sustained by an allocation f in CE in the
sense that h(i) ≤ U(i, f(i)) for all i ∈ N , and (ii) the utility representation of
an allocation in CE belongs to H∗

M .

(i) Suppose h ∈ Cf . Then there is a sequence {hv} in HM such
that hv(i) → h(i) a.e. in N . For each v , there is a pv∈ Π such that
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hv ∈ HM(pv). From Lemma 3.2, there is an allocation fv ∈ F (pv) such that
hv(i) ≤ U(i, fv(i)) a.e. in N . From Lemma 3.1, fv satisfies+

N
fv(i) ≤ +

N
ω(i). (31)

We can assume without loss of generality that
+
N
fv(i) converges. Then we

can apply ’Fatou’s Lemma in m-dimensions’ (hildenbrand, 1974, p.69, Lemma

3) to this sequence and state that there is an integrable function
−
f such that

−
f (i) ∈ dLs(fv(i)) a.e. in N ; (32)

+
N

−
f (i) ≤ lim +N fv(i), (33)

where Ls(fv(i)) is the set of all cluster points of {fv(i))}. Hence +
N

−
f (i) ≤+

N
ω(i), i.e.,

−
f is an allocation by Lemma 3.1. By (32) there is a subsequence

{fvλ(i)} for almost all i in N such that fvλ(i) →
−
f (i) (λ → ∞). Since

U(i, fv(i)) ≥ hv(i) and hv(i) → h(i) (v → ∞), we have, by Assumption A,
h(i) ≤ U(i,

−
f(i)). That is, h(i) ≤ U(i),

−
f (i)) a.m. in N . If

−
f does not satisfy

h(i) ≤ U(i,
−
f (i)) for all i ∈ N , then we define the function f by

f(i) =

, −
f (i) if U(i, f(i)) ≥ h(i)
(+∞, ...,+∞) otherwise.

This function f satisfies the condition required.
(ii) Let f ∈ CE. Then there is a sequence {fv} in F such that fv(i)→

f(i) a.e. in N . Since fv ∈ F, there is a pv ∈ Π such that fv ∈ F (pv).
Then (U(j, fv(j))j∈S ∈ VM(pv(i)) for all S in pv. Since fv(i) → f(i) a.e. in
N, U(i, fv(i)) → U(i, f(i)) a.e. in N by Assumption A. This means the limit
function h(·) = U(·, f(·)) belongs to H∗

M .

3.3 Nonemptiness of the f-core of a market game with
finite types

In this subsection we apply our nonemptiness theorem to market games. The
result is striking: nonemptiness of the f-core of a market game is obtained
without any restrictions (except that of a finite number of types).
We start with the following lemma which shows that the per-capita bound-

edness assumption is satisfied.

Lemma 3.3. Consider the market game described in Subsection 3.1. Assume
that there is a partition {Nt}kt=1 of N with µ(Nt) > 0(t = 1, ..., k) such that
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ω(i) = ω(j) and U(i, a) = U(j, a) for all i, j ∈ Nt(t = 1, ..., k) and all a ∈ Ω.
Then the derived game VM (defined by (30)) satisfies the r-property and per-
capita boundedness with respect to {Nt}kt=1.

Proof. It is clear that VM satisfies the r-property. Let us prove per-capita
boundedness. Suppose the negation, i.e.,

∀δ(0 < δ < 1)∀ K ∃ S ∈ F-
(1 + δ)µ(Nt

µ(N) ≥ |S∩Nt

|S| ≥ (1− δ)µ(Nt)
µ(N) , t = 1, ..., k

'
(34)

∃ x ∈ V (S) [x has the EPT ]∃ i ∈ S : xi ≥ K.

Let {Kv} be an increasing sequence with limvKv = +∞ and let δ(0 < δ < 1)
be given. Since the number of types is finite, we can assume without loss of
generality that there is some t0(1 ≤ t0 ≤ k) and sequences {Sv} and {xv} such
that for all v,

(1 + δ)
µ(Ng)
µ(N) ≥ |Sv∩Nt|

|Sv| ≥ (1− δ)µ(Nt)
µ(N) , ..., k,

xv ∈ V (Sv) has the ETP , and

xvi ≥ Kv for all i ∈ Sv ∩Nt0 . (35)

Since Ω is closed and U(i, ·)(i ∈ Nt0) is continuous on Ω, we can find a v0
such that

U(i, a) ≥ Kv0 ⇒ a > µ(N)
(1−δ)µ(Nt0 )

k*
t = 1

ωt , (36)

where ωt = ω(i) for i ∈ Nt(t = 1, ..., k). The condition xv ∈ V (Sv) implies that
for some Sv-allocation (aiv)e∈Sv, we have xvi ≤ U(i, aiv) for all i ∈ Sv. Then it
follows from (35) and (36) that

*
i∈Sv0

aiv0 >| Sv0 ∩Nt0 | µ(N)
(1−δ)µ(Nt0

k*
t=1
ωt

≥| Sv0 |
k*
t=1
ωt

≥
k*
t=1

| Sv0 ∩Nt | ωt
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=
*

i∈Sv0

ω(i).

This is a contradiction to the condition that xv0 ∈ V (Sv0).

From Theorems 1, 2 and Lemma 3.3, we have

Corollary. Under the assumptions of Lemma 3.3, the f-core of the market
game is non-empty.

Remark 3.1. Lemma 3.3 holds for any utility functions. However, we could
transform the utility functions into bounded ones, and per-capita boundedness
would be trivially satisfied. The substance of the corollary would be unchanged,
since the f-core of the market game (in allocation space) does not depend on
the particular choice of utility functions.
For nonemptiness of the f-core of a market game with types, we have essen-

tially used only the existence of utility functions, which can be demonstrated
under weak conditions (cf. Debreu, 1959, p.56).

In the corollary, no divisibility of commodities, no monotonicity and no con-
vexity are required. This corollary is indicative of a broad potential of our theory
to wide the scope of existing economic theory and increase the range of the sub-
jects which can be studied as part of this theory.

3.4 The relationships between the f-core and the A-core

In the study of continuum economies the approach due to Aumann (1964) has
become well-known. In this subsection we briefly compare our concepts to
Aumann’s; a thorough investigation is carried out in Hammond, Kaneko and
Wooders (1985).
The A-core (‘A’ for Aumann) of the market game is

CA = {f ∈ L(N,
−
Ω) :

+
N
f(i) ≤ +

n
ω(i) and no subset of positive measure

in

B can improve upon f},

where a subset S of positive measure is said to be able to improve upon f iff
for some g ∈ L(S,Ω), +g g(i) ≤ +s ω(i) and U(i, g(i)) > U(i, f(i)) for all i ∈ S.
In Aumann’s approach permissible coalitions are subsets of positive mea-

sure, while in ours permissible coalitions are finite subsets only. This is the
basic difference. Both Aumann’s and our definitions of feasibility of allocations
are respectively consistent with his and our definitions of permissible coalitions.
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These feasibility definitions turn out to yield equivalent sets of feasible alloca-
tions, as shown by Lemma 3.1. In fact, in Hammond, Kaneko and Wooders
(1985), equivalence of the A-core and the f -core is demonstrated under certain
assumptions. However, these results do not deny the fundamental nature of the
basic differences in the treatment of permissible coalitions.
As discussed in the introduction, in Aumann’s approach there are difficulties

with the concept of the individual player. Our approach avoids these difficulties.
The advantage of our approach is not only conceptual but also practical.
Continuum games should be idealizations of large finite games. In our

approach, the treatment of the individual player is the same in finite games
as in the continuum; therefore a natural relationship of finite games to the
continuum game can be expected. In the proof of Theorem 1 in this paper, it
can be observed that the ε-cores of finite games converge to the f-core, while the
basic structure of permissible coalitions is preserved. These ideas are developed
and explored in Kaneko and Wooders (1985).
The advantage of the f -core approach in application is illustrated by the

following example with widespread externalities, where the f-core coincides with
the Walrasian allocations and the definition of the A-core is problematic. This
will be discussed in more detail in Hammond, Kaneko and Wooders (1985).

Example 3.1. Let N= [0, 5] be endowed with Lebesgue measure. The player

set [0, 5) is partitioned into three subsets: [0, 1), the set of households; [1, 3),
the set of landlords of type 1 and [3, 5) , the set of landlords of type 2.

Each landlord has an apartment to rent, with a reservation rent of 1 yen.
We imagine that the apartments of landlords of type 1 are located in a different
area of the country from those of type 2. Landlord i’s consumption set is
given by

Ω1 = {0, e1} ×R+ if i ∈ [1, 3) and Ω2 = {0, e2} ×R+ if i ∈ [3, 5)

and his initial endowment, by

ω(i) = (e1, 0) if i ∈ [1, 3) and ω(i) = (e2, 0) if i ∈ [3, 5).

That is, landlord i owns an apartment and no money (a composite com-
modity). Landlord’s i’s utility functions U(i, ·) is given as, for i ∈ [1, 3)

U(i, ai) =

.
1 +m if ai = (e1,m)
m if ai = (0,m);

and for i ∈ [3, 5)

U(i, ai) =

.
1 +m if ai = (e2,m)
m if ai = (0,m).
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Each household i ∈ [0, 1) wants to rent at most one apartment from a
landlord in either [1, 3) or [3, 5). The household’s consumption set is given
as Ωh = {0, e1, e2}×R+, and its initial endowment is ω(i) = (0, 5). We allow
households’ utility functions to depend on external effects so households’ utility
functions are defined on the outcomes space F ∗ , rather than the Ω∗h . Let
U(i, f)(i ∈ [0, 1), f ∈ L(N,Ωh)) be

U(i, f) =

 5 + 5µ({i ∈ [0, 1) : fh(i) = e1}) +m
2 + 10µ({i ∈ [0, 1) : fh(i) = e2}) +m

0 +m

if f(i) = (e1,m)
iff f(i) = (e2,m)
iff f(i) = (0,m),

where f(i) = (fh(i), fm(i)) with fh(i) ∈ {0, e1, e2} and fm(i) ∈ R+. That is,
household i’s utility comes from renting an apartment, the measure of players
renting apartments in the same area, and the money remaining after paying the
rent.

Since we allow widespread externalities, we need to appropriately modify
the definition of the f -core. The modified definition is as follows: a function f

in L(A,
−
Ω) is in the f-core iff f is a feasible allocation; there is no coalition S

in F such that for some vector (aj)j∈S,*
j∈S a(j) ≤

*
j∈S w(j),

U(i; ai) > U(i, f(i)) for all i ∈ S ∩ [1, 5), and
U(i, g) > U(i, f) for all i ∈ S ∩ [0, 1),

where g is the allocation which agrees with f on the complement of S
and agrees with (aj)j∈S on S . Since f and g are the same except on a
finite set S , this is a natural modification of the f -core.

The allocations in the f-core of this game divide into three types:
Type 1. All households rent apartments in [1, 3) at 1 yen,

f(i) =

.
(e1, 4)
(e2, 0)

if i ∈ [0, 1)
if i ∈ [3, 5)

µ({i ∈ [1, 3) : f(i) = (0, 1)}) = µ({i ∈ [1, 3) : f(i) = (e1, 0)}) = 1;

Type 2. All households rent apartments in [3, 5) at 1 yen,

f(i) =

.
(e2, 4)
(e1, 0)

if i ∈ [0, 1)
if i ∈ [1, 3)

µ({i ∈ [3, 5) : f(i) = (0, 1)}) = µ({i ∈ [3, 5) : f(i) = (e2, 0)}) = 1;

and
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Type 3. Households rent apartments in both areas (at the same rent of 1
yen) and the distribution of households between areas in such that the utilities
of households in different areas are equalized.

µ({i ∈ [0, 1) : f(i) = (e1, 4)}) = 7/15,

µ({i ∈ [0, 1) : f(i) = (e2, 4)}) = 8/15,

µ({i ∈ [1, 3) : f(i) = (0, 1)}) = 7/15,
µ({i ∈ [1, 3) : f(i) = (e1, 0)}) = 23/15,

µ({i ∈ [0, 1) : f(i) = (e1, 4)}) = 7/15,

µ({i ∈ [3, 5) : f(i) = (0, 1)}) = 8/15,

µ({i ∈ [3, 5) : f(i) = (e2, 0)}) = 22/15,

For allocations of Type 1, the utility of a household is 14, for Type 2, 16,
and for Type 3, 111/3 . In all cases, rents are 1 yen because the measure
of households is smaller than those of landlords of each type. Obviously, the
outcomes of Types 1 and 3 are not Pareto-optimal. However, the allocations
of Types 1, 2 and 3 are all competitive allocations. (Of course the obvious
modification of the definition of the competitive equilibrium is necessary since
we allow widespread externalities.)
For this example, coalitions of positive measure influence both the feasibility

of allocations achievable by the complementary coalition and the utilities of the
members of the complementary coalition. Therefore for this example the A-
core is not as naturally defined as the f -core. For more detailed discussion of
this problem, see Hammond, Kaneko and Wooders (1985).

We remark that for the situation modelled in the above example the charac-
teristic function defined in Section 2 does not adequately capture the structure
of the economy nor determine the f-core of the economy. The definition of the
characteristic function needs to be modified to reflect the externalities.

4 Proof of Theorem 1

4.1 Proof of Theorem 1

Without loss of generality, we can assume that sup V ({i}) = 0 for all i ∈ N .
. First consider the case where µ(N1), ..., µ(Nk) are all rational numbers.
Then there are positive integers p1, q1, ..., pk, qk such that µ(Nt) = qt/pt for
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t = 1, ..., k. Put mt = p1×· · ·pt−1× qt×pt+1×· · ·× pt for t = 1, ..., k. Then
Nt can be partitioned into subsets Nt1, ...,Ntmt(t = 1, ..., k) such that

µ(Ntl) =
1

p1×···×pk
for all l = 1, ...,mt. (37)

Let us construct a sequence {(Ar, Vr)}∞r=1 of finite games as follows:

Ar =
k
∪
t = 1

Atr and Atr = {(t, 1), ..., (t, rmt)} for t = 1, ..., k; (38)

there is a 1 to 1 mapping g : Ukt=1{(t, 1), (t, 2)...} −→ N
with g(t, l) ∈ Nt for all t = 1, ..., k and l = 1, 2, ...; (39)

and

Vr(S) = V (g(S)) for all S ⊂ Ar and r = 1, 2, ... (40)

Then this sequence {(At, Vr)∞r=1 satisfies the conditions of the following
lemma. In Section 4.2, both the terminology of the Lemma and the proof are
described.

Lemma 4.1. (A generalization of Shubik and Wooders, 1983, p.34, Theo-
rem 2). Let (m1, ...,mk) be a vector or positive integers. Let (m1, ...,mka)
be a vector of positive integers. Let {(Ar, Vr)} be a sequence of (finite) replica
games without side payments, where Ar = ∪kt=1{(t, 1), ..., (t, rmt)}. If the se-
quence satisfies per-capita boundedness, then some subsequence {(Arv , Vrv)}∞v=1
of {(Ar, Vr)}∞r=1 has a strong approximate core with the strong equal treatment
property (the SETP) (43). That is, for any ε > 0, there is a vo and an
x ∈ Rk with the following properties:

k/
t = 1

xrvmt
t =

k/
t = 1

rmmt

[xt × · · · × xt] ∈ Vrv(Arv) for all v ≥ v0; (41)

for all v ≥ v0 and for any S ∈ Arv there does not exist a y ∈ Vrv(S)
such that yi > xt + ε for all i ∈ S ∩ [t]rv and t = 1, ..., k; and (42)

if i ∈ [t]rv and j ∈ [t$]rv are substitutes, then xt = x
$
t. (43)

Here [t]r denotes the set {(t, 1), ..., (t, rmt)}(t = 1, ..., k), that is, the
players of type t if the rth game.

Without loss of generality, we can assume that the sequence {(Ar, Vr)}∞r=1
itself has strong approximate core with the SETP.
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Step 1. Let {εv} be a sequence of positive number with limvεv = 0.
From Lemma 4.1, we can choose an rv for each εv such that there is an
xrv ∈ Rk satisfying (41), (42) and (43). It follows from sup V ({i}) = 0 and
per-capita boundedness with respect to {Nt}kt=1 that −εv ≤ xrv

t < K for
t = 1, ..., k and v = 1, ... Then {xrv} has a convergent subsequence. Again,
without loss of generality, we can assume that {xrv} itself converges to x∗.
Note that x∗ ≥ 0.

Next define sequences {hv} in L(N,R) and a function h∗ ∈ L(N,R) by

hv(i) = xrv
t if i ∈ Nt and t = 1, ..., k; and (44)

h∗(i) = x∗t if i ∈ Nt and t = 1, ..., k. (45)

Since xrv −→ x∗, the sequence {hv} converges pointwise (in fact, uni-
formly) to h∗. Therefore if hv ∈ H for all v, then h∗ ∈ H∗. Note that each
hv satisfies the SETP, i.e., if i and j are substitutes, then hv(i) = hv(j),
which implies that h∗ also has the SETP.

Step 2. We now prove that hv ∈ H for all v . For t = 1, ..., k and
l = 1, ...,mt, let {N1

tl, ..., N
rv

tl } be a partition of Ntl such that

µ(Ns
tl) =

1
rtv
µ(Ntl) =

1
rr
. 1
p1×···×pk

for s = 1, ..., rv.

Then from Lemma A.1 of the Appendix, there is a measure-preserving iso-
morphism (mod 0), say ψ5tl, from N1

11 to Ns
tl(t = 1, ..., k, l = 1, ...,mt and

s = 1, ..., rv). Consider the coalition

T =
k
∪
t = 1

mt

∪
l = t

{ψ1tl(i), ...,ψrv

tl (i)}

for an arbitrary i ∈ ∩t ∩l ∩s Dom ψstl. This T has the same proportion
of players of each type as Arv , i.e.,

Therefore, by (39), (40), (41) and (44) we have

(hv(j))jeT ∈ V (T ).

Since i is arbitrary and µ(∩t ∩l ∩sDom ψstl) = ψs11), it follows from
Lemma A.2 of the Appendix that hv ∈ H.

Step 3. We now prove that there is no coalition S ∈ F such that for some
y ∈ V (S), yi > h∗(i) for all i ∈ S. Suppose the contrary. Since xrg −→ x∗

and hv(i) = xrv
t if i ∈ Nt(t = 1, ..., k), there is a v0 such that εv < min

{yi − hv(i) : i ∈ S} for all v ≥ v0. That is for all v ≥ v0,
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yi > h
v(i) + εv = x

rv
t + εv for all i ∈ Nt

and t = 1, ..., k. (46)

Let S∗ be a subset of Arv such that

| S∗ ∩ [t]rv |=| S ∩Nt | for all t = 1, ..., k;

and let Θ be a 1 to 1 mapping from S∗ to S such that

Θ(S∗ ∩ [t]rv) = S ∩Nt for all t = 1, ..., k.

(For sufficiently large v, we can find such an S∗.) Then by the assumption
of replication, (y∗i )i∈S∗ ≡ (yΘ(i))i∈S∗ belongs to Vrv(S

∗), and by (44) and
(46), y∗i > x

rv
t +εv for all i ∈ S∗∩[t]rv and t = 1, ..., k. This is a contradiction

to (42).

Let us consider the case where µ(N1), ..., µ(Nk) are not necessarily rational
numbers. Let {Nv

1 }, {Nv
2 }, ..., {Nv

k} be sequences such that

N1
t ⊂ N2

t ⊂ · · · for all t = 1, ..., k; (47)
µ(Nv

t ) is a rational number for all t = 1, ..., k and v = 1, (48)
µ(Nv

t ) −→ µ(Nt)(v −→∞) for all t = 1, ..., k; and0
1 + δ

4

1 µ(Nt)
µ(N) ≥ µ(Nv

t )
µ(Nv) ≥

0
1− δ

4

1 µ(Nt)
µ(N)

for all t = 1, ..., k and v = 1, 2, ..., (50)

where Nv = ∪kt=1Nv
t for all v and δ is the positive constant given by per-

capita boundedness of V . Consider the sequence of games {(Nv, V v)}, where
V v is the restriction of V to Nv for all v = 1, ... For all δv = δ/4, (Nv, V v)
satisfies per-capita boundedness with respect to {Nv

t }kt=1. Indeed, S ∈ F and
S ∈ Nv satisfies0

1 + δ
4

1 µ(Nv
t )

µ(Nv) ≥ |S∩Nv
t

|S| ≥ 01− δ
4

1 δ(Nv
t )

µ(Nv) ,

then, by (50), we have

(1 + δ)µ(Nt)
µ(N) ≥

0
1 + δ

4

12 µ(Nt)
µ(N) ≥

0
1 + δ

4

1 µ(Nv
t )

µ(Nv) ≥ |S∩Nv
t

|S|

≥ 01− δ
4

12 µ(Nv
t )

µ(Nv) ≥
0
1− δ

4

12 µ(Ny)
µ(N) ≥ (1− δ)µ(Nt)

µ(N) .

This together with (18) implies that xi < K for any x ∈ V v(S) =
V (S) with the ETP. Therefore the result of Subsection 4.1.1 can be applied to
(Nv, V v) and ensures the existence of a point hv with the SETP in the f -core
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of the game (Nv, V v) for all v. Since hv(v = 1, ...) has the SETP, we can
define a vector xv in Rkby

xvt = h
v(i) if i ∈ Nv

t and t = 1, ..., k.

Since sup V ({i}) = 0 ≤ xvt ≤ K for all t = 1, ..., k, the sequence {xv}
has a convergent subsequence. We can assume without loss of generality that
{xv} itself converges to x∗. Define h∗ by

h∗(i) = x∗t if i ∈ Nt and t = 1, ..., k.

Claim 1. No coalition in F can improve upon h∗.

On the contrary, suppose that for some S ∈ F and some y ∈ V (S) we
have yi > h∗(i) for all i ∈ S. Then xv −→ x∗ implies that for some
v, yi > h

v(i) = xvt if i ∈ Nv
t (t = 1, ..., k). In this case we can find a coalition

S$ ∈ F such that

| S$ ∩Nv
t |=| S ∩Nt | for all t = 1, ..., k.

Then S$ can improve upon hv in the game V v, which is a contradiction.

Claim 2. h∗ ∈ H∗.

Define.
−
h
∗
on N by

−
h
∗
(i) =

.
hv(i)
0

if i ∈ N
otherwise,

Then
−
hv ∈ H∗because hv ∈ Hv∗, where Hv∗ is the outcome space

of (Nv, V v). It suffices to show that
−
h
v

(i) −→ h∗(i) a.e. Since µ({i ∈
N :

−
h
v

(i) = hv(i)}) ≥ µ(Nv), µ(Nv) −→ µ(N) and hv(i) −→ h∗(i) for all

i ∈ ∪∞v=1Nv, we have
−
h
v

(i) −→ h∗(i) a.e.

4.2 On Lemma 4.1

We first give the definitions required for Lemma 4.1. Let (A,V ) be a finite
player game without side payments and with properties (i) V (S) is a closed
nonempty subset of R2 for all S ⊂ A; (ii) x ∈ V (S) and y ∈ RS with
x ≥ y imply y ∈ V (S) for all S ⊂ A; (iii) V (S)× V (T ) ⊂ V (S ∪ T ) for all
S, T ⊂ A with S ∩ T = φ; and (iv) V (S)−∪i∈N [(interior V ({i}))×RS−{i}]
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is nonempty and bounded for all S ⊂ A. In this section, by a game, we mean
a finite player game without side payments and satisfying conditions (i)-(iv).

Let {(Ar, Vv)}∞r=1 be a sequence of games, where Ar = ∪∗t=1{(t, 1), ..., (t, rmt)}(m =
(m1, ...,mk) is an arbitrary given vector of positive integers). ’Substitutes’ are
defined by (14) and (15). If all players in {(t, 1), ..., (t, rmt)}(t = 1, ..., k) are
substitutes, then the game (Ar, Vr) is called a replica game. A payoff vector
x ∈ Vr(S) is said to have the equal-treatment property (the ETP), iff xi = xj
for all i, j ∈ S ∩ [t]r(t = 1, ...,m). The sequence {(Ar, Vr)}∞r=1 is said to be
per-capita bounded iff there exists a K such that for any r,

S ⊂ Ar
|S∩[t]r|
|S| = mt for all t = 1, ..., k
x ∈ Vr(S) has the ETP

 =⇒ xi < K for all i ∈ S.

In the case where m = (1, ..., 1), Lemma 4.1 without SETP (43) is the
same as Shubik and Wooders (1983, Theorem 2). In their theorem, compre-
hensiveness of Vr was not assumed and their statement is slightly different
from Lemma 4.1. However in the proof of their Theorem 1, they assumed com-
prehensiveness and demonstrated the conclusion of Lemma 4.1 with the ETP
but not necessarily the SETP (Shubik and Wooders, 1983, p.44). Their proof
can be used without any substantive change in he case of m = (m1, ...,mk)
arbitrary.
It is now easy to obtain the conclusion of Lemma 4.1. If some players of

different types, say t and t$(t < t$) are substitutes, then we can treat all
players of types t and t$ as one type; we consider a new vector of numbers of
players of each type.

m$ = (m1, ...,mt" , ...,mt"+1, ...,mk)

and construct, by relabelling players, a sequence of replica games with re-
spect to m$ (in this sequence, all players of types t and t$ are treated as
the same type). By the above generalisation of the Shubik-Wooders theorem,
given ε > 0 we have an outcome with the ETP in the ε-core of a subsequence
of the sequence of games. Then, again simply by relabelling, we can transform
these outcomes into outcomes in a subsequence of the original games. These
outcomes treat players of types t and t$ identically. We repeat this procedure
until we have the conclusion of Lemma 4.1.

Appendix
The following lemma plays a crucial role in constructing measure-consistent

partitions.
Let A,B be sets in B with µ(A) = µ(A) = µ(B) > 0. We say that ψ

is a measure-preserving isomorphism from A to B (mod 0) iff for some null
sets A0 and B0 with A0 ⊂ A and B0 ⊂ B,ψ is a measure-preserving
isomorphism from A−A0 to B −B0.
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Lemma A.1. If µ(B) > 0, then there exists a measure-preserving isomorphism
ψ(mod 0) from A to B.

Before giving the proof of this lemma, we illustrate the construction of a
measure-consistent partition by a simple example. Let {N1, N2} be a partition
of N with µ(N1) = µ(N2) = 1

2µ(N). Then, by Lemma A.1., there is a
measure-preserving isomorphism ψ from N1

0 to N2
0 , where N1

0 and N2
0

are the null subsets of N1 and N2. We can then define a measure-consistent
partition p by:

p = {{i,ψ(i)} : i ∈ N1 −N1
0 } ∪ {{i} : i ∈ N1

0 ∪N2
0}.

Proof of Lemma A.1. Let ([0, µ(A)], B([0, µ(A)]),λ) be the measure space of
Borel subsets of the closed internal [0, µ(A))] endowed with Lebesgue measure
λ. Suppose that there exist measure-preserving isomorphisms ψ1 and ψ2 (mod
0) from [0, µ(A)](= [0, µ(B)]) to A and B respectively. That is, there are
null sets La ⊂ [0, µ(A)] (respectively, LB ⊂ [0, µ(B)]) and A0 ⊂ A(B0 ⊂ B)
such that ψ1(ψ2) is a measure preserving isomorphism from [0, µ(A)] − LA
to A−A0 (from [0, µ(B)]−LB to B−B0). Let L = [0, µ(A)]−LA −LB.
Then λ(L) = µ(A). Consider the restrictions of ψ1 and ψ2 to L. Since the
composite function ψo2ψ

−1
1 is a measure-preserving isomorphism from ψ1(L)

to ψ2(L), the function ψo2ψ
−1
1 is a measure-preserving

[0, µ(A)]

isomorphism (mod 0) from A to B. Therefore, it suffices to show the following
theorem, where we assume without loss of generality that µ(A) = 1.

Theorem. Let (A,B(A), µ) be a measure space, where A is an uncountable
Borel sub-set of a complete separable metric space, B(A), the σ-algebra of
all Borel subsets of A, and µ, a nonatomic probability measure on B(A).
Let (I,B,λ) be a measure space, where I = [0, 1],β, the σ-algebra of Borel
subsets of I, and λ, Lebesgue measure. Then there is a measure-preserving
isomorphism ψ from A−A1 to I − I1 for some A1 ⊂ N and I1 ⊂ 1 with
µ(A1) = λ(I1) = 0.
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This theorem is stated in a slightly stronger form than Royden (1963, p.327,
Theorem 9). However, it is sufficient to note that if one replaces the section
of Royden’s proof dependent upon Royden (1963), p.326, Theorem 8, with the
obviously stronger analogue possible using Parthasarathy (1967) p.15, Theorem
2.12, then the proof of the above form of the theorem is identical to Royden’s.

Lemma A.2. Let h ∈ L(N,R). Assume that there is a partition {Nt}kt=1
of N and that there are measure-preserving isomorphisms ψ1, ...,ψk(mod 0)
from N1 to

(h(ψ1(i)), h(ψ2(i)), ..., h(ψk(i))) ∈ V ({ψ1(i), ...,ψk(i)})

for all i ∈
k
∩

t = 1
Dom ψt, (A.1)

where Dom ψt is the domain of the function ψt. Then the function h belongs
to H.

Proof of Lemma A.2. We first dispose of the case where k = 1. In this
case, N1 = N and ψ1(i) = i for almost all i in N . Set p(i) = {i} for all
i in N . Then h(j)j∈p(i) ∈ V (p(i)) for almost all i ∈ N so h ∈ H.

For the case where k > 1, let h$ be the function on N defined by

h$(i) =


inf max V ({j}) if i ∈ N −

k
∪

t = 1
ψt

 k
∩
l = 1

Dom ψ1


j ∈ N

h(i) otherwise.

Then h$ ∈ L(N,R). Put

p =

{ψ1(i), ...,ψk(i)} : i ∈ k
∩
t = 1

Dom ψ1

∪
{j} : j ∈ N − k

∪
t = 1

ψt

 k
∩
l = 1

Dom ψ1


Then p ∈ Π. If p(i) = {i}, then h$(i) ∈ V ({i}) by (2). Otherwise, there

is a j ∈ ∩kt=1Dom ψt such that i = ψt(j) for some t, which together with
(A.1) implies

(h$(l))l∈p(i) = (h(ψ1(j)), ..., h(ψk(j))) ∈ V ({ψ1(j), ...,ψ1(j), ...,ψk(j)}) =
V (p(i)).

Since ψ1,ψ2, ...,ψk are measure-preserving isomorphisms (mod 0) from N1
to N1, ..., Nk, it holds that
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µ(N1) = µ(Nt) = µ(Dom ψt)= µ

 k
∩
l = 1

Dom ψ1

 = µ

ψt
 k

∩
l = 1

Dom ψ1



for all t = 1, ..., k and

µ({i ∈ N : p(i) = {i}}) = µ
 k

∪
t = 1

ψt

 k
∩
l = 1

Dom ψl



= µ(N)−
k*

t = 1
µ(Dom ψt) = 0.

Therefore h$ ∈ H and µ({i ∈ N : h$(i) *= h(i)}) ≤ µ{i ∈ N : {i} ∈ p}) = 0
imply h ∈ H.

Proof of Lemma 3.1. This lemma is critical to our results on market games
and we believe will also be critical to future work. Since the later part of the
proof (i.e. the proof that

+
N
f(i) ≤ +

N
w(i) =⇒ f ∈ F ∗) is complex, we will

provide a preliminary sketch of this part.

First we prove $f ∈ F ∗ =⇒ +
N
f(i) ≤ +

N
ω(i)$. Since f ∈ F ∗, from (25)

and Remark 2.4, there is a sequence {fv} such that fv ∈ F for all v and fv

converges a.e. on N. For each v, there is a pv ∈ Π such that fv ∈ F (pv). For
each positive integer k, ∪|S|=k,S∈pvS ≡ Nv

k has a partition {Nv
k1, ..., N

v
kk} with

measure-preserving isomorphisms ψvkk from Nv
k1 to N

v
k1, ..., N

v
kk, respectively,

satisfying {S : S ∈ pv and | S |= k} = {{ψrk1(i),...,ψvkk(i)} : i ∈ Nv
k1}. Then

it follows from (22) that for all v and k,

k*
t = 1

fv(ψvkt(i)) ≤
k*

t = 1
ω(ψvkt(i)) a.e. in Nv

k1.

Therefore we have, for any v,

+
N
fv(i) =

∞*
k = 1

k*
t = 1

+
Nv

kt
fv(i) =

∞*
k = 1

+
Nv

kl

k*
t = 1

fv(ψvkt(i))

≤
∞*
k = 1

+
Nv

k1

k*
t = 1

ω(ψvkt(i)) =
∞*
k = 1

k*
t = 1

+
Nv

kt
ω(i) =

+
N
ω(i).

Applying Fatou’s lemma yields
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+
N
f(i) ≤ lim inf

v −→∞
+
N
fv(i) ≤ +

N
ω(i).

We now prove that $ +
N f(i) ≤

+
N ω(i) =⇒ f ∈ F ∗$. As indicated earlier,

we first provide a preliminary sketch of the proof.

Sketch. Suppose
+
N f(i) ≤

+
N ω(i). We first divide Rm+ ∩ {x ∈ Rm :

xc ≤ v, c = 1, ...,m} into cubes of the same size (1/2v). We then form a set of
subset {Nv

t }lvt=1 such that all subsets have the same measures, and all players
i in Nv

t have their allocation f(i) and their endowments ψ(i) in the same
cubes. (This is carried out in Claim 1.)
Now form the functions fv and ωv by taking fv(i) equal to the coordinate

wise inf of f on the cube containing f(i) and similarly, ωv(i) equal to the
coordinate-wise sup of ω on the cube containing ω(i)..This has the consequence
that for each t and all i and i$ in Nv

t , we have fv(i) = fv(i$) and
ωv(i) = ωv(i$).
It may be the case that

+
N f

v(i) is too large for our purpose (because
we ignore ω(i) when ω(i) is not contained in any of the cubes and because
we make ωv(i) ≥ ω(i) for all other values ω(i)). Therefore, in Claim 2, we
choose a subfamily of the subsets {Nv

t }lvt=1 whose total measure tends to zero
as v −→∞. This subfamily is chosen so that if we redefine fv(i) = 0 for all
i in the union of members of the sub-family, then

+
N f

v(i) is no longer too

large. We carry this out and call the resulting function
−
f
v

.

The next step is simple. The sequence {
−
f
v

} converges in measure to f

and each member
−
f
v

of the sequence is attained by some feasible partition,
where an element of the partition contains one member of Nv

t for each t (and
players not in ∪lvt=1Nv

t are in singleton sets).

The Proof. Now to prove the lemma, without loss of generality we can assume
that µ(N) = 1. Let us suppose that

+
N
fc(i) > 0 for all c = 1, ...,m.

Define

Cv(i) =
m
Π
c = 1

:
kc−1
2v , kc

2v ) for k = (k1, ..., km) ∈ {1, 2, ..., v2v}m;

and

Bv = {a ∈ Rm+ : ac ≥ v for some c} (v = 1, 2, ...).

Claim 1. There is a sequence {Nv} of subsets in B with the following
properties:

Each Nv has a partition into some finite number of elements
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say {Nv
t }lvt=1, with measure-preserving isomorphisms ψv1, ...,ψvlg

from Nv
1 to N

v
1 , ..., N

v
lv
, respectively, and µ(Nv

1 ) −→ 0(v −→∞); (A.2)

µ(Nv −Nv+1) = 0 for all v and µ(Nv) −→ µ(N); and (A.3)

for any Nv
t , there are k

1, k2 ∈ {1, ..., v2v}m such that
{F (I) : i ∈ Nv

t } ⊂ Cv(k1) and {ω(i) : i ∈ Nv
t } ⊂ Cv(k2). (A.4)

Note that of course µ(Nv
t ) = µ(N

v
1 ) for all t and the measure-preserving

isomorphisms are ’exact’, i.e. not mod 0.

Proof of Claim 1. Define the sets
−
M

v

(k1, k2)(k1, k2 ∈ {1, ..., v2v}m) and Mv

by

∼
M

v

(k1, k2) = {i ∈ N : f(i) ∈ Cv(k1) and ω(i) ∈ Cv(k2)}; and
Mv = {i ∈ N : f(i) ∈ Bv or ω(i) ∈ Bv}.

Then ∪k1,k2

∼
M

v

(k1, k2) ⊂ ∪kv,k2

∼
M

v+1

(k1, k2) and

µ

; ∪
k1, k2

∼
M

v

(k1, k2)

<
= µ(Mv) −→ µ(N).

If µ(
∼
M

v

(k1, k2)) > 0, then we can choose a subset Mv(k1, k2) of
∼
M

v

(k1, k2)
such that

µ(Mv(k1, k2)) ≥ (1− 1
2v )µ(

∼
M

v

(k1, k2)); (A.5)

µ(Mv(k1, k2)) is a rational number. (A.6)

Let Sv = {(k1, k2) ∈ {1, ..., v2v}m : µ(Mv(k1, k2)) > 0}. Without loss of
generality, we can assume

∪
(k1, k2) ∈ Sv M

v(k1, k2) ⊂ ∪
(k1, k2) ∈ Sv+1 M

v+1(k1, k2) for all v.

Let Ñv = ∪(k1,k2)∈Sv
Mv(k1, k2)(v = 1, ...). Then Ñv ⊂ Ñv+1. It follows

from (A.5) that

µ(Ñv) = µ

; ∪
(k1, k2) ∈ Sv M

v(k1, k2)

<
≥ 01− 1

2v

1
µ

; ∪
k1, k2

∼
M(k1, k2)

<
=
0
1− 1

2v

1
[µ(N)− µ(Mv)]→ µ(N) (v →∞).
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Since µ(Mv(k1, k2)) is a rational number for all (k1, k2) ∈ Sv by (A.6),
we can find some subpartition, say {Ñv

t }lvt=1, of {Mv(k1, k2)}(k1,k2)∈Sv
such

that µ(Ñv
1 ) = · · · = µÑv

lv
) ≤ 1/2v.

From Lemma A.1., there are measure-preserving isomorphisms (mod 0)
ψv1, ...,ψ

v
lv from Ñv

l to Ñv
l , ..., Ñ

v
lv
, respectively. Let Nv

t = ψvt (∩lvn=1dom
ψvn) for t = 1,...,lv and let Nv = ∪lvt=1Nv

t . Then these sets N
v
1 , ..., N

v
lv
and

Nv have the same measures as those of Ñv
l , ..., Ñ

v
lv

and Ñv, respectively.
Therefore the claim holds.

Define the functions fv and ωv by their coordinates (c = 1, ...,m)

fvc (i) =

.
inf Projc[Cv(k) ∩Ω]

0

if f(i) ∈ Cv(k), k ∈ {1, ..., v2v}m
and i ∈ Nv

otherwise; and
(A.7)

ωvc(i) =

.
inf Projc[Cv(k) ∩Ω]

0

if ω(i) ∈ Cv(k), k ∈ {1, ..., v2v}m
and i ∈ Nv

otherwise; and
(A.8)

where Projc[Cv(k) ∩ Ω] = {xc : x ∈ Cv(k) ∩ Ω}. Then fv(i) ∈ Ω for all v
and all i ∈ N by (3.2) (while it may not be the case that ωv(i) ∈ Ω). It
follows from (A.3), (A.4) and (A.7) that

fv(i) ≤ fv+1(i) for all v and a.e. in N ; (A.9)+
N f

v(i) ≤ +N f(i) for all v. (A.10)

Since fv(i)→ f(i) a.e. in N by (A.3), (A.4) and (A.7), we have, by (A.9),+
N f

v(i)→ +
N f(i). (A.11)

It follows from the definition of Cv(k) and (A.8) that for all i in N

ω(i) ≥ ωv(i)−0 12v , ...,
1
2v

1
for all v . (A.12)

Claim 2. There is a sequence {F v} of subsets in B such that for some
v0,

for all v ≥ v0, Fv ∪
t ∈ T Nv

t for some Tv ⊂ {1, ..., lv}; (A.13)

+
F v f

v(i) ≥ +N−Nv ω(i)+
0
1
2v , ...,

1
2v

1
for all v ≥ v0; (A.14)
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µ(Fv)→ 0 (v →∞). (A.15)

Proof of Claim 2. Since
+
N−Nv ω(i)+(1/2

v, ..., 1/2v)→ 0 and
+
Nv f

v(i) >
0 by (A.3) and (A.11), we can find a v0 such that+

Nv
0
fv0(i) ≥ +

N−Nvo
ω(i) +

0
1
2v0
, ..., 1

2v0

1
.

By (A.3), we have+
N−Nv ω(i) +

0
1
2v , ...,

1
2v

1 ≥ +
N−Nv+1 ω(i) +

0
1

2v+1 , ...,
1

2v+1

1
.

for all v.

These inequalities, together with (A.3) and (A.9), imply+
Nv f

v(i) ≥ +Nv0
fv0(i) ≥ +N−Nt

ω(i)+
0
1
2v , ...,

1
2v

1
for all v ≥ v0. (A.16)

Let c be any element in {1, 2, ...,m}. It follows from (A.16), (A.9), (A.2)
and (A.4) that there is a sequence {Gvc}∞v=v0

such that for all v ≥ v0,

Gvc = ∪
t∈Wv

Nv
t for some Wv ⊂ {1, ..., lv};

+
Gv

c
fvc (i) ≥

+
N−Nv ωc(i) +

1
2v : µ(Gvc)→ 0 (v →∞).

Then let F v = ∪mc=1Gvc for all v ≥ v0. The sequence {F v} satisfies
(A.13)-(A.15). This completes the proof of Claim 2.

We are now in a position to construct a sequence in F = ∪p∈ΠF (p) which
converges in measure to the function f . Define {

_
f
v} by, for all v ≥ v0,

_
f(i) =

.
fv(i)
0

if i ∈ Nv − F v, v ≥ v0
otherwise.

(A.17)

For any ε > 0, there is a v1 ≥ v0 such that 1/2v1 < ε. Then it follo9ws
from (A.17) and (A.7) that for all v ≥ v1,

µ({i ∈ N :/
_
f (i)− f(i) /> ε}) ≤ µ(F v ∪ (N −Nv)), (A.18)

and from (A.3) and (A.15) that

µ(Fv ∪ (N −Nv))→ (v →∞). (A.19)

That is, the sequence {
_
f
v} converges in measure to f .
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Next we have to show that for each
_
f
v
, there is a feasible partition pv of

N such that
_
f ∈ F (pv). Define pv by

pv = {{ψv1(i), ...,ψvlv(i)} : i ∈ Nv
1 }∪{{i} : i ∈ N−Nv} (v = 1, 2...) (A.20)

(where the ψv1’s are the isomorphisms given in Claim 1).
Then we have, for any v ≥ v0 and any j ∈ Nv

1 ,

lv*
t = 1

_
f
v
(ψvt (j)) =

lv*
t = 1

fv(ψvt (j))−
*

ψv
t (j)∈Fv

fv(ψvt (j)) (by (A.17))

= 1
µ(Nv

1 )

 lv*
t = 1

+
Nv

1
fv(ψvt (i))−

+
Fv f

v(i)

 (by (A.13))

≤ 1
µ(Nv

1 )

-+
Nv
fv(i)− +

N−Nv ω(i)−
0
1
2v , ...,

1
2v

1'
(by (A.14))

≤ 1
µ(Nv

1 )

-+
N ω(i)−

+
N−Nv ω(i)−

0
1
2v , ...,

1
2v

1'
≤ 1

µ(Nv
1 )

:+
Nv ω(i)−

0
1
2v , ...,

1
2v

1=
≤ 1

µ(Nv
1 )

+
Nv

:
ωv(i)− 0 12v , ...,

1
2v

1=
(by (A.8) and µ(N) = 1)

=
lv*
t = 1

:
ωv(ψvt (j))−

0
1
2v , ...,

1
2v

1= ≤ lv*
t = 1

ω(ψvt (j)) (by (A.12)).

For all j ∈ N − Nv, (i.e., pv(j) = {j}) it holds that
_
f
v
(j) = 0 ≤ ω(j).

Therefore
_
f
v ∈ F (pv). By (A.19), f ∈ F ∗.

Finally we remark on the case where
+
N fc(i) = 0 for some c ∈ {1, 2, ...,m}.

Let C = {c : +
N
fc(i) = 0}. If C = {1, ...,m}, then clearly f ∈ F ∗ (in fact,

f ∈ F ∗ (in fact, f ∈ F (p) for all p ∈ Π). If C ⊂ {1, 2, ...,m} then we define
_
f
v

c(c /∈ C) in the same manner as above, and put, for c ∈ C,
_
f
v

c (i) = 0 for all i ∈ N.

Then
_
f
v ∈ F for all v and

_
f
v
converges in measure to f .

This completes the proof.

34



Proof of Lemma 3.2. Let k be an arbitrary positive integer. By (1)
any S ∈ p with | S |= k can be represented as S = p(i) = {ψpk1(i), ...,ψpkk(i)}
for some i ∈ Np

k1. Define Φ(i) on Np
k1 by

Φ(i) =

(a1, ..., ak) ∈ Ωk : k*
t = 1

ω(ψpkt(i)) ≥
k*

t = 1
at and

U(ψpkt(i), a
t) ≥ h(ψpkt(i)) for all t = 1, ..., k} .

It can be proved in the standard manner the correspondence Φ(i) has a
measurable graph. The nonemptiness of Φ(i) follows from the assumption that
h ∈ HM(p) and the definition of VM . Therefore the Measurable Selection Theo-
rem (Hildenbrand, 1974, p.54, Theorem 1) can be applied to the correspondence
and we conclude that there is a measurable function (ak1(ψ

p
k1(i), ..., akk(ψ

p
kk(i)))

from Np
k1 to Ω

k such that (ak1(ψ
p
k1(i)), ..., akk(ψ

p
kk(i))) ∈ Φ(i) a.e. in Np

k1.
Since k is an arbitrary positive integer, we have a countable number of selec-
tions. Define a function f : N → Ω by teger, we have a countable number of
selections. Define a function f : N → Ω by

f(j) = akt(ψ
p
kt(i)) if j ∈ Np

kt and j = ψpkt(i) (k = 1, 2, ...).

Then this f belongs to F (p), because f is measurable and for almost all
i ∈ Np

k (i = ψ
p
kt(i0) for some i0 ∈ Np

k1).

*
j∈p(i)

f(j) =
*

j∈p(i0)
f(j) =

k*
t = 1

akt(ψ
p
kt(i)) =

*
j∈p(i)

ω(j).

It follows from the definition of Φ that U(i, f(i)) ≤ h(i) a.e. in N.
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