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Abstract: We prove the nonemptiness of the core of a continuum game without side payments where
only small coalitions — ones bounded in absolute size of finite cardinality — are permitted. This result

covers assignment games with a continuum of players and includes combinations of several
assignment games, such as housing and automobile markets.

1 Introduction

In this paper we prove the nonemptiness of the core, called the f-core, of
a continuum game with finite coalitions. The formulation covers both games with
and without side payments. Two conditions are required: (1) the sizes of per-
missible coalitions must be bounded and (2) Pareto-frontiers for permissible
coalitions must have slopes bounded above zero. The second condition is auto-
matically satisfied by games with side payments and excludes, for example, cases
where payoff sets consist of isolated points. Since the bound on permissible
coalition sizes can be arbitrarily large, the first condition imposes virtually no
restriction.

The framework of a game with a continuum of players and finite coalitions, and
the concept of the f-core, were introduced in Kaneko—-Wooders (1986). In the
context of an exchange economy with widespread externalities, Hammond-
Kaneko-Wooders (1989) proved the equivalence of the f-core and competitive
outcomes. From this equivalence, together with the existence of a competitive
equilibrium, they also obtained the nonemptiness of the f-core of an economy. In
the same context, Kaneko—Wooders (1989) discussed a finite analogue of the
continuum case. In the context of a game without sidepayments, Kaneko-
Wooders (1986) demonstrated the nonemptiness of the f-core with a finite
number of player types. For some applications, the finite types assumption may
be cumbersome. This motivates the current paper.

* The authors thank two anonymous referees for many helpful comments. The second author is
indebted primarily to the Natural Sciences and Engineering Research Council of Canada for
financial support and also the Social Sciences and Humanities Research Council of Canada.
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The nonemptiness result of this paper is suitable particularly for economic
models with small coalitions. Examples include continuum extensions of the
assignment market models of Shapley-Shubik (1971) and Kaneko (1982) and
some combinations of these markets, such as housing and automobiles. It is
known that a combination of finite assignment markets may lose the nonempti-
ness of the core. After stating our main result, we illustrate why this emptiness
result occurs in a finite world and why nonemptiness is obtained in a continuum
world.

Relative to the results of Hammond-Kaneko-Wooders (1989), and Kaneko—
Wooders (1989), the essential restriction of the result of the current paper is that
the continuum game does not allow widespread externalities. The incorporation
of widespread externalities into a continuum game without side payments and
the nonemptiness of the f-core are open problems.

2 The f-Core of a Continuum Game

Let(N, B, u) be a measure space, where N is a Borel subset of a complete separable
metric space, B is the o-algebra of all Borel subsets of N, and u is a nonatomic
measure with 0 < u(N) < + co. Each element in N is called a player and N is the
player set. The o-algebra B is necessary for measurability arguments but does not
play a game-theoretic role.

Let n, a positive integer, be a bound on coalition sizes. Let F be the set of all finite
subsets of N containing no more than n members. Each element § in F is called
simply a coalition.?

We consider a close of games where the payoffs attainable by a coalition of
players depend on the attributes of the members of the coalition. The set of
attributes A is given as a compact metric space with metric d. Let 4* = | JI_, A",
where A" is the t-fold Cartesian product of A. An element x in A is a list of
attributes of a t-member coalition.

A characteristic function V* is a function on A*, which assign to each t-vector
o=(ty,..., o)A (t=1,...,n) a nonempty closed subset, V*(x), of R’ with the
following properties:

* Themixture of a continuum of players and finite coalitions may raise the question of how we should
interpret the individual player relative to the total player set. In the present approach the individual
player remains the same as in finite models while the total plaver set is approximated by
a continuum. Mathematically, cutcomes of cooperation of finite numbers of players are aggregated
into outcomes for the total player set by measurement-consistent partitions, to be defined presently.
In the traditional approach to a continuum game, where coalitions are of positive measure, the
notion of the individual player becomes vague. For more discussion of these issues, see Kaneko—
Wooders (1986, 1989) and Hammond-Kaneko—Wooders (1989).
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(Comprehensiveness): if xe V*(x) and yeR" with y < x, then ye V¥*(x);
(Nontriviality): {xeV*(ay,...,a,): x, >sup V¥a,) for k=1,...,¢} is a nonempty
bounded subset of R";
(Anonymity): V*(agyy-- - Xy = {(Xgqays-- -+ Xog): (X150 X)JEV*(@y,... )} for
all permutations 6 of {1.2....,t}.

The characteristic function ¥'* assigns a set of attainable payoffs to each list of
attributes. The only unfamiliar condition on our context is anonymity, which
means that the characteristic function V* is invariant with respect to permuta-
tions of attributes.

From closedness, comprehensiveness and nontriviality, it follows that there 1s
a real-valued function M(x) with domain A such that V*(x) can be written as
V*(a) =(— oo, M(a)] for any xe 4. We define

V(i) = {xeW e, ... 0k X, > M) for i=1,....1}
for all (%y,...,2)ed"and t=1,...,n

The function V* (a,,...,a,) gives the set of individually rational payofl vectors,

We require an additional continuity condition. First, let d* denote the sup
metric on each A' (1 <t <n), given by d*((x,,....2), (f4,.... ) = max, d(z, f,)
for any (a,,....a,), (B,...., 8, )eA". The t-dimensional Euclidean space R’ is also
endowed with the sup metric, denoted by d'. Let d}; be the Hausdorff metric for
compact subsets of R', that is, for compact subsets T, W of R',

(T, W) = max [maxd'(x, W), maxd'(T, y)],

xeT ye

where d'(x, W) = min d(x, y) and d'(T, y) = min d*(x, y). We make the assumption:
yeW xeT

(Continuity): ¥* is a continuous function on each A" (t = 1,...,n).

Since the attribute space A is compact and V* (x) = {M(2)} is continuous on A,
M{(x) has a minimum. Thus we have

min M(x) = min max V*(2) > — oc. (2.1)
aed aEA

A game with a continuum of players and finite coalitions is determined by an
attribute function, which ascribes an attribute (a point on attribute space) to each
player in N. The payoff set of a coalition is defined as the value of the
characteristic function determined by the attributes of the members of that
coalition. Specifically, an attribute function y is a Borel measurable function from
N to A. The game V determined by the attribute function y is defined by

V(S) = V*((i,),.... 7)) for all S= {i,,...,i,}eF. (2.2)
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Note that by anonymity V(S)does not depend upon the choice of ordering of the
members of §.

The continuum player set is consistently connected to finite coalitions through
measurement-consistent partitions. A partition p of N into coalitions is measure-
ment-consistent iff for any positive integer k < n,

N,= | ] Sis a measurable subset of N; and? each N, has a

Sep
|5 =k

partition, consisting of measurable subsets {N,,,.... N}, with the

following property: there are measure-preserving isomorphisms

WyysWizs- sty from Ny to N,y ..., Ny, respectively, such that y, , (i)

is the identity map and {y,,(i),. .., ¥ (i)} ep for all ieN, ,.* (2.3)

Let 1I denote the set of measurement-consistent partitions.

Note that (2.3) implies that for any Sep with |S|=k we have
S={Yy1(i).... ()} for some ieN,,. Thus, for each integer k, the set N,
consists of all the members of k-player coalitions and N,, consists of the '™
members of these coalitions. The measure-preserving property of the isomor-
phisms from N, to N, (t=1.....k} expresses the idea that coalitions of size
k have as "many” (i.e. the same measure) first members as second members, as
many second members as third members, etc. Figure 1 provides a schematic
illustration.’

An outcome for the entire continuum game is defined as follows. First we
consider a measurement-consistent partition p of the entire player set N. A payoff
h for N is feasible iff each coalition in p can achieve its part (h,),_¢ of h. Thus we
define the outcome set H(p) relative to p by

H(p) = {he L(N, RY: (h(})),.s€ V(S) for all Sep}, (2.4)

where L(N, R) is the set of measurable functions from N to R. Note that H(p) # &

for any partition p since, from comprehensiveness, the constant function h, given

by h(i) = min M (x) for all ie N, is in H(p). The entire outcome space is denoted by
acA

| ) H(p) by H.

pell

* | 8| denotes the number of plavers in the set §.

* A function i from a set 4 in B to a set Bin B is called a measure-preserving isomorphism from A to
Biff{i)yis 1 to 1, onto, and measurable in both directions, and (ii) w(C) = p(y(C)) for all C = A with
CeB.

* The above definition of a measurement-consistent partition may appear to play a minor or
negligible role. Indeed, the measure-preserving isomorphisms y, from N to N will not explicitly
appear in this paper. Nevertheless, measure-preserving isomorphisms and measuremeni-consisi-
ency are hidden in Lemma 4.1. Moreover, the general existence of a measurement-consistent
partition and the further application of the f-core theory to market economies crucially depends
upon the above definition (see Kaneko—Wooders (1986, Lemmas A.2 and 31)).
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Fig. 1.

The outcome set H is not necessarily closed; limits of sequences in H are not
necessarily in H.° We extend the outcome space H by adding some idealized
outcomes to the space H so that the new space is closed with respect to a suitable
concept of convergence. Here we define the extended outcome set H* by

H* = {he (N, R): for some sequence {h"} in H, {h"} converges
in measure to h}, (2.5)

where “convergence in measure to h” means that for any &3>0,
w({ie N:|h'(i) — h(i)| > &}) =0 as v— oo, Note that H(p) < H = H* for all pell.
We call an element in H* simply an outcome.

Let h be a function in L(N, R). We say that a coalition § in F can improve upon
hif for some ye V(S), v, > h(i) for all ieS. The f-core of the game V' is defined to be
the set C .

C, = {he H*: no coalition in F can improve upon hj. (2.6)
An outcome h in the f-core C is stable in the sense that no coalition can improve
upon h, and it is approximately feasible in the sense that h is almost sustained by

feasible outcomes in H. Except for this approximate feasibility, the core notion is
the same as in finite games.

3 The Nonemptiness of the f~Core

To state the main result of this paper, one more condition 1s required. The
condition states that if a player receives a larger payoff in a coalition than his
individually rational payoff, then he can transfer some part of his payoff to other

& An example for such nonclosedness is given in Hammond-Kaneko-Wooders (1989).
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players at a given constant rate (which may be very small). Formally, the
characteristic function V* is said to be strongly comprehensive iff thereisa b >0
such that for any (o,,....,2)ed" (1<t<n) and any k (l<k<t), if
xeV*(a,,...,2,) with x, >max V*a)= M(x,)., then, for any ¢ with
0 < ¢ < x, —max V*(z,), veR', defined by its components

o PR if i=Fk
b= {x, +be  otherwise, G.1)

belongs to V¥*«,,...,a,).

In the figure above, from point x, point y can be reached by the transfer, at rate
b, of a part of the payoff of player 1 to player 2.

We now state our main result, which will be proved in Section 4.

Theorem: Assume that the characteristic function V* satisfies Strong Compre-
hensiveness. Then any game (N, V) determined from V* and an attribute function
7 has a nonempty f-core.

The following two examples illustrate applications of this Theorem, and how
we obtain the nonemptiness of the f-core in a continuum game.

Example 3.1: (A labour market).
Our first example concerns firms and workers —a labor market. All firms have the
same production possibilities and all workers are substitutes for each other,
A firm with zero workers can produce nothing. A firm with 1 worker can produce
$1.00 worth of output, and a firm with 2 workers can produce $3.00 worth of
output, that 1s, there are increasing returns to scale up to two workers. A firm
cannot gain from having more than two workers. An unemployed worker can
produce nothing.

If there is only a finite number of firms and workers, the core of the game may
be empty. For example, consider the case of 2 firms. If there are 3 workers, the
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core is empty, while if there are 4 or more workers, the core is nonempty. Now
suppose that there are 100 firms. If there are 200 or more workers, the core is
nonempty, while if there is an odd number of workers smaller than 200, the core s
empty. Now suppose that the number of workers is 181. In an efficient state, 90
firms hire two workers and one firm hires the remaining worker. At least half the
workers hired by the first 90 firms receive no more than $1.50. The 91st firm and
its one worker produce a total of $1.00-worth of output. If the 91st firm hires an
additional worker, that firm could produce $3.00 worth of output. In this case,
even if the firm pays slightly more than $1.50 to the new worker, the firm and its
first worker can be better off. This implies that the core is empty. Note that this
argument does not apply to the case of 100 firms and 180 workers.

To illustrate our formalism and the independence of the core of a large game
from the exact numbers of players, we describe the example more precisely. The
attribute space consists of two points, say 4 = { £ w}. The bound on coalition sizes
can be taken as n = 3. The characteristic function V* is defined on lists contained
in | J2., A" and is given by

V*(f,w,w) = {xeR% x, + x, + x3 < 3};and V*(f,w) = {xeR* x; + x, < 1}.

All other (essentially different) lists of attributes have a total sum of values equal
to zero. Letting the total player set N be the interval [0,2.81), an attribute
function y is given by

9(i)=f forie[0,1) and y(i)=w forie[l,2.81).

The proportional distribution of firms and workers remains the same as that in
the above finite example. There is a measurement-consistent partition assigning
two workers to each of the firms in [0, .903) and zero workers to the other firms.
Such a partition supports a core payoff giving each of the workers §1.50 and each
of the firms $0.00. (In this example the approximation of taking the closure H* of
H is not necessary.)

In the finite case, the emptiness of the core is derived from the behaviour of the
firm having one worker. Such a firm disappears in the continuum game, because
thereis no distinction of odd and even numbers of workers. Even in the finite case,
the effect of the last firm becomes less significant as the economy becomes large,
suggesting the nonemptiness of approximate cores of large finite games’ shown in
Wooders (1983) and other papers. The f-core is the limit case of such finite
approximate cores.

7 Shapley and Shubik (1966) showed the nonemptiness of approximate cores of large economies with
quasilinear utilities. Wooders (1983) introduced the idea that large games with many players and
effective small coalitions have nonempty approximate cores; this idea has now been developed in
a number of papers.
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Example 3.2: (Assignment games)

An assignment game with a continuum of players is formulated as follows. Let
{A;.A,} bea partition of 4; A, and A4, are the sets of attributes of the buyers and
the sellers respectively. Correspondingly, the total player set is divided into the set
N, of players with attributes in 4, and the set N, of players with attributes in A4,
that is, an attribute function y satisfies y(N,)= 4, and y(N,) = A,. Here the
bound on essential coalition sizes is 2. Let ¥* be a characteristic function on
A* = Au(A x A) with the property that

V*(ory, 25) = V¥(oxy) x V¥ar,) if @y, 2,64, or oy, 2,€A4,.

This states that a coalition consisting of a pair of players on the same side of the
market can do no better than each of the players separately. The game deter-
mined by V* and the attribute function y is given by (2.2).° We now have an
extension of finite assignment games, as in Shapley-Shubik (1972) and Kaneko
(1982), to ones with a continuum of players. Strong comprehensiveness, however,
does not allow us to apply the above nonemptiness result to the direct continuum
extension of Gale-Shapley (1962).

This example illustrates the application of our framework to assignment
games, The ideas inherent in the example apply to generalizations of the
assignment games, such as combinations of assignment games, as long as the sizes
or permissible coalitions are bounded.

4 Proof of the Theorem

To prove the nonemptiness of the f-core of a game (N, V), we approximate the
game by sequences of games with types. For each of the games with types, from
Kaneko-Wooders (1986) there is an outcome in the f-core. We take the limit of
these f-core outcomes to obtain an outcome in the f-core of the original game.
The existence of the limit is proven by a variation of Ascoli's Theorem.

We will use the following facts. Since the attribute space 4 is compact,
continuity implies that the individually rational part ¥* of the characteristic
function V* is uniformly continuous on each A'. Also, the function ¢(x,,... ) =
max{max, _;_.x;: (x,...,x)eV*(x,,...,2)} is a continuous function on
A'(t=1,...,n). Since 4 is compact, i is bounded for each t = 1.....n. This and
(2.1) imply that individually rational payoffs are uniformly bounded. Let K de-
note an upper bound.

First we will refer to the nonemptiness result for type games obtained by
Kaneko-Wooders (1986). The game V determined from the characteristic func-
tion ¥* and an attribute function t is said to have finite types iff t(N)is a finite set
and p(t™ () > 0 for all ze(N).

® For a more specific example, see Kaneko—Wooders (1986, Example 2.2).
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Lemma 4.1 ( Kaneko—Wooders (1986, Theorem 2)): Assume that the game
V determined by V* and t has finite types. Then the f-core of the game V is
nonempty. Furthermore, there is an outcome h with the equal treatment property
in the f-core, i.e. 7(i) = 7(j) implies h(i) = h(}).

We will approximate the game (N, V) by a sequence of type games. First we
approximate the attribute function y by a sequence of attribute functions taking
only finite values. Let {6"} be a decreasing sequence of positive numbers with
lim é* = 0. Since the attribute space A4 is a compact metric space, for each v there is
a finite (not necessarily open) covering { U*(«))}'. , of A such that the covering is
a partition of A and, for all t, U*(}) contains «; and is contained in a ball around
o) of radius less than ¢",

We define the vth player set N'=| ).y "(U'(%)), where T":={t:
u(y MU (%)) > 0}. Then u(N*)=pu(N) for all v>1. Let N* =) ,N". Then
p(N ©)= u(N). Define the vth attribute function y*: N* — A by

(@) =af if p(i)eU"(a). (4.1)

We now have a sequence of games {(N*, V")} 2 ,, where V" is the game deter-
mined by ¥* and " for all v > 1, It follows from Lemma 4.1 that each game
(N, V") has an f -core outcome h* with the equal-treatment property. It holds that
the sequence {7"} converges uniformly to the original attribute functiony on N*.

By the remark at the beginning of this section, V'* is bounded with an upper
bound K. Since k" is an outcome in (N ™, V"), h” is almost-everywhere bounded by
K. If {h"} is not uniformly bounded, we change each h" to k", defined h'(i) = h*(i) if
h'(i) < K and h'(i) = K otherwise. Then h" belongs to the f-core of (N, V") for all
vand {h"} is uniformly bounded. We assume that {h*} itself is uniformly bounded.

The sequence {(N™, V")} approximates the original game (N, V). We will show
that there exists a convergent subsequence of {h'}. For this purpose we will use
a variation of Ascoli's Theorem, stating that if a sequence of functions on
a compact set satisfies equi-continuity and uniform boundedness, then there
exists a uniformly convergent subsequence of the sequence. Thus we first show
that the sequence {h"} has a kind of equi-continuity property.

Lemma 4.2: The sequence {h*} satisfies the following property:

for any & >0, there is a d > 0 and an integer v, such that for any
i, jeN™ and v = v, d(y(i), y(j)) < 0 implies | h*(i) — h*(j)| <. (4.2)

Proof: We show the following:

for any &> 0, there is a 0 > 0 such that for all i, je N* and for all v,
d(y"(D), v*())) < 6 implies |h*(i) — h*(j)| < e (4.3)

Once this is proved, (4.2) follows: For any ¢ > (), there is a v, such that 6, < é/3 for
all v = v, which implies that for all v > v,,

d(y(i), o)) < 6/3 for all p(eU%()) (t=1,....1).
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Then it follows that for all v > v,,,
d(y(i), 7(j)) < 6/3 implies d(y"(i). y*(j)) < 0.

Indeed, d(y"(i), y" (7)) < d(y"(0). 2(D) + d(3(i), () +d(y(j), 7"(j) < 3(6/3)= 4. From
(4.3), we have (4.2).

Let us return to the proof of (4.3). On the contrary, suppose that the sequence
{h'} does not satisfy (4.3). Then we can assume without loss of generality that
there are sequences {i,} and {j,} in N such that

d(y*(i,), v*(j,) converges to 0 as v— o0 and;
for some ¢ >0, h*(i,) — h*(j,) > c and h*(i,) > max V"({i,}) + ¢ for all v.

Since V" is a type game, this supposition holds for all players of the same types as
i, and j,. We will derive a contradiction from this supposition.

Let g be a fixed number with 0 < & < be/12, where b is a positive constant given
by Strong comprehensiveness. We can assume without loss of generality that
O<b<l.

From continuity there is a v such that forall (x,,...,,_,)in A"~ (t <m)and for
H.“. X EI'I Vﬁ[als cee sy gs ]’rv“vj}:

V*(0y,....%_1,7"(,) has a vector y with |x, —y,| <eforallk=1,....¢.
(4.4)

Let such a v be fixed in the following.

Since h" is in the f-core of the game (N*, V"), there is a sequence {g*} of
outcomes, feasible in the sense of (2.4), such that {¢*} converges to h* in measure.
For sufficiently large /, the measure p({ie N *:|h"(i) — g*(i)| = &}) is sufficiently
small relative to the measure of each type in N*. We take A so that
u{ieN=:|h* (i) — g*()| = &}) < smin {p(U"): p(U"))>0and t=1,...,1}.

Since g* is feasible, there is a measurement-consistent partition p of N® such
that (g*(i)),.c€ V"(S)for all S in p. By the choice of 4, we can find a coalition S in p so
that |h'(i) — g*(i)| < & for all ie S and so that some member i* in S is of the same
type as i". We can also find j*, not in §, of the type of j, with |h*(j*) — g*(j*)| <e.

Now consider the new coalition T'= (S — {i*})u {j*}. By (4.4) there is a vector
(¥)ier in V. (T) such that

g% () — y;| < eforall ieT— {j*} and |g*(i*) — y;*| <=
Define a vector (z;),.; by

X LV_,:'—EI.""} if f=j*
|y, +bec/3  otherwise.
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Since (y,);,.r is in ¥*(T), by strong comprehensiveness the vector (z)),.y isin V*(T).
Now we show that this(z,),_. dominates the original (h"(i));.» which means that h"
is not in the f-core of the game (N, V"), a contradiction. Thus we have (4.3). The
dominance is shown as follows: For ie T with i # j*,

z;=y;+bc/3 > g*(i) + be/3 — ¢
> (i) + be/3 — 28 = h*(i) + be/3 — 2be/12 > h(i);

and for i = j*,

Zp=V¥p— Cjn"l3 }gi{f*] = E,u'll:i =&

> (i*)—c¢/3 —2e>h"(j*) +c—¢/3—2¢ (by h'(i,) — h'(j,) > ¢)
= h*(j*) + 2¢/3 — 2bc/12 > h*(j*).

The following lemma, a variation of Ascoli's Theorem, will be proven after the
completion of the proof of the Theorem.

Lemma 4.3 The sequence {h'} has a uniformly convergent subsequence.

For simplicity we assume the sequence {h'} itself converges uniformly. Denote
the limit function of the sequence {h'} on N * by h*, i.e. h*(i) = lim h*(i) for all i in
N=. We extend the function h* to the domain N as follows: Define

e (W@ if ieN®
5 {K if ieN — N, e

where K is the upper bound of the individually rational payoffs given at the
beginning of this section. For the nonemptiness of the core of the game (N, V), 1t
suffices to prove that 1) no coalition S in F can improve upon the function h**;
and 2) h** is an outcome of (N, V), L.e. h**eH*.

Claim I: No coalition SeF can improve upon h**.

Proof: On the contrary, suppose that some SeF can improve upon h** with
yeV(S). Then § = N™ by (4.5). Since {y"} converges uniformly on N* to y, it
follows from continuity that there is a v, such that for any v > v,, V"(S) contains
a vector z with z, > (y, + h*(i))/2 for all i€ S. Since h* converges uniformly to h* on
N*, there is a v, such that for all v > v,, (y; + h*(i))/2 > h"(i) for all ieS. Therefore
we have, for any v=max(v,,v,), z; > h'(i) for all ieS. This contradicts the
supposition that h" is in the f-core of (N, V).

Claim 2: The function h** is an outcome of the game (N, V), 1.e. i**cH*,
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Proof: Since u(N) = u(N ©), it suffices to show that h* is an outcome of the game
(N=, V).

Since {h*} converges uniformly to h* on N ™, it converges also in measure to h*,
1€ for all ¢ >0,

u({ie N=: |h*(i) — h*(i)| > £}) =0 (v 0). (4.6)

Since each h" s in the f-core of (N, V"), there is a sequence {h"*} F_, such that
h**e H"(p"*).i.e. h** is feasible with respect to a measurement-consistent partition
p*forallA=1,...,and {h**} converges in measure to h*. Hence for each v, there is
a A, such that forall 2 = 4,

u({ieN=: [h*4(i) — k()| > 1/2"}) < 1/2". 4.7)

Since the number 4, is determined for each v, we have the “diagonal” sequence
{g"} = {1"*}. It follows from (4.6) and (4.7) that the sequence {g"} converges in
measure to h* on N*. Indeed, we have, for all 2> 0 and all v with 1/2"* < ¢/2,

u({ieN=: |g"()) — h*(i)| > &})
< ({ieN™: |g"(i) = h"()| + | h*(i) — h*(i)| > &})
< p({ieN™: |g"(D) — k()] > &/2}) + u({ieN ©: |h*() — h*(i)| > &/2})
< ul{ieN=:g*() — ()| > 1/2"D)+ u({ie N™: | h*(i) — h*(i)| > &/2})
< 1/2" + p({ie N™: |h*(i) — h*(i)| > &/2}) =0 (v— 0).
We denote a measurement-consistent partition {p**'} corresponding to {h'*}
by q".
Each g* = h** is feasible in the type game (N *, V") but not necessarily feasible
in the game (N ™, V). Thus we prove that there is a sequence {/,} such that f is
feasible in the game (N, V)foralls = 1,2,...and {f,} converges in measure to h*.

Let {£*'} be a sequence of positive numbers with lim_&* = 0. Take an arbitrary &°.
Define f} by

U =g"()—¢& forallieN™.

Since the sequence {y*} converges uniformly to y on N*, from continuity of
V% and comprehensiveness there is a v, such that for all v> v,

xe V" (§) and SeF imply (x;, — &), V(S). (4.8)
It follows from (4.8) that for all v > v_and § in ¢°,
(9"(7))jes€ V*(S) implies (f'()es€ V(S),

that is, f"e H(g").
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Since we can assume that v,— oo (s— o), the sequence {f*} converges in
measure to h* by definition. This implies that h* is an outcome of the game
(N=F). O

Finally we prove Lemma 4.3.

Proof of Lemma 4.3: Put I' = y(N ™). Since A is a compact metric and since I is
a subset of A4, the space I is seperable. (See Royden [1963, p. 130, Proposition
6 and p. 163, Proposition 13]) That is, there is a countable subset
I° ={a,u,,...) of I' such that the relative closure of I'” is I itself.

Since 7(i)=7(j) implies h*(ij)=h"(j), we can define functions g* on I' by
g"(2t) = h'(i) for iey '(x) and v=> 1. Then we prove that there is a uniformly
converging subsequence of the sequence {g*}.

Consider the sequence {¢'(x,)} of real numbers. Since the sequence {g"(«,)} is
bounded, {g*(«,)} has a convergent subsequence {g**(x,)}. Similarly, we can find
a convergent subsequence {g**(x,)} of {g'"(x,)}. Repeating the same argument,
we can construct a sequence of subsequences:

{g"(x)} = {g" (@) g"*axy)s.. . }
{g7"(22)) —{ 2‘{1;} g*(as),..-}
{g°¥(2)} = {g* (23), g*2(@3)- .. }

..........................

....................

These subsequences are chosen sequentially so that {g*'(x,)} is a convergent
subsequence of {g%*  "(x)} (k=2,3...).

Consider the “diagonal” subsequence {f*} = {¢"*}. Then, by the construction
of the sequences, at each point a,el™, {f"(«,)} is a convergent sequence of reals.

We now show that {f*} is a convergent sequence of function in the sup norm.
Let £ > 0 be given. Condition (4.2) states that for some >0 and v, v= v, and
d(+(i), v(j)) < & imply | h*(i) — h*(j)| < &/3. This together with the definition of {f"}
implies that for some v,,

v > v, and d*(x,a') < é imply |f () — f* ()| < &/3. (4.9)

Consider the family {B,(«,)}” , of open balls in A with radius d centered on
a,€1° Since I'” is a dense in I', this family { By(x,)},~ , is an open covering of I In
facL {B;(a,)};= 1 forms an open covering of the closure of I relative to A. Since the
closure of I" is compact, the family {B,(x,)}= , has a finite subcovering, say
{By(B))5_,, of the closure of I'.

Since {f*(B,)} converges for each t=1.... .k, there is a v, such that for all
V, A = V3

If'(B) —fAB)l <egf3forallt=1,....k (4.10)
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Let vy=max(v,,v,). For each ael’, we can find a B, in {f,,....6,} with
d(z, f,) < d. Then, from (4.9) and (4.10), for any ael,

VA2 va=|f"(a) — ()] < |f () — £ (B,
+ I (B) =SB + 1B — fH(2)] < 3ef3) =e. (4.11)

Therefore the sequence {f"} is a Cauchy sequence in the sup norm.

For each point e, {f*(x)} is also a Cauchy sequence of real numbers, which
implies that {f*(«)} converges to some real number f*(a). Letting 1 — o0 in (4.11),
we have,

there is a v, such that for any aeI", v > v, implies |f*(2) — f*a)| <& (4.12)

This means that the sequence {f*} converges uniformly to [*,

Since the sequence {f"} is a subsequence of {g*}, we can denote {f*} by {g"},
and consider the corresponding subsequence {h"} of {h*}. Then the sequence
{h™} converges uniformly on N to h* defined by h*(i) = f*(y(i)) for all ieN*.
Indeed, it follows from the definition of g* and (4.12) that for any & > 0, there is an
s, such that for any ie N® with y(i)=2 and s> 5,

|h() — h*(D)| = g™(2) — fH) | <e. O
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