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When permissible coalitions in finite economies are constrained to be small
relative to the player set, the continuum mode! with finite coalitions and its f~core
are the limits of large finite economies and their e-cores. We show convergence
both of game-theoretic structures—relatively small coalitions in the finite economies
converge to finite coalitions—and of solutions—s-cores converge to the f-core. Our
convergence is carried out in the context of exchange economies with widespread
externalities where the requirement that coalitions be small is critical. Journal of
Economic Literature Classification Numbers: 021, 022, 026. © 1989 Academic Press, Inc.

1. INTRODUCTION

1:1. Gengra} Motivation

‘The notion of a perfectly competitive economy with recontracting is of
one with a very large number of participants, each of whom actively pur-
sues his own interests and each of whom has negligible influence on
economic aggregates.! In recontracting, agents meet face to face and, in

! By perfect competition with recontracting we mean to suggest a story of individuals
meeting in relatively small groups or market places and engaging in trade. Each individual can
possibly frequent many different market places. These activities (rather than the actions of a
central auctioneer) are envisioned as leading to competitive prices. Thus perfect competition
and recontracting are tied together.
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136 KANEKO AND WOODERS

pursuit of their own interests, engage in trade. This suggests that a model
describing these notions needs two special aspects: individuals should be
effective in pursuit of their own interests through recontracting and
simultancously individuals should be ineffective in influencing any broad
economic totals. In other words, in his own recontracting behavior, at the
individual level an individual player is nonnegligible to other players, but
at the total economy level an individual player is negligible.

To describe these seemingly contradictory aspects of perfect competition
with recontracting, we are led to a new model (Kaneko and Wooders
[6, 7] and Hammond, Kaneko, and Wooders [4]) with a continuum of
players, distinct in several respects from the models initiated by Aumann
[2]. The main difference between our model and the standard model is the
treatment of permissible coalitions. In both models the total player set is a
continuum. In our model; coalitions—recontracting groups—are restricted
to be finite sets (ones containing only finite numbers of players) while in
the standard model, coalitions are restricted to be subsets of positive
measure. With coalitions of positive measure we are unable to
simulaneously incorporate the two special aspects of perfect competition
with recontracting. To discuss this, we need to consider the subtle inter-
pretation of the concept of the individual player.

With coalitions of positive measure, two interpretations of the concept of
the individual player might be possible. If we adopt the straightforward
interpretation of the individual player as a point in the continuum, then the
individual player has négligible influence on economic aggregates—he has
no effect on them at all. However, for the same reason, the player is also
negligible in the formation of any recontracting group. On the other hand,
if we adopt an alternative interpretation of the individual player as
arbitrarily “small,” but bigger than a point, so that individuals can be
interpreted as having nonnegligible power in forming recontracting groups,
then individuals also become nonnegligible relative to the total. Neither of
the above interpretations simultaneously captures the two aspects of perfect
competition with recontracting—the individual as nonnegligible relative to
recontracting groups while negligible relative to the total.

For our approach; since coalitions—finite sets—are groups of individual
: players, we can adopt only the straightforward interpretation of the
individual player as a point in the continuum. Since recontracting groups
are finite, players are nonnegligible within these groups. For individual
players to be negligible relative to the total economy we need a continuum
of players. Thus, we are compelled to use our approach to describe the
seemingly contradictory aspects of perfect competition with recontracting.

Our continuum approach is special in that we use absolute magnitudes
(the cardinal numbers) and finite sums to describe finite coalitions and
their behaviors while we use proportional magnitudes (the measure) to
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describe economic aggregates. Our approach requires these two separate,
‘noncomparable, notions of sizes within the same model. This phenomencn
does not (exactly) appear in a finite world. In a finite world proportional
and absolute sizes are always comparable, that is, the absolute magnitudes
described by the cardinal numbers are mutually replaceable with the
proportional magnitudes described by the counting measure. Now our
questions are: does there exist an interpretation of perfect competition with
recontracting in a finite world and then, if it exists, what is it? This paper
attempts to provide answers to these questions.

We argue that there are affirmative answers; we can give a finite
analogue to the continuum model. The seemingly contradictory aspects of
perfect competition with recontracting can be approximately realized in a
large finite setting. However, whether or not a finite analogue is close to
the continuum economy depends on how we measure closeness. Therefore,
one finite analogue does not suffice as a finitistic interpretation of perfect
competition with recontracting unless a specific norm, or standard, for the
approximation is given. If we cannot specify a natural standard for an
approximation then one possible approach is to consider sequences of finite
analogues instead of a specific one. Our answer is in demonstrating the
convergence of a sequence of finite economies to the continuum. We
provide this answer in the context of exchange economies with widespread
externalities.

A continuum economy is approximated arbitrarily closely by a large
finite economy. The restriction of coalitions in the continuum meodel to
finite sets of players is approximated by the restriction of (permissible)
coalitions to relatively small sets of players in the finite economies. At the
individual level, the effectiveness of the individual is essentially invariant
with the size of the economy, while, relative to the entire economy, the
individual becomes negligible. The measurements at the individual level
correspond to absolute magnitudes and those at the total economy level to
proportional magnitudes.

1.2. The Model and Resuit

When we look at the totality of individual behavior in recontracting, the
two separate notions of measurement, absolute magnitudes and propor-
tional magnitudes, must be consistently connected. Mathematically, in the
continuum this connection is made through a “measurement-consistent”
partition of the player set. Such a partition has members (coalitions) each
containing only finite numbers of players. It also has the property that the
proportional magnitudes of aggregates of finite coalitions in the partition
are consistent with the proportional magnitudes given by the measure. The
finite analogue of a measurement-consistent partition is a partition of the
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total player set into permissible small coalitions; the measurement-con-
sistency requirement is not a constraint since it is automatically satisfied. In
the continuum model, measurement-consistent partitions make a natural
connection between the cardinal numbers and the nonatomic measure.

Feasible allocations for the entire economy must be defined consistently
with the postulate that cooperation is allowed only in finite coalitions. To
do this, we use the measurement-consistent partitions of the continuum of
players into finite coalitions. A feasible allocation is defined so that trades
are allowed only within coalitions in some measurement-consistent parti-
tion. Analogously, in a large finite economy, a feasible allocation must be
attainable by cooperation within permissible small coalitions in some parti-
tion of the player set into such coalitions. Now we have a concrete picture
of the structures to be connected, from the individual player level tu the
total economy level.

The solution concept used to capture the outcome of recontracting is the
core. More precisely, in this paper we adopt the f-core for the continuum
economy and the g-core for the finite economies. An allocation is in the
f-core if it i1s feasible for the continuum economy and.if it cannot be
improved upon by any finite coalition. An allocation is.in the e-core if it is
feasible for the finite economy and if it cannot be significantly improved
upon by any small coalition. Aggregate outcomes of recontracting arc
allocations in the f-core for the continuum economy and in the e-cores for
the finite economies. . -

We consider convergence not only of the economic emr&nmtnts and of
solutions but also of game structures—permissible coalitions. The con-
tinuum economy with finite coalitions and the f-core are approximated by
finite economies with small permlss:lbie coahtmm and l:y ‘approximate
cores.

The convergence is obtained in the context: nf a prwat& geods exchange
economy with widespread externalities. By widespread ‘externalities, we
mean that the utilities of players depend on the average actions of other
players. In this paper we model these externalities by making the preference
of a player depend on his own consumption of commodities and also on
the distribution of the entire allocation of commodities. The treatment of
coalitions as finite allows a coalition to form and to-change the allocation
for its members without significantly affecting thc distribution of the
initially given allocation.

The motivation described in Subsection 1.1 might appear just ph]lasuphl-
cal in the sense that without externalities the equivalence of the core and
the Walrasian allocations in a continuum model is obtained either by
Aumann’s [2] model (with either or both interpretations of the individual
player) or by our model (Hammond, Kaneko and Wooders [4]).
However, the situation is quite different in the presence of widespread
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externalities. Then the equivalence result holds for the f-core and the
Walrasian allocations but fails for the standard model; more precisely, the
definition of the core itself (with coalitions of positive measure) becomes
problematic. See the discussion in Hammond, Kaneko, and Wooders [4,
Subsection 2.3]. The substantive differences between our approach and the
standard approach become especially apparent in consideration of the
convergence from finite economies to the continuum.

The main theorem of this paper is the convergence of finite economies to
the continuum economy and of approximate cores to the f-core. In addi-
tion, as a corollary to our convergence result and the equivalence result
of Hammond, Kaneko, and Wooders [4], we have convergence of
approximate cores of the finite economies to the Walrasian allocations of
the continuum economy.

The reader will observe that our converging sequences are more restric-
tively constructed than those in the extant literature, for example Kannai
[8]. The reason for the restrictiveness is that we require convergence of
economic and game-theoretic structures, while in Kannai (and others) only
the convergence of the economic environments is considered. The con-
vergence of game-theoretical structures necessitates the restrictiveness of
the converging sequences (see Remark 4.1).

Finally we point out that some modification of the definition of “can
improve upon” becomes necessary in finite economies in the presence of
widespread externalities. This modification is unnecessary in the continuum
economy, even with widespread externalities, since the formation of a new
coalition affects only a negligible set of players. In finite economies, even
though coalitions are small, the formation of a new coalition will affect
other players both directly and indirectly. When a coalition forms, some
players in some coalitions in the initial partition will find that their coali-
tions have lost some members; these players are directly affected by the
coalition formation. The other players are indirectly affected, via their
utilities, by the change in the distribution of the allocation. We define “can
improve upon” under the assumption that those players directly affected
may arbitrarily form small coalitions among themselves, and under the
Nash assumption that those players only indirectly affected do not change
their behavior. In the convergence process the percentage of players in a
coalition and those directly affected by the formation of that coalition is
required to tend to zero; smallness of coalitions is essential for convergence
to the f-core when we have widespread externalities.

The next two sections of this paper develop our framework. The fourth
section contains the formulation of convergence and our results. Finally, all
proofs are in the fifth section.
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2. COMMODITIES AND PREFERENCES

We begin by describing a commodity space permitting indivisible com-
modities. Then preferences, defined over commeodities and distributions of
allocations of commodities, are described.

We denote the commodity space by 2 and assume 2= 2Z’, x R? where
Z . is the set of nonnegative integers, I is a finite index set for indivisible
commodities, and D is a finite index set for divisible commodities. Either
I or D may be empty. We endow 2 with the metric |x — y| =max|x.— y|.

The preference relation of a player depends on his own consumption of
commodities and also on the distribution of the allocation of commodities.
Distributions of allocations are probability measures on commodity space
2. Without any loss of generality, we actually consider the space of prob-
ability measures on Q* :=Qu {x_ ]}, the Alexandroff compactification of
0. Note that, since £2 is a separable and locally compact metric space, the
space £2* is also metrizable (see Hildenbrand [S5, p. 15]).

Let B(Q2*) be the o-algebra of all Borel subsets of @* and let M be
the set of all probability measures on B(£2*). Note that the space M is a
compact metrizable space with the topology of weak convergence (cf.
Hildenbrand [5, p. 49, (30)]). Let p,, be a metric for the space M.

The space P of preferences is defined to be the set of all open, irreflexive,
and transitive binary relations on 2 x M. That is, P={ >: > is an open,
irreflexive, and. transitive subset of (£ x M)?}. The expression ([x', v'],
[x% v?])e > means that the commodities represented by x' and the dis-
tribution represented by v' are preferred to those represented by x? and v
As is standard, we will simply write [x', v']> [x% v?].

Since 2 is a locally compact separable metric space and M is a compact
metric space, the product space £ x M is also a locally compact separable
metric space with the metric

d([x',v'], [x% v’])=max(|x' — x|, pp (v, ¥?)).

Therefore the space C of all closed subsets of @ x M endowed with the
topology of closed convergence is a compact metrizable space (cf. Hilden-
brand [5, p. 19, Theorem 2]).

Since > is an open subset of (£ x M)?, the complement > of > is a
closed set. It can be proved in the same way as in Hildenbrand [5, p. 96,
Theorem 1] that P°={ >°: > e P} is a closed subset of C, which implies
that P¢ is a compact metrizable space.” Let p, be a metric for P*. Because
of the natural bijection @( > )= >° between P and P, we can give the
topology and metric of P° to P. This means that a sequence of preferences
{>"} converges to >’ in this topology iff p(¢(>"), #(>"))—0 as v — 0.

2 Since we fix the commodity space 2 we do not need convexity of £ as in Hildenbrand

[5]
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3. Economies AND CORES

In this section we describe, in a parallel manner, a finite economy with
small coalitions and the e-core, and then a continuum economy with finite
coalitions and the f-core.

3.1. Finite Economies with Small Coalitions and the e-Core

Let N be the player set, a finite set; B, an attribute function,” a mapping
from N to 2x P: and B, a bound on the size of permissible coalitions, a
positive integer. We denote f(a) by (w”(a), >%), or (w(a), >,) when the
meaning is clear.

A finite economy is a triple (N, B, B), simply a specification of the player
set N, a description given by B of the endowment and preference relation
of each player, and a bound B on permissible coalition sizes (only coali-
tions containing no more than B members will be permitted to form).

We allow trades only within permissible coalitions containing, say, fewer
than B players and define feasible allocations arising from cooperation con-
sistently. More precisely, we define feasible allocations for the total player
set by allowing trades only in coalitions in partitions of the player set into
B-bounded coalitions. We call a partition of N with the property that each
element in the partition contains no more than B members, a B-partition
of N.

For comparison with the analogous concept for a continuum economy,
we now provide another description of a B-partition p of N:

for any positive integer k< B, let N{={J)s,, s« S Then
N has a partition { N§,}5_, with the properties that there are
bijections ¢%,, .., #% from N¥%, to N%,, .., N%,, respectively,
and that {#%,(a), .., #},(a)} € p for all ae N§,.

In a B-partition of ¥, the set of all members of k-member coalitions, NZ,
is divided into k subsets, N¥,, .., NZ,, and the members of each subset N},
are labelled as the rth members of these coalitions. Every k-member coali-
tion has one and only one member in N4, for each . The bijection ¢%,
associates the rth member of a k-member coalition with the first member
of that coalition. The partition {NZ%,}*_, is called the partition associated
with p and the mappings {¢%,}, the bijection associated with p.

Let p be a B-partition. Denote by X(p) the set of all feasible allocations

relative to p, i.e.,

X{m:{xeﬂ‘“’: Y x, <Y o@ forall SEP}.

a5y ae s

% This is sometimes called “an economy™.
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Then the set of feasible allocations X is the union of the feasible allocations
X(p) relative to p over all B-partitions p, ie, X={J, X(p).

It will be convenient to define allocations which are feasible for a subset
of players §. We say (x,),.s is a S-allocation iff x,e Q for all ae § and
Y aesXa<Y . s®(a) (In the continuum case, S-allocations are defined
only for finite subsets of players.)

For each allocation x € 2%, we define the distribution D[x] induced from
x by

|[{aeN:x,eT}|

N for all Borel subsets T of 2*.

D[x)(T)=

Then the expression [x,, D[x]]>,[v., DLy]] means that a player a
prefers the consumption x, in the allocation x to consumption y, in the
allocation y.

Because new behavior of a coalition affects the feasibility of the alloca-
tions of some players, to define the e-core we must specify the admissible
actions of the remaining players when a new coalition forms. For those
players who are only indirectly affected (by the change in the distribution)
since the feasibility of their allocations is maintained, we can make the
Nash assumption that these players make no changes in their actions. In
contrast, since the allocations of players who are directly affected by the
formation of a new coalition (find that the coalitions they were in have
been broken up) may be infeasible, we cannot make the Nash assumption.
Instead, we allow all possible feasible actions (reactions) within B-bounded
coalitions of directly affected players.

Let p be a B-partition, and let § be a coalition with |S| < B. We call p
a (p, S)-partition iff

p is a B-partition and Sep;
and
Rep and RnS=¢ imply Rep.

The partition p consists of the coalition S, the coalitions R in p that do not
intersect S, and arbitrary B-bounded coalitions of directly affected players.
Figure 1 provides a simple illustration of two (p, S) partitions. In each
case, the indirectly affected players are members of R and the directly
affected players are the remaining members of Ru S,

Let x be in X(p) for a B-bounded partition p and let (y,),.s be an S-
allocation for a coalition S. We say that an allocation X is compatible with
x,p, and (¥,).es Mf X is in X(p) for some (p, S)-partition F; for all
Repnp, X,=x, for all ae R; and x,= y, for all a€ §.
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FIGURE 1 (B=4).

The allocation X agrees with x on the coalitions that do not intersect the
coalition S, agrees with (¥,),cs on S, and is feasible for some partition of
the remaining players. (For the example p of Fig. 1, 5 n p has the unique
element R. Then % agrees with x on R, agrees with (y,)..s on S, and is
arbitrary on the remaining players.)

Let x be a feasible allocation, and let ¢ be a positive number. We say that
a coalitton S (|S| < B) can &-improve upon x iff there is an S-allocation
(¥a2)aes such that for any B-partition p under which x is feasible and any
allocation X compatible with x, p, and (y,)..s:

[%,, D[#]]1>.Ulx,, D[x];e] forall aeS,

where U(x,, D[x];e)={[z, v]e@2x M:d([z,v], [x,, D[x]])<e} is the
e-ball around [x,, D[x]] and “[%,, D[X]] >, U(x,, D[x]; ¢)” means that
[%,, D[X]]>, [z, v] for all [z,v]eUlx,, D[x];e). Figure2 and the
following discussion illustrate the structure behind “e-improve upon”.

In Fig. 2, as in the definition of “e-improve upon,” the allocation x is
given. Then, there may be many partitions, say p, p’, p”, under which x is
feasible. Each one of these partitions determines a set of possible (p, §)-
partitions, say p, p’, p" for p, and each of these (p, S)-partitions determines

FIGURE 2.
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a possible set of compatible allocations, say %, X', X" for p. The above
definition of “e-improve upon” ensures the improvement in the utility of
each player in the coalition § for any combination of possible partitions p,
(p, S)-partitions p, and compatible allocations X. Thus, our definition of
“g-improve upon” is a conservative one in that the improvement must be
for all admissible alternative cases* (though we make the Nash assumption
that the indirectly affected players keep the same allocations of com-
modities).

The e-core of the finite market (N, f, B) is the set of all feasible alloca-
tions that cannot be ¢-improved upon by any coalition S with |S| < B.

When there are no widespread externalities and ¢ =0, our definition of
the e-core reduces to the usual notion of the core (except for our feasibility
condition). When &> 0 our definition suggests that a coalition will not
attempt to improve upon an allocation unless it can be “significantly”
(measured 1in commodities) better off, no matter what admissible actions
the directly affected players undertake.

Observe that the e-core depends on the choice of metric. However, we
will consider an approximate core property (defined in Section 4) instead
of the e-core itsell and this property is a topological, rather than a metric,
notion. Therefore the dependence of the e-core on the metric creates no
substantive problems in our approach.

.

et
3.2. Continuum Economies with Finite Coalitions and the f-Core

Let (A, &/, u) be a measure space, where 4 is a Borel subset of a com-
plete separable metric space; o/, the g-algebra of all Borel subsets of 4; and
i, a nonatomic measure with 0 < u(A4) < + co. Each element in A is called
a player and A is the player set. The measure u represents the distribution
of players. The g-algebra is necessary for measurability arguments but does
not play any important game-theoretic role.

An attribute function y is a function from A4 to £ x P which is measurable
in the sense that y~!(T)e o for any Borel subset T of Qx P. We write
a)= (w"(a), =!) or simply (w(a), >,) when the meaning is clear.

Let F be the set of all finite subsets of 4. Each element § in F is called
a finite coalition or simply a coalition. Let Fy be the subset of F consisting
of finite coalitions with no more than B members. The family Fjy 1s the set
of permissible coalitions. When B is infinite (R,), Fj is simply F.

*We think of a feasible allocation as actually a pair, x and p, with xe X{p), but we focus
only on allocations. Therefore, for the idea of the model, it suffices to consider some given
partition p where xe€ X(p). For our result, either definition may be used; their differences
become irrelevant in large economies. For economy of mathematical definitions, we choose
the current presention.
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A continuum economy is a triple (A, y, B), comprising a specification of
the player set A4; a description, given by y, of the endowment and
preference relation of each player; and a bound B on permissible coalition
sizes. If B= + oo, then the continuum economy is denoted by (A4, y, F).

Recall that only coalitions with no more than B members can form, and
feasible allocations must be achieved by trades in coalitions in some parti-
tion of the set of players into B-bounded coalitions. These partitions are
required to be “consistent” with the two notions of measurement described
by the cardinal numbers for finite coalitions and by the measure u for
broad economic totals.

A partition g of A in Fy is measurement-consistent iff for any positive
integer k< B

Al= (] Sis a measurable subset of A;
1<%
and
cach A{ has a partition {A4Z}%_,, where each Af, is
measurable, with the following property: there are
measure-preserving isomorphisms® ¢4, ¥{,, .., ¥§, from
Af, to A}, .. Aj., respectively, such that {y{(a),..,
Yi(a)} eq for each ae AL,.

Let IT; denote the set of measurement-consistent partitions. When B is
infinite, we denote /7, simply by /1. An element in I7, will be called a
B-partition.

Almost as in the preceeding subsection, for each positive integer k we
define 47 as the set of members of k-member coalitions. For the partition
g to be measurement-consistent, we must be able to partition A into k
subsets {A? }%_, so that the tth subset 49 can be viewed as the set of tth
members of k-member coalitions. The isomorphisms associate the first
members of k-member coalitions with the rth members for r=1, ..., k. The
measurement-consistency requirement inherent in the measure-preserving
property of the isomorphisms ensures that the set of first members has the
same measure as the set of rth members for each ¢t Without loss of
generality we assume throughout the paper that y{, is the identity map.

Paralleling the definition of feasible allocations for a finite economy, we
define the set of feasible allocations F(q) for each ge IT, by

Hq}={fs L(A4,82): 3 fla)< Y w(a) for all Ssq},

ac § ac s

*Recall that a function ¥ from a set G in o to a set C in is a measure-preserving
isomorphism from G to C iff (i) ¥ is a measure-theoretic isomorphism, ie., ¥ is 1 to 1, onto,
and measurable in both directions, and (ii) u(T) = p(y¥(T)) for all T= A4 with Te o,
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where L(A, Q) is the set of measurable functions from 4 to €. An alloca-
tion in F(q) will be called a g-feasible allocation. Let

F=|) F4)

geilyg

and let F* be the set of feasible allocations where

F*={feL(d4, Q): for some sequence {f'} in F, {f"}
converges in measure to f }.

Recall that “{f"} converges in measure to F” means that for any ¢>0,
there is a + such that for all v>7# we have p({aeA:
|f*(a)—fla)| >e}) <.

In a finite economy the set of feasible allocations X' =1, X(p) is already
closed, but this is not necessarily true for the set of (exactly feasible alloca-
tions F for a continuum economy, as illustrated via an example in Ham-
mond, Kaneko, and Wooders [4]. The set F* of feasible allocations is an
idealization of the exactly feasible set. A member of F* is to be interpreted
as approximately feasible for arbitrarily close approximation. It is
approximately feasible in the sense that for some partition ¢* of A4 into per-
missible (finite) coalitions, there is an f* € F(g") such that fis “close” to
for most players.

Finally we note the rather surprising result that although our game
structure is quite difference from that of Aumann [2], our set of feasible
allocations F* of the continuum economy (A4, y, F) coincides with the
Aumann-feasible allocations, i.e.,

F'={IEL{A,Q}:II$Im}.

(Kaneko and Wooders [7, Lemma 3.1, p. 130]).°
For each function fin L(A, 2), we define the distribution D[ /] induced
from f by

pu(A)

for all Borel subsets T of 22",
Let £ be a function in L(A, £2). We say that a coalition § with |S| < B can

improve upon f iff for some S-allocation (x,),.s, we have [x,, D[ f]]>,

DLSUT) =—— u({ae 4: fla)e T})

® This result is essential for the equivalence of the f-core and the Walrasian allocations but
i not used in the main theorem of this paper. It is used indirectly in the proof of the corollary
to the main theorem.
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[ f(a), D[f]] for all aeS. Now the f-core of the economy (A4, y, B) is
defined to be the set :

C = { fe F*: for some full subset 4= 4, no coalition S in
A with |S| < B can improve upon f}.

The definition of “can improve upon” is much simpler for the continuum
than “can e-improve upon” for large finite economies. This is because a
coalition S, since it is finite, does not change the distribution of the alloca-
tion when it changes its own part of the allocation. Therefore, in our defini-
tion of “can improve upon” we can take the distribution D[f] as
unchanged by the change from (f(a)).es t0 (x,).cs- As in the finite
economy case there will be some players directly affected by the formation
of the coalition S. However, these directly affected players are negligible in
the continuum case. These aspects enable us to use the standard (game-
theoretic) notion of the core in the context of a continuum of players and
finite coalitions, even with widespread externalities.

4. CONVERGENCE OF STRUCTURE AND SOLUTION FROM
FmiTE To CONTINUUM ECONOMIES

In this section we introduce the concepts required for the statement of
our results, state our main theorem and a variation of the theorem for the
case of no widespread externalities, and apply our main theorem to the
Walrasian equilibrium.

4.1. Approximation Sequences and the Approximate Core Property

To define the concept of convergence from finite economies to a con-
tinuum, we first embed finite economies within “equivalent” continuum
economies, called nonatomic representations. With this embedding,
attributes and allocations for the finite economies are represented in the
same spaces as those of the continuum economy. The nonatomic represen-
tation of a finite economy has a continuum of players and has the same
percentage of players with each attribute as the finite economy. Our con-
vergence is defined in terms of the convergence of nonatomic representa-
tions of finite economies.

We now fix a limit continuum economy (4% y°, F) for the remainder of
the paper.

7 We could adopt a definition of the f-core requiring that no finite coalition could improve
upon an allocation in the f-core. However, this complicates the statement of our results
without adding any substance to the meaning.
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Let N be a finite set and let § be an attribute function on N, ie.,
p: N-Q2xP. A continuum economy (A,7y, B) (where A< A" and
u(A)>0) 1s called a nonatomic representation of the finite economy
(N, #, B) iff there is an onto mapping ¢: 4 — N such that

(& a)) =LA} for all aeN; (4.1)
|V
ya')=pla) forall a'e¢'(a)and ae N. (4.2)

We call £ the representation mapping.

Let {(N", 8", B')} be a sequence of finite economies. We call a sequence
{(4",y", B")} of continuum economies a nonatomic representation of
{(N", 8", B")} if (4", 7", B’) is a nonatomic representation for each v. This
definition extends each of the finite economies (N, %, B”) to a continuum
economy. Each player in N” is replaced by a continuum of players with the
same attribute so that the proportion of players having a given attribute
remains unchanged. (This is a similar concept to Kannai's [8] “continuous
representation” but we allow the player set to be a proper subset of A4°
instead of A° itself. If a function on A4° is unbounded, by using a subset of
A° as the domain we can approximate the function uniformly by simple
functions where, for each simple function, each step has the same size
base).

Again let (N, B, B) be a finite economy and let (A4, y, B) be a nonatomic
representation with the representation mapping &. Let « be a function from
N to some metric space Y. We call &@: 4 — Y the nonatomic extension of
iff &a')=o(a) when a' €&~ '(a). Note that the nonatomic extension is
uniquely determined by « and a nonatomic representation (A, y, B), and
that 7 is the nonatomic extension of f itself. The nonatomic extension & is
a simple function and a substitute for « in the nonatomic representation
(A, v, B) of (N, 8, B).

t {(N*,B", B’)} be a sequence of finite economies, let {x"} be a
sequence of functions from N* to some metric space Y with metric p, and
let {(4",7", B")} be a nonatomic representation of {(N", f', B")}. We say
that {a'} expandingly converges to a function «°: A° — Y with respect to

{(4%,y", B")} iff

(U ma) w(A°); (43)

k=1 v=k

the sequence {&"}, where &” is the nonatomic extension of
x' to (47", B*), converges uniformly to «” on the
domains, i.e., Sup,. . py(@"(a), 2°(a)) >0 (v o0). (4.4)
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Each function «* on N" is replaced by a function &" on A*. Then &@" can be
compared with the limit function a° though the domain 4" of a" is still
different from A°. Therefore we require convergence both of the domains
(4.3) and of the functions (4.4).

A sequence of finite economies {(N”, %, B")} is called an approximation
sequence for (A°%+° F) iff there is a nonatomic representation
{(4",y", B*)} with the representation mappings {¢"} such that

BUN")=7"(4")=y%(4%)  for all v; (4.5)
B'— oo as v — o0; (4.6)

{B°} expandingly converges to y° with respect to
{(4",7", B*)} and with a higher order than B" on £, ie,

B xsup,. o l0”(@)— " (a) =0 (v—=0); (4.7)
and
min |[{aeN":p"(a)=e}| = © (v— o0). (4.8)
ee '[N}

The sequence {(4", y', B")} will be called an associated nonatomic represen-
tation of {(N*, 8", B")}.

Condition (4.5) is that the attributes of the players in the finite
economies are subsets of the attributes of the players of the continuum
economy; the attributes of the players of the finite economies are con-
verging to those of the continuum economy “from the inside”. The next
condition {4.6) simply allows coalitions to become arbitrarily large.
However, since commodities are transferable, commodities may be
accumulated by some small subset of players and nonconvergence of such
accumulated commodities may result. We rule this out by assuming, in (4.7),
that the rate of convergence of the endowments w” is faster than the rate
of divergence of B'. If sizes of permissible coalitions are growing slowly,
this condition would be satisfied. In the case of widespread externalities we
will, in fact, require stronger conditions on the rate of divergence of B". The
next condition, (4.8), ensures that each player has “many” substitutes; we
call this the thickness assumption for the approximation sequence
{(N", B*, B*)}. This assumption does not, however, necessarily mean that
every player has a positive measure of substitutes in the limit economy.

Let {(N", 8", B'}} be a sequence of finite economies and let {x"} be a
sequence of feasible allocations; ie, x* is a feasible allocation for
(N, B*, B'). The sequence {x'} is said to have the approximate core
property iff for any & >0,

there is a positive integer v, such that for all vZ=v,, x" is
in the e-core of (N7, §°, B"). (4.9)
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The idea is that the sequence itself has a core or the “limit” of the
sequence has a core, even though we do not have a limit and even though
every economy in the sequence may have an empty core. As indicated
earlier, the approximate core property is independent of the particular
choice of metric on € x M.

4.2. The Convergence Theorem

We now give our theorem, designed to show convergence in structures
and convergence in solutions.

The following three conditions are used in the main theorem: Let f be a
function in L(A4° ), let {(N”, f*, B")} be an approximation sequence for
(A% y°, F), and let {x"} be a sequence of allocations, where x" is feasible
for (N", B*, B”);

( Bv}z .
|N"|
the sequence {x*} expandingly converges to f with respect
to some  associated nonatomic  representation
{(4% 7", B")}; (4.11)

the sequence {x*} has the approximate core property. (4.12)

0 a5 v—o oo (4.10)

MaiNn TueoreM (Upper-Lower Hemicontinuity). The following three
statements on a function f in L(A°, Q) are equivalent:

(1) fis in the f-core of the continuum economy (A°, y°, F);

(2) There is an approximation sequence {(N*, B, B*}} and a sequence
{x"} of allocations (where x* is feasible for (N, B*, B")) satisfying conditions
(4.10), (4.11), and (4.12);

(3) For an approximation sequence {(N", B*, B")} and sequence {x"}
of allocations (where x* is feasible for (N, g, B')) with conditions (4.10)
and (4.11), condition (4.12) holds.

The first statement of the theorem is clear. The second statement is that
there exists an approximation sequence satisfying (4.10), (4.11), and (4.12).
In the third statement, instead of the existence of an approximation
sequence, it is claimed that any approximation sequence with (4.10) and
(4.11) has the approximate core property. (Since we can construct an
approximation sequence {(N", B*, B")} satisfying (4.10) and (4.11), the
third statement is not vacuous). In the “folk language,” (1)=(2) is a form
of “lower hemicontinuity” and (3)=>(1) is a form of “upper hemicon-
tinuity.”® The second statement (2) states the existence of an approximation

$C. Kannai [8, p.803]. For his framework, Kannai gave a counterexample to lower

hemicontinuity. In our case, we avoid his counterexample by assuming S(N* Yy 14" for all
v, and we consider the limit, from the “inside”, to the total.
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sequence; this existence is quite subtle because of the special properties
required of the sequence.

The theorem provides an answer to the questions raised in the introduc-
tion. The idea of perfect competition with recontracting in our continuum
model can be approximately realized in large finite economies with small
permissible coalitions. The two special aspects of perfect competition with
recontracting, which make the different treatment of small coalitions and
total economies necessary, are approximately captured by the restriction of
permissible coalitions (4.10). Thus the theorem provides a finitistic inter-
pretation of the continuum model with finite coalitions.

One of the special properties required of an approximation sequence in
statements (2) and (3) of the theorem is condition (4.10) ensuring that
relative to N* the sizes of coalitions become small. With widespread exter-
nalities, for the effects of coalition formation to become negligible we need
the percentage of directly affected players to become negligible, i.e., we need
(B")*/|N*| = 0. To see this, let p* be a B*-partition and let S be a subset of
players, S not in p*, with |S| < B". If § forms a coalition, this breaks some
coalitions in p*. The number of players influenced directly by the formation
of § is at most |S| x B, i.e.,

|| xﬂ“;‘ U T|;
Tep
TnS«+
this leads us to require condition (4.10).

When preferences do not depend on the distributions, ie., there are no
widespread externalities (this is the standard case), we do not need to
impose (4.10) in the theorem. In other words, we can delete the references
to (4.10) in statements (2) and (3) of the theorem. In fact, in the case of
no widespread externalities, this feature that (4.10) can, but does not need
to, be imposed is the reason behind the equivalence, shown in Hammond,
Kaneko, and Wooders [4], of the f-core and the Aumann core. This can
be considered as the reason that the opposing Schmeidler [10]-Vind [11]
requirements (Schmeidler requires “small” coalitions of positive measure
less than g whereas Vind can require “large” coalitions) both lead to
Aumann-core-equilibrium equivalence. Nevertheless, when we consider the
convergence to the f-core it is natural to restrict coalition sizes, at least to
ensure B'/|N*| = 0.

Remark 4.1. In the third part of the Theorem, an approximation
sequence of finite economies depends upon the particular f-core allocation
f under consideration. Since we do not assume convexity the f-core alloca-
tion f is not necessarily continuous with respect to attributes and does not
necessarily satisfy even the equal-treatment property (the property that
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players with the same attributes receive the same allocation). Thus under
our assumptions the f-core allocations have more “variety” than the
attribute functions and we cannot define an approximation sequence based
only on attribute functions.

4.3. An Application to Walrasian Equilibrium

The combination of our main theorem and the equivalence theorem in
Hammond, Kaneko, and Wooders [4] gives us convergence of the core to
the Walrasian equilibrium allocations of the continuum economy. We note
that these allocations might not be Pareto-optimal.

In Hammond, Kaneko, and Wooders [4], under the following condi-
tions the equivalence of the f-core and the Wairasian equilibrium alloca-
tions is obtained.

(A.0) There is at least one divisible commodity, i.e., the index set D
of divisible commodities is nonempty;

(A.1) >, is strictly monotone on RZ ;

(A2) for all [(x;,xp),v]e@xM there is a yp,e€ RY such that
[0, ¥p) v1>=a [(x;, xp), v ]

(A3) [w(a), v]>.[(x,,0p),v] for all x,eZ’ and for all probabil-
ity measures v.

TueoreM (Hammond, Kaneko, and Wooders [4]). Under assumptions
(A.0) to (A.3) it holds that [ is in the f-core of (A%, y°, F) if and only if f is
a Walrasian allocation, i.e., for some price vector pER‘f ;

p-fla)< p-wla) ae. in A%
ae. in A°, [x, D[f]] *.[fla), D[ 1] for all xe Q2 with

p-x<p-wla)

and

J‘ f<| w
A AD

CoROLLARY. Assume (A.0) to (A.3) hold. The three statements of the
theorem on a function f in L(A°, Q) are equivalent 10:

(1') fis a Walrasian allocation for the continuum economy (A°, y°, F).

There is a vast literature on convergence of cores to equilibrium alloca-
tions in the case of no widespread externalities (see Anderson [1] for a
recent survey). In many of these papers, the convergence of the core alloca-
tions to Walrasian allocations or Walrasian-like allocations is considered
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in the context of large, finite economies—convergence to the continuum is
not investigated. Nevertheless, this is not the main difference between our
convergence results and existing works. The main difference i1s that we
require not only convergence of cores but also convergence of the economic
structures (moreover, with widespread externalities).

Although we considered convergence of e-core allocations to Walrasian
allocations as a corollary to our main theorem, our primary concern was
the interpretation of the continuum model with finite coalitions as the limit
of finite economies. Kannai’s [8] paper is related to this aspect of our
paper. He considered the convergence from core to core and also from
economies to economies, and obtained several fundamental results.
However, Kannai’s paper is devoted to the interpretation of Aumann’s
model of a continuum with coalitions of positive measure, and convergence
of game theoretic structures is not required. With this qualification our
approach and Kannai’s approach are counterparts to each other for the
continuum models with finite coalitions and with coalitions of positive
measure.

For large economies with no widespread externalities, Mas-Colell [9]
obtained an important result on the convergence of the core to the
Walrasian allocations. This result gave an evaluation of a bound on coali-
tion sizes which still permitted a convergence result. His evaluation is shar-
per than ours but his paper is different in that feasibility does not require
trade only within small coalitions. An interesting open problem is what the
Mas-Colell result becomes when the same coalition size bound is used in
defining feasible allocations as in “can improve upon.” This is important in
interpretation of the meaning of the result.

Remark 4.2. In Hammond, Kaneko, and Wooders [4] we prove non-
emptiness of the f-core under the assumptions (A.0), (A.1), (A.2), and
(A.3) for the case where the widespread externalities depend on the
integrals of allocations (rather than their distributions). Of course the case
of no widespread externalities can also be covered. From this existence
result and the above corollary we have the existence of the approximate
core for any approximation sequence for f in the f-core.

5. PrROOFs

In this section, we prove only the equivalence between statements (1)
and (2) of the main theorem. When we have existence of an approximation
sequence satisfying (4.10) and (4.11), and a sequence {x'} of allocations
with the required properties, then (3)=>(2) is straightforward. The exist-
ence of such a sequence can be proved in the same way as the first part of
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the proof of (1)=>(2). The logical relation (1)=>(3) is almost immediate
and thus omitted.

5.1. Preliminaries

Before we proceed to the main body of the proofs, we prepare several
auxiliary notions and some lemmas. First, we define a typed continuum
economy with the rational number property. The rational number property
means that the proportional aspects of the economy can be described by
rational numbers. This implies that we can find a finite economy with the
same proportional aspects.

A continuum economy (A4, y, B) is said to be typed iff p(A) is a finite set.
The typed continuum economy (A4, y, B8) is said to have the rational number
property iff

F({QEA:{E;I}= *}) is a positive rational number
i

for all xey(A). (5.1)

Let g: A — 2 be a simple function such that { :=(y, g): A > (2 x P)x Q2
has the rational number property (u({ae 4:{(a)=4})/u(A) is a positive
rational number for any Ae{(A4)). We denote (2 x P)x Q2 by A.

Let g be a B-partition of 4 with the associated partition {Af:i=1, ..,k
and k=1, .., B} and isomorphisms {¢{,:t=1,.,k and k=1, .., B}. We
say that g has the rational number property with respect to { iff for all
k=1,..,Band A= (4, .., i) e A%

if ((oyi,(a), ... {oyri(a)) =4 for some ae A],,

— u({ae AL : (Loyii(a). .. (oYiila))=4})
u(A4)

is a positive rational number.

(5.2)

Note that if some B-partition ¢ of 4 has the rational number property,
then the economy (A, 7, B) also has the rational number property.

Let (N, f, B) be a finite economy, and let (A, y, B) be a nonatomic
representation of (N, p, B) with the representation mapping ¢. Let p be a
B-bounded partition of N. We call a B-bounded partition g of 4 a non-
atomic representation of p iff

&(S)ep and  [{(S)|=!5] forall Segq. (5.3)

Note that since & is an onto mapping, (5.3) implies &(g) = p. A nonatomic
representation ¢ is a partition of 4 and the structure of ¢ mimics that of
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p. The partition g, however, contains a continuum of coalitions with the
same profile as § for each Sep since a wntmuum of players & '(a)
corresponds to a for each ae N.

A B-partition of 4 with the rational number prcrperty with respect to
(7, g) can be represented as a B-partition of N in some finite economy
(N, B, B). That is,

LeMMma 1. Let (A, B, B) be a B-bounded typed continuum economy.
Suppose that q is a B-bounded partition of A with the rational number
property with respect to { =1y, g). Then for any €¢>0 there are a finite
economy (N, B, B) (N< A) and a B-partition p of N such that

(i} (A,y, B) is a nonatomic representation of (N, f, B) with a
representation mapping £ where £(a)=a for all ae N;

(1) g is a nonatomic representation of p;

(iii) (B)*|N| <e; and

(iv) the representation mapping ¢ preserves the values of [, i.e.,
(y(a’), g(a"))=(y(a), g(a)) for all a’ €& ~'(a) and a€ N.

(In the finite market, the proportional aspects of a B-bounded partition ¢
are characterized by a finite number of rational numbers. Since rational
numbers are ratios of integers, we can mulitiply those rationals characteriz-
ing the partition by one integer and obtain integers describing the same
proportional aspects of . Then we construct a finite economy described by
these integers. For completeness, we give a full proof.) We remark that
since £ is a representation mapping, the restriction of y to N is 8, so the
part of (iv) concerning y is redundant.

Proof. Given the B-partition ¢ of A4, let {A{:i=1,..,k and
k=1,..,B} and {y¢:1=1,.,k and k=1, .., B} be the associated parti-
tion of A and isomorphisms.

Denote the set {Ae A% (Lo (a)y o ol a} = 4 for some ae A{;} by
F*={}¥' .., A¥} Note that F* may be empty.” By the rational number

property of g, it holds that

u({ae A : (Loy(a), .., Lo (a) = A%})
u(A) |

is a positive rational number for all 1** e F*

and k=1, .., B. (5.4)

*If F*=(Z, then [, =0.



156 KANEKO AND WOODERS

Therefore there are positive integers i,, (s=1, .., }, and k=1, .., B)'® such
that

H[{ﬂEAL:(*:“ E]{a]: ---:‘:“Ha{ﬂ]]=ih}]‘___ Is (5.5)
.H'{A] Zf= 1 zi*- 1 k X i.h'
forall s=1,..,/, and k=1, .., B; and
2
(8) <s. (5.6)

Ef—l:ik——-l k.‘l'( r.kr

Since F*#¢ for some k, the above ratios are well-defined. (This means
that the rational numbers describing the proportional aspects of (4, y, B)
are replaced by natural numbers so that the proportional aspects are
preserved. )

Now we define a finite economy (N, §, B). Denote A% (i%)=
fae A%,: (Loyi (@), ... CoWi(a))=A%]}. Then we choose a subset NF,,
from AZ(1*) (s=1,..0, and k=1,.. B} so that IN“SI = Iy, Let
Nk.'s_w I{N.kls for 'E=1*'"1 k‘ an= 3-1 Nirs! Nk_ r:ul NE,, and
N={J2_, NZ. Then we have, by (5.6),

(B}2= (B)? (B)?
[N Zf=lxik-1 f-llNk.'sl Ek-lza-lk:’(fu

which is condition (i1i).

Let B be the restriction of y to N. We have attached to each y{,(41,(1%))
the finite set N2, so that the proportions of these sets to 4 and to N,
respectively, are the same, ie., u(¥f(A4L(A%)))/u(4)=|N%,|/IN|. Since
N2, is a subset of 4L, (1%) (=v{,(A] l{A“") we can find an onto mapping
&: A% (4¥) > N, such that

<&,

éla)=a  forall aeN%,,;
and ' (5.7)

» Mm}}=m forall aeNZ%, .

B 1
weE Ha))= N7 | k1 IN]

Then we define &: @7 (A49,(A%)) - N%,, by
Ea)=yi-Eoyf (@)  forall aeyf(4f,(4*)). (5.8)

Since Y, is a measure-preserving 1snm0rphlsm 1: follows from (5]7) that
for each aeN%,, p(éY(a)=pWi(E WL @)N=p "W, (@)=

0 §f J, =0, then there is no iy, and ¥_, kx i, =0.
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u(A)/|N|. Thus we have shown that (4, y, B) is a nonatomic representation
of (N, B, B) with the representation mapping &.

From the definition of the representation mapping &, it is clear that £
preserves the values of (y, g).

Since N{, =y4(N{ ) forallt=1,.., k and s=1, ..., [, the restrictions of
Wi, .., ¥, are bijections from N¥%, to N¥,, .., Nf,. Denote these restric-
tions by ¢%,, ... #4;- Then define a partition p as follows:

p={{d%,(a),..¢%(a)}:acN%, and k=1, .., B}.

Then it suffices to prove that g is a nonatomic representation of p with the
representation mapping £ Pick an arbitrary coalition S from ¢ with
|S| =k. Then S can be represented as S={y{ (a), .. ¢{(a)} for some
ae A%,(A*¥). It follows from (5.8) that

&{S) == {éﬂl;fgl[a}, g D'ng[aji bt én rflL_.l:H;I}
= {&(a), ¥, &), ... Yo Ela)}
= {l(a), $5,°8(a), .. ¢l Lla)}ep. |

Since we require an exact form in (5.3) for the definition of a nonatomic
representation of a B-partition of N in a finite economy (N, 8, B), a non-
atomic representation (A4, y, B) of (N, B, B) does not necessarily have a
nonatomic representation of a B-partition. However, the following lemma
holds.

LEmMMA 2. Let (N, B, B) be a finite economy and let x=(x,),.n be a
p-feasible allocation in (N, B, B), where p is a B-partition of N. Let (4, 7, B)
be a nonatomic representation of (N, f§, B) with the representation mapping
&, and let § be the nonatomic extension of x to A. Then there is another non-
atomic representation (A, y, B) of (N, B, B) such that

(i) A is a full subset of A and y is the restriction of 7 to A;
(1) (A, y, B) has a nonatomic representation q of p;
(ii1) the restriction g of g to A is g-feasible.

(The reason (A, 7, B) is replaced by (A, 7, B) is the following: A measure-
ment-consistent partition is constructed by measure-preserving iso-
morphisms. However, the existence of a measure-preserving isomorphism
between two Borel sets with the same measure can be ensured only up to
a null set. See Kaneko and Wooders [7, p. 129]. Therefore we have to omit
null sets appropriately.)

Proof. Since (A, 7, B) is a nonatomic representation of (N, 8, B) with
the representation mapping ¢, for any S:={a,.a;,..a,}ep (k is a
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positive integer), we have p(A4, )= --- =pu(4,,), where 4, =& '(a,) for
t=1, ..,k Therefore from Lemma A.1 of Kaneko and Wooders [7], thcrf:
are measurc-preservmg 150m0rphlsms Wips - Wi (mod0) E‘rom A,
A,, .., A, tespectively, that is, there are full subsets A, ﬂt*" Z’g of
A, such that ¥, .., ¢}, are measure-preserving 1somcrrphlsms from
A, Aﬁl,..,Aﬁ' to &fl(;‘i;l}, Y42, Wi(AY), tespectively. Let

A o Of course, u(A4,)= Ju[A,,l] Here we can assume without
loss of generality that a,e qbf,(Am} for all t=1, .., k."" Define

9(8)={{¥ir(@), .. ¥ik(@)}:ae 4.} and  g= 1) 4(S).
Sep
Let A={J,., T and let y be the restriction of 7 to A. It is clear that 4 is
a full subset of A, and that (4, y, B) is a nonatomic representation of
(N, B, B) with the representation mapping £. Then ¢ is also a nonatomic
representation of p, since it holds that for any {3, (a), .., ¥3.(a)} € q(S)
and Sep,

S({Yii(@), - V(@) }) = {o¥ii(a), o Sovbila)}
= {GI, e Ek} =8

Finally, we prove that the restriction g of g to A is g-feasible. Since g is
also a nonatomic extension of (x,),.~. and since { is the representation
mapping from A to N, we have, for all Tegq,

Y g@= Y x,< ) ofla)=} wla) B

agT asf(T) aef{T) aeT

The next step is to characterize a feasible allocation f'e F* in (4° 7° F) in
terms of a sequence of feasible allocations in typed continuum economies
with the rational number property. After this step, using the previous
lemmas, we will construct an approximation sequence {(N”, f*, B")} for
(A% +°, F).

A sequence of typed continuum econumies {(4", 7", B")} is called a non-
atomic approximation sequence for (A°, y°, F) if

(U N 4 )=,u (A°); (59)

k=1 v=k
P(A) <y%(4%)  for all v; (5.10)
B' = w0 as v— oo (5.11)

' Indeed, if a,¢¥;,(4,,), then we can replace an arbitrary aey, (4, ) by a,. The new
function plays the same role as the function 3.
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{y"} converges uniformly to y° on the domains and with
a higher order than B* on £, i.e.,, sup |®" (a) —m"“[a)i X
B"—-0as v— . agd’ (5.12)

Remark 5.1. Of course these conditions correspond to (4.3), (4.5),
(4.6), and (4.7) in the definition of an associated nonatomic representation
of a sequence of finite economies. The existence of an approximation
sequence {(N*, f*, B*)} implies the existence of a nonatomic approxima-
tion sequence {(4", 7", B*)}.

LeMMA 3. A function fe L(A° Q) is feasible, ie., fe F*, for the con-
tinuum economy (A°, y°, F) if and only if there are a nonatomic approxima-
tion sequence {(A", 7", B*)}, a sequence {q'} of B'-partitions of A’, and a
sequence {g"} of q'-feasible allocations such that

(1) each g" is a simple function on A" and each q° has the rational
number property with respect to (y", g');

(i) the sequence {g"} converges uniformly to f on the domains.

Proof of Sufficiency. Let {e,} be a sequence of positive numbers with
lim,e,=0 and e,<1 for all n. Since the sequence {w”} converges
uniformly with a higher order than B* by (5.12), there is a v, for each n
such that

lo”(a) — w”'(a)| x B <, for all ae A™. (5.13)
Define g': A° - Q by

g(a) if cel

for all A, gMa)= i
orall ae g:(a) {m{g?(a]_gmﬂ} if ceD,

(5.14)

forall aed®—A4A™  g"(a)=0

(recall that I and D denote the index sets for the indivisible and divisible
commodities respectively); and define 5™ by

g"=gqg"u{{a}:ac4°— 4"}

Since {g"} converges uniformly to f, it follows from (5.14) that {g’}
converges in measure to f. Therefore it suffices to prove that each g™ is
g"-feasible. For a coalition {a}e g™ —g", it holds that £ (a)=0<w"(a).
Let S be an arbitrary coalition in ¢". For an indivisible commodity ce /,
we have

Y gna)=Y gMa)< ¥ oMa)= Y o’(a),

as Xy as s as ¥ as &
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since &, <1 for all n, so mf’{a} =w!"(a) for all ae A™. Let ¢ be a divisible
commodity in D. If g"(a)}=0 for all ae S,

Y &Ma)=0< Y w’(a)

ae s as 3

If g7*(a)> 0 for some a€ S, then

Y ga)< Y gila)—e,

ass as s
< Y g"a)—B"x sup |ol(a)—w?(a)]  (by(5.13))
ack ae .A'n

< Y (ga)—|o(a)—wl(a)|)

ae ¥
<Y (0"a)—|ol"(@)—ol(@))< ¥, ol(a).
ac ¥ ac¥

Thus we have shown that ¥ _¢ #"(a) <Y, " (a) for all Se g™, which
means that g* is §"-feasible. ||

Proof of Necessity. Since f is a feasible outcome in the continuum
economy (A° 7°, F), there are sequences { "} and {g"} such that

g' e, f is g'-feasible for all v, and {f"} converges in
measure to f. (5.15)

We can assume without loss of generality that there is a sequence {B"} of
integers such that for all v,

MNEY: for all Seg"." (5.16)

Here we can assume that B*— o0 as v—o0. Let {A},:f=1,..k and
k=1,.,B"} and {¢},:t=1,..,k and k=1, .., B*} be the partition of 4°
and isomorphisms:associated with the partition §".

'21f there is not such a sequence {B"}, then we can find a sequence {B"} such that

,u( I S)}F{A”)—Z‘” for all v.
Sed
|51 = 5
Then §'={Seg" |S|<B'}u{{a}:acS for some Seg" with |§|> B"} and f*, defined by
Fla)= frla) if 2e § for some Seg* with |5} < 8"
(@)= m’n(a} otherwise,

satisfy conditions (5.14), (5.15) and (5.16).
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Let v be an arbitrary positive integer. In the following, we will define a
B'-bounded and typed continuum economy (A", y*, B*) and a feasible out-
come g" of the economy (A4, y*, B*). Put ¢=1/2". '

We can assume by (5.15) that

#Gﬂeﬂ“: |f*(a)— f(a) >§})-¢§+” (5.17)

Since A = (€2 x P)x £ is o-compact, we can choose a compact subset A" of
A so that

W A7) > (A — 3, (5.18)

where {*=(y° f*). Put A*={ael" ' (4*):|f"(a)—f(a)l <e/4}. Then it
follows from (5.17) and (5.18) that

w(AY) > p(A%) — [,u.(A"— 0N (AY)) + p ({a e A% |f*(a)— fla) > z})]

&

:-;;{A“}—(§+§)=pu°] : (5.19)

Since A" is a compact metric space, there is a finite partition {47}, .., 4] }
of A" such that for s=1, ..., [,,

the radius of A! is less than (5.20)

B x2"

We are now going to define sequences {A4"}, {7"}, {¢'}, and {g"}. Let
L,:={1,2,.,1). For any k (1<k<B’) and

" ey |
i=(I,.,)e(L)' =L % ---xL,,

choose a subset C},(i) of A}, := A}, n A" so that
Culiyc{aedy: (" =yiy(a), .. P odiula))ed) x - xAL}; (5.21)
u(C;,(f)) 1s a positive rational number or Cu)=¢; (522)

wC@)zp({aedy: (U oyi(a), .. Poypla)) el x - xAL})
1 &
TEEOF 6y

'? Otherwise, we replace the sequence {f*} by an appropriate subsequence.
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Take one player a},(i) arbitrarily from each set C},(i) as the representative
of C},(i). Define the vth player set 4", the vth function y": A* - Q2 x P, an
allocation g*: A* — 2, and a measurement-consistent partition g* of 4" by

&

4= U U M (ol (5.24)
k=1 fEL =1
y'(a)=y"(bilay, (i)  forall aey; (Cy, (i),
ielk =1, ..,k and k=1, .., B"; (5.25)
g'(a)= f"(Yrlay, (i)  forall aeyi(C (i)
iel* t=1,.,k, and k=1, .., B" (5.26)
kU] f[\.i {({¥i(@), .. ¥ila)}iaeC uli)}- (5.27)

The first claim follows from these definitions and (5.22).

Claim 1. The partition ¢" is measurement-consistent and has the
rational number property with respect to (7", g")

Claim 2. p(lUZ, N=, A%) = u(4°).

Proof. Tt follows from (5.19), (523), and e=1/2" that
(A*) > pu(A®)—1/2" for all v. Since

i 1
,u( N A“);pm“]— 3 H(AU—A“)}#(AGJ—EE
v=Fk

for all k, we have

u(‘j F\ A")=lipw(ﬁf4)}llm(u{d) i,lk)=,u{A“}- |

k=1v=k v K

Claim 3. The sequence {y*} converges uniformly to y° with a higher
order than B* on Q.

Proof. It follows from (5.25) and (5.20) that {y"} converges uniformly
to y°. It also follows from those conditions that

. 1
B’ x sup ]m*(a}—m""{a}l-ﬁ?—-ﬂ as vooo. |

ag d*

Claim 4. The sequence {g"} converges uniformly to f.
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Proof. Tt follows from the definition of 4*, (5.26), and (5.20) that for all

a €y (Ci (i),
|g"(a)— fla)l < |g"(a)— f(a)l + | f*(a) — fla)]
S|/ Wl (D)) = fla)l + 1 f*(a)— fla)l
1 1
S ol

This means that {g"} converges uniformly to /. ||

Finally we can prove

Claim 5. Each g’ is g"-feasible.

Proof. Consider any coalition § in g°. It follows from (5.27) that S can
be represented as S={y} (a), ¥}.(a), .., ¥} (a)} and aeC},(i). From
(5.25) and (5.26), we have

0" (Y1 (@) =" (Wi lay, () for t=1,.,k

(5.28)
gWi@)="Wilan@®)  for t=1,..k
Since f* is §"-feasible by (5.15),
E L Wilan)) < 2 " (W} (aL(i))). (5.29)

=1

It follows from (5.28) and (5.29) that

gy la))= wlap (i) < @ k@
z "(Wrla)) = Ef"fw (i) < Z Py (@, (i)

=1

= Z o (Y (a). |

=

5.2. Proof of (1)<=(2)

In this subsection, we prove the equivalence of (1) and (2) of the main
theorem.

(1)=1(2). We show that if f 1s an allocation in the f-core of the con-
tinuum economy (A% 7° F), then we can find an approximation sequence
of finite economies {(N", §*, B")} with conditions (4.10), (4.11), and (4.12).

From Lemma3, we have a nonatomic approximation sequence
{(4",y", B*)} and sequences {g"} and {g"} with conditions (i} and (ii) of
Lemma 3. Let v be an arbitrary integer. Then condition (i) of Lemma 3
implies that we can apply Lemmal to each continuum economy
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(4%, ¢", B"), so we can find a finite economy (N, #*, B") (N'=A4") and a
B'-partition p* of N” such that

(4", y*, B®) is a nonatomic representation of (N°, f*, B")
with the representation mapping " where £'(a) = a for all

ae N, (5.30)
g" 1s a nonatomic representation of p; (5.31)

By 1.
N {2“’ (5.32)

and

&' preserves the values of (7', g*) (ie., (y°(d'), g*(d')) =
(y*(a), g"(a)) for all @’ €&* '(a) and ae NV). (5.33)

Since {(A4', 7', B')} is a nonatomic approximation sequence of (A4°, 1%, F)
from Lemma 3, the sequence {(N",B", B")} is a (finite economy)
approximation sequence for (4% 7% F). It also follows from (5.32) that
(B*)*/IN*| =0 as v — oo.

Let x* be the restriction of g* to N* for each v. Since g" is g'-feasible, we
have

Y @<y o' forall Seg. (5.34)

ag s ae s

For any Tep’, we can find an S e g* such that £'(S) = T. Since {" preserves
values of ¥, by (5.13), and x" is the restriction of g" to N" it follows from
(5.34) that

Y xa)=Y gla)< ¥ o'(a)= 3 of(a)

asT agE s a8 ae T

This means that x* is p’-feasible.

From Lemma 3 (ii), {g"} converges uniformly to £, p(UF_, N A4") =
u(A4°) by (5.9), and each g’ is the nonatomic extension of x” by (5.33).
Hence {x"} expandingly converges to f and satisfies (4.11).

Finally we show (4.12) that the sequence {x"} has the approximate core
property. On the contrary, suppose that there is a positive ¢ such that for
any v,, we can find a v=v, so that some coalition §" with |S"| < B* can
g-improve upon x', i.e., there is an S*-allocation {y}},. s such that for any
partition p* under which x" is feasible and for any allocation x* compatible

with x*, p*, and {y;}.e s
[y, D[ ]]>F U([x., D[x"]);¢) forall aeS"
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Since the sequence {g"} of nonatomic extensions of {x"} converges
uniformly to fand u({J;= , N, 4*)= u(A°), it follows from Hildenbrand
[5, p. 51, (39)] that the sequence {D[g"]} = {D[x"]} converges weakly to
D[ f]. Since x" is different from x* for at most (B*)* players (see the discus-
sion after the main theorem), and since lim, (B*)*/|N”| =0, the sequence
{g"} of nonatomic extensions of {%"} converges in measure to f. Therefore,
from Hildenbrand [5, p. 51, (39)], {D[x"]} converges weakly to D[ f].
Thus using the fact that y* converges uniformly to y° on the domains with
y'(a)=B"(¢(a)) for all ae A”, we have, for large v and all T c 4" with
¢(T")=S8"and |T"| =|S"],

[z}, DL/11>} U(Lf(a), D[f1);e) forall aeT",

where (z!),c i the T'-allocation in the continuum representation
(A", 9", B") such that z} = y},,, for all ae T". Since y" converges uniformly
to y® with a higher order on 2 than B", we can find a T -allocation
(2),c 7 for a large v in the contimum economy (A° y°, F), which is suf-
ficiently close to (z),.s for [Z}, DLf11=" [ f(a), P[f]1] for all ae T".
Thus the coalition T* can improve upon the allocation f in the economy
(A° y°, F) and the measure of the union of such improving coalitions is
positive, ie., u(E(S")) = u(A") x |S*|/IN"| >0. Therefore f cannot be in
the f-core of the continuum economy (A4° 7° F), a contradiction. Thus
(4.12) holds.

(2)=(1). We now show that a function f in L(A4° ) belongs to the
f-core of the continuum economy if we can find an approximation
sequence of finite economies {(N”, §*, B*)} with conditions (4.10), (4.11),
and (4.12).

From the supposition and Remark 5.1, there are a nonatomic
approximation sequence {(A", 7*, B")} and the sequence {g'} of the non-
atomic extensions of x"s to 4"s. From Lemma 2, each (4", 7*, B*) has a
full continuum subeconomy (4", y*, B*) with a nonatomic representation ¢"
of p* for each v. Also, for each economy (A", y*, B*), the restriction of g* to
A" is gfeasible. Since p(U7, N7, 4°) = p(UF 17k A°) = u(4°), the
allocation f is feasible in the continuum economy (A% % F) from
Lemma 3.

Finally we have to prove that there is a full subset 4 of 4° such that no
coalition in 4 can improve upon f in the continuum economy (4% ¥°, F).
On the contrary, suppose that there is no full subset 4 of 4° with the
property that no coalition in 4 can improve upon f.

Consider the set 4=, N* , 4" Since u(4°)=u(A) by (4.3), Aisa
full subset of A% Therefore we can find a finite coalition § in
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A=, NI A” such that § can improve upon f, ie., for some S-alloca-
tion (z,),.s in the continuum economy (A4°, 1°, F),

[z., D[f11>" [f(a), D[f]] forall aeSh. (5.35)

We can assume without loss of generality that S is included in 4° for all
V.
From (5.35) and the openness of ::—f', we have, for some &> 0,

U(lz., DLS1]; 3e) 7 U([f(a), D[f1);3¢e)  forall aeS. (5.36)

Since y* converges uniformly to 9° on the domains, there is a v, such that
for all vz v,,

U([z,, DLf1); 26) =2 U([f(a), D[f1),2¢)  forall aeS. (537)

Again since " converges uniformly to y° on the domains, there is a v, such
that for all v>v,, we can find an S-allocation (y}),.s with | y% —z,| <& for
all ae S in the economy (A", 3", B*). Since g* converges uniformly to f and
(A") — u(A®), it follows from Hildenbrand [5, p. 51, (39)] that D[g"]
converges weakly to /. Therefore we can find a v; such that for all v>v,,

[g'(a). D[g"]1e U([f(a), D[f])ie) forall aes;

and

[y: DLg*1]e Ulz,, D[ f1];e) for all aeS.
Then, by (5.37), we have, for all v > max(v,, v,, v3),
[yz DLg' 11>} U(Lg'(a), D[g"]);e)  forall aeS; (5.38)

because [g"(a), D[g"1]1e U(Lf(a), D[f1];¢) = U([g*(a), D[g']];¢) =
U([f(a), D[f]]1; 2e).

From the thickness assumption (4.8) and the fact that S< A" for all v,
we can find a v, such that for all v=v,, there is a subset 7" of N” such that
some bijection y": T" — § preserves the attributes. Therefore for notational
simplicity, we assume that 7%= Sc N* for all v. (This does not cause any
problems.)

Let x" be an allocation compatible with x*, p*, and (p'),.s in
(N", B*, B*), where p* is an arbitrary partition under which x* is feasible.
The nonatomic extension g" of x* to (A", y*, B') converges in measure to
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J/ because |T"| < B for all v and lim, (B")*/IN*] =0. (Recall the discussion
after the main Theorem.) It follows from Hildenbrand [5, p. 51, (39)] that
D[ "] converges weakly to D[f]. Since g is the nonatomic extension of
x', it holds that D[£']= D[£"]. Hence D[x'] also converges weakly to
D[f]. Since D[g"] also converges weakly to D[f], there is a vs>
max(v;, v, v3, v4) from (5.38) such that for all v> Vs,

[.v,‘;,D[f"]]}z'U([g"(a},ﬂ[g"]];;) for all gesS.

Since g" is the nonatomic extension of x* to A*, we have g"(a)=x and
D[x"]= D[ g"]. Therefore, for all v> v,

[,v.:.D[f']]>£‘v([x:,nfxvn;§) Gl sek

This means that {(N", ", B")} does not have the approximate core
property, which is a contradiction. J
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