
Journal of Mathematical Economics 11 (1983) 277-300. North-Holland 

THE EPSILON CORE OF A LARGE REPLICA GAME 

Myrna Holtz WOODERS* 

University of Toronto, Toronto, Ont., M5S IA1 Canada 

Received December 1981, final version accepted March 1983 

Sufficient conditions are given for large replica games without side payments to have non-empty 
approximate cores for all sufficiently large replications. No ‘balancedness’ assumptions are 
required. The conditions are superadditivity, a boundedness condition, and convexity of the 
payoff sets. 

1. Introduction 

Cooperative behavior lies at the very heart of economics and the 
fundamental concept of a cooperative social equilibrium is the core. 
However, the power of the core concept is limited by the fact that the non- 
emptiness of the core can be assured only in certain ideal environments. In 
this paper, it is shown. that all members of a class of games with many 
players and relatively few types of players have non-empty approximate cores 
and the approximation can be made better as the number of players 
increases. 

Since Shapley and Shubik (1966) first introduced concepts of approximate 
cores, a number of authors have demonstrated sufficient conditions for non- 
emptiness of approximate cores of large economies, cf. Kannai (1969, 1970), 
Hildenbrand, Schmeidler and Zamir (1973), and Khan and Rashid (1975). 
With the exception of Khan and Rashid’s work, all these results deal only 
with the exchange of private goods; Khan and Rashid consider production 
with the firms exogenously given. Recently, this author obtained sufficient 
conditions for non-emptiness of approximate cores of large replica economies 
with a local public good and endogenous jurisdiction formation [Wooders 
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(1980)]. All these results are, of course, dependent on the particular 
formulations of the economies considered. 

In this paper we use the framework of n-person game theory. This 
framework is sufficiently general to accommodate a variety of departures 
from the classical model of a private goods exchange economy, including 
increasing returns, coalition production, and the presence of local and pure 
public goods. The following example illustrates a simple economic model to 
which the results of this paper can be applied. 

Suppose A=(l,..., u} is the set of agents in the economy and there are 
two goods, say x and y. Each agent is initially endowed with 1 unit of good 
x. A unit of good y is produced from a unit of good x, but the production of 
y requires input of x and also the joint effort of two agents. One agent, by 
himself, cannot produce any positive quantity of good y; he can only dispose 
of the initially endowed good. If three agents work together, some one of the 
agents only impedes the work of the other two. To formally define 
production technologies which are consistent with this description, let S be a 
non-empty subset of agents and let (SI denote the number of agents in S. 
Then define 

Y[S]={(x,y)ER2:x50, ys -x} if ISI is even, 

={(x,y)ER2:XS0, ys -x-l} if IS\ is odd. 

In fig. 1, the production technology sets for both cases are depicted. The 
utility function of agent i is ui(x, y) =y for each i; agents do not derive any 
utility from the initially endowed good. From this economic data, for each 
coalition of agents S we can define a set V(S) c R* where V(S) represents the 
utility levels achievable by the members of S using their own initial 
endowments. Define 

V(S)= u~RA+:~&ti~IlSl 1 if ISI is even, 

&ti’4/S-l if ISI is odd. 

[We follow the convention that coordinates of V(S) not associated with 
members of S are unrestricted.] The pair (A, I’) is a game (a formal definition 
of a game is provided later). It is easy to see that for this simple model, if ii is 
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in V(S), then the members of S, using only their own initial endowments, can 
produce {yi: ie S) such that u’(y’) =u’ for each ie S. In fig. 2, the maximal 
sum of the utilities achievable by the members of a coalition S, using their 
own resources is sketched (ignoring indivisibilities of agents). Some features 
of this model to note are: (1) V(S) is convex for each coalition S, and (2) 
V(S)n V(S) c V(SuS’) for any disjoint coalitions S and s’, i.e., V is 
superadditive. Observe that even though preferences are convex, production 
sets for each coalition S are convex, and V(S) is convex for all coalitions S of 
agents, for n > 2 the core of the game is non-empty if and only if n is an even 
number. As our main theorem states, however, given any s>O, for all 
sufficiently large n, an approximate s-core is non-empty. 
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A simplifying feature of the above example is that the game (A, V) is one 
with side-payments, i.e., for each non-empty subset of agents S there is a real 
number, say u(S), such that 

UE V(S) if and only if c U’ sv(S). 
is.7 

It is easy to generate examples of games without side-payments to which our 
results apply. For example, for each non-empty subset S of A, define 

when ISI is even, 

ti~R*:~;s(ti’)~K(IS[-1) 
1 

when ISI is odd, 

where K is some positive constant. In Shubik and Wooders (1982a, b), we 
provide additional examples of games, including ones generated by models of 
economies, to which our results can be applied. We remark that Scarf (1967) 
has shown that ‘convex’ economies have non-empty cores but this result 
depends on the economy being a private goods exchange economy. 

In this paper, we develop the concept of a sequence of replica games 
without side-payments (i.e., with not-necessarily-transferable utilities). More 
specifically, we consider a sequence of games (A,, I$):= I where A, is the set 
of players of the rth game, consisting of r players of each of T ‘types’, and V, 
is a correspondence from subsets of A, to RrT. Given any coalition S 
contained in A,, the set K:(S) describes the utility vectors achievable by the 
members of S. We assume that A, c A, + 1 for all r. The sequence is then said 
to be a sequence of replica games if: (a) all players of the same type are 
substitutes for each other, and (b) Vr(S) does not ‘decrease’ as r increases; i.e., 
if S c A, and r’ zr, then the projection of I/,(S) on the subspace associated 
with the members of S is contained in that of V,.(S).’ Simple and quite 
general conditions are demonstrated under which, given any E > 0, there is an 
r* such that for all rzr* the game (A,, V,) has a non-empty s-core. 

Given a game (A, V), a payoff u E R * is in the s-core of the game if u is 
feasible, i.e., UE V(A), and u cannot be ‘s-improved upon’ by any coalition of 

‘This definition of a sequence of replica games is sufftciently general to include games derived 
from sequences of private goods economies as in Shubik (1959) and Debreu and Scarf (1963), of 
coalition production economies as in Boehm (1974), of economies with local public goods as in 
Wooders (1980). It does not include the games derived from sequences of economies with a 
pure public good, as in, for example, Milleron (1972) because the method used there of 
‘replicating’ the economy is different than that used in the other papers references [this is further 
discussed in Wooders (1981)]. 
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players, i.e., there does not exist an S c A and u’ E V(S) such that P > tP + E 
for all players (t, 4) in S. 

The conditions we impose on sequences of replica games to ensure non- 
emptiness of s-cores for all sufficiently large replications r are that the games 
are superadditive, that V,(A,) is convex for all r, and a ‘per-capita 
boundedness’ condition. For the present, we remark that for games with side- 
payments the per-capita boundedness assumption puts an upper limit on the 
average utility obtainable by the players of the game.2 We also remark that 
our conditions are sufficiently general to include, as a special case, sequences 
of games derived from sequences of replica economies as in, for example, 
Shapley and Shubik (1966). 

The properties of superadditivity and per-capita boundedness arise in 
sequences of games generated by a variety of economic models including 
ones with coalition production as, for example, Boehm (1974) and Bennett 
and Wooders (1979), ones with local public goods, as in Wooders (1980), 
and, of course, private goods exchange economies as in Debreu and Scarf 
(1963). However unless the economies are ones with transferable utility, the 
payoff sets of the derived games may well not be convex. In spite of this fact, 
it appears that the techniques and results of this paper can be useful in 
application when the convexity requirement is not satisfied. 

The role of convexity in the proofs is to obtain the result that the equal- 
treatment payoffs3 of the games converge to those of the associated balanced 
cover games.4 Let E(r)cRT and E(r)c RT represent the set of equal- 
treatment payoffs for the rth game and its balanced cover, respectively. 
Although the cores of the balanced cover games may well not contain any 
payoffs with the equal-treatment property, given s>O, there is an r* and a U 
in E(r) such that for all r 2 r*, u is in the a-core of the balanced cover game 
of the rth game were, for each type t and for all 4, u’q =i&. From this type and 
the fact that E(r) converges to E(r), our main result follows. Consequently, 
the property we require to obtain our result is that E(r) converges to E(r); 
convexity of V,(A,) for all r is one way to obtain this convergence. 

In considering sequences of games derived from sequences of replica 
economies, some assumptions which can be used to ensure that E(r) 

converges to E(r) are those of an infinitely divisible good with ‘overriding 
desirability’,5 with which everyone is initially endowed.6 Informally, these 

‘In the side-payments case, this is simply the assumption that for all r, u,/r SK for some 
constant K, where V, is a real number such that E(A,) = {ria R”‘:‘&,,,,,, 17’~ 5 u,}. 

3A payoff UE I$(&) is one with the equal-treatment property if, for each t and all 4 and 4’. 
ufq = utq’ - players of the same type receive the same payoff. 

4With each game, we associate a balanced cover game. For the present, we note that the 
balanced cover game has a non-empty core. 

‘This term is taken from Broome (1972). 
6These assumptions have become standard in a variety of contexts, cf., Mas-Cole11 (1977) and 

Kaneko (1983). 
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assumptions ensure a certain degree of ‘side-paymentness’ of the derived 
games. For example, these assumptions are made in Wooders (1980), and, 
for the sequence of games derived from that model, the required convergence 
can be obtained even though the payoff sets are in general not convex. 

To prove our main theorems, we require another theorem and several 
lemmas which are themselves of interest. The theorem is that if there is a 
‘minimum efficient scale’ for coalitions and ‘quasi-transferable utility’ 
(informally, a certain degree of ‘side-paymentness’), then for all sufficiently 
large replications r, every payoff in the core of the rth replica game has the 
equal-treatment property. The lemmas which appear particularly useful are 
ones relating the payoff sets of the games to each other and to those of the 
balanced cover games (Lemmas 3 and 5) and one showing that the sequence 
of equal-treatment payoffs of the balanced cover games, E(r), has a limit 
(Lemma 8). These results have already been applied in other contexts. In 
Shubik and Wooders (1982a, b), they are used in showing non-emptiness of 
certain approximate cores when the convexity assumption used in this paper 
may not hold.7 In Kaneko and Wooders (1982), they are used to obtain 
strong forms of non-emptiness of approximate cores of sequences of 
partitioning games (generalizations of assignment games). We remark that 
none of these lemmas require convexity. 

Before concluding this introduction, we briefly relate our results to other 
results concerning non-emptiness of cores and approximate cores of games. 

Bondareva (1962,1963) and, independently, Shapley (1967) introduced the 
concept of ‘balancedness’ for games with side-payments and showed that a 
game with side-payments is balanced if and only if it has a non-empty core. 
Scarf (1967) extended the concept of balancedness to games without side- 
payments and showed that if such a game is balanced, it has a non-empty 
core. Other authors have demonstrated other conditions sufficient to ensure 
non-emptiness of the core of a game. In particular, some variations of the 
concept of balancedness have been studied and shown to ensure non- 
emptiness of the core; cf. Billera (1970, 1971). Shapley (1971) introduced the 
concept of a convex game and showed that convex games have non-empty 
cores; these results have been extended to games without side-payments by 
Vilkov (1977).8 Shapley and Scarf in (1974) showed that games derived from 
a certain class of economies with indivisibilities are balanced. Numerous 
other results have been obtained showing that games derived from particular 
classes of economies have non-empty cores; however, numerous results have 
shown that games derived from economic models may well have empty 
cores, cf. Shubik (1959, 1979), Shapley and Shubik (1966), Shapley and Scarf 
(1974), and Greenberg (1978). 

‘These results are discussed further in the final section of this paper. 
‘Convexity of V(A) does not imply that the game (A, V) is a convex game. 



M. Holtz Wooders, Epsilon core of a large replica game 283 

We remark that other authors, in particular Weber (1979) and Ichiishi and 
SchZffer (1979) have shown conditions under which games without side- 
payments and with measure spaces of agents have non-empty approximate 
cores. These authors have, however, initially assumed the games were 
balanced, using extensions of the concept of balancedness introduced by 
Kannai (1969) and Schmeidler (1967). In contrast, we require no assumptions 
of balancedness. 

The paper is divided into several sections. In the next section, we introduce 
some notation. The third section consists of a statement of the model and 
results. An informal sketch of the proofs is contained in section 4, and the 
proofs are carried out in section 5. Section 6 concludes the paper. In the 
appendix, a technical result used in the paper is developed. 

2. Notation 

The following notation will be used: R” is the n-fold Cartesian product of 
the reals, R; R; is the non-negative orthant of R”; given Kc R", int K 

denotes the interior of the set K; given a finite set S, ISI denotes the cardinal 
number of S; and RS is R” where IS[=n. Define 1 =(l, 1,. . ., 1) E R”. Given 
XE R”, we denote the (sup) norm of x by /(x(1 where llxll =maxi a&x,), and 

ab(x,) denotes the absolute value of Xi E R’. 
Given x and y in R”, we write x2 y if xi 2 yi for all i; x > y if x 2 y and 

x#y; and x~y if xi>yi for all i. 

3. The model and the results 

A game without side-payments (or simply a game) is an ordered pair (A, v), 

where A, called the set of players, is a finite set and I/ is a correspondence 
from the set of non-empty subsets of A into subsets of RA such that: 

(i) for every non-empty SC A, V(S) is a non-empty, closed subset of RA 
containing some member, say x, where x&O; 

(ii) if x E V(S) and YE RA with xi = y’ for all i E S, then y E V(S); 
(iii) V(S) is bounded relative to R:, i.e., for each S, there is a vector 

k(S) E R*, where, for all x E V(S), xi 5 k’(S) for all i E S. 
(iv) if XE V(S) then there is a YE V(S) n R$ such that yzx. 

The above definition differs from the usual definition of a game in that 
we’ve required each payoff set V(S) to contain a strictly positive member and 
in that we’ve imposed property (iv). Both these requirements are simply for 
technical convenience.’ 

‘The property that there is an x E V(S) wilh x g0 can be obtained by a parallel transformation 
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Let (A, V) be a game. A vector x E R*, where the coordinates of x are 
superscripted by the members of A, is called a payoff for the game. A payoff 
x is feasible if XE V(A). Given a payoff x and players i and j, let a[x; i, j] 
denote the payoff formed from x by permuting the values of the coordinates 
associated with i and j. Players i and j are substitutes if: for all SC A, where 
i $ S and j $ S, given any x E V(S u {i}), we have o[x; i, j] E V(S u (j}); and, for 
all SC A, where iES and jES, given any XE V(S), we have cr[x; i, j] E V(S). 
The game is superadditive if whenever S and s’ are disjoint, non-empty 
subsets of A, we have V(S) A V(S) c V(SuS’). It is comprehensive if, for any 
non-empty subset S of A, x E V(S) and y 5 x, then y E V(S). 

Given a game (A, I’) and ~20, a payoff x is in the s-core of (A, V) if: (a) x 
is feasible, and (b) for all non-empty subsets S of A, there does not exist an 
x’ E V(S) such that x’$ x + cl. When E =O, we call the s-core simply the core. 
When (A, I’) is comprehensive, condition (b) is equivalent to the condition 
that x + cl+ int V(S) and our definition of the s-core corresponds to that used 
by other authors, such as Weber (1979). When (A, V) is comprehensive and, 
in addition, E=O, the s-core is equivalent to the (exact) core in Scarf (1967). 

Given a game (A, V), define VP(S) by VP(S) = {x E RS: for some X’E V(S), x 
is the projection of x’ on RS}, where RS is the subspace of R* associated with 
the members of S. 

Let (A,, V,)T= r be a sequence of games where, for each r, A, c A,, i and 
A,={(t,q):tE{l,..., T}, 46(l)..., r}}. Write x=(x, ,..., x *,..., x,) for a payoff 
for the rth game, where xq =(x’~, . . . , xtq, . . . ,x’“) and xtq is the component of 
the payoff associated with the (t,q)th player. Given r and t, define [t], by 

Ctl, = ((4 4) E 4 : 4 E (1,. * ., r>}; the set [t], consists of the players of type t of 
the rth game, The sequence (A,, V,)$ 1 is a sequence of replica games if: 

(a) for each r and each t= l,..., T, all players of type t of the rth game are 
substitutes for each other;” 

(b) for any r’ and r” where r’<r” and any SC A,,, we have V:,(S) c V:,(S) 
(i.e., the set of utility vectors achievable by the coalition S does not 
decrease as r increases).” 

Let (A,, V,)F= 1 be a sequence of replica games. A payoff x for the game 

of the sets V(S) for a game without this property. Given that there is an x E V({i}) with ~$0, for 
the study of the core members of Y(S) for any non-empty subset S of A with negative 
coordinates are irrelevant. 

lOPlayers of different types might also be substitutes for each other; thus the requirement that 
(A,, VI) has one player of each type is not as restrictive as it might at first appear. 

“In an initial draft of this paper, we required that V;(S) = V;(S) - what a coalition S can 
ensure for its members is independent of the size of the game containing that coalition. This 
property is common for games derived from sequences of replica economies; cf. Debreu and 
Scarf (1963) and Wooders (1980). The weaker restriction, that when r’<r” we have 
VP.(S) c V;.(S), permits some ‘positive eternalities’ to benefit the coalition as the set of players is 
replicated. This is sufficient to permit our results. 
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(A,, V,) is said to have the equal-treatment property if, for each t, we have 
xQ’ =xtq” for all q’ and q”; players of the same type are allocated the same 
amount. The sequence of games is superadditive if (A,, V,) is a superadditive 
game for all 1. The sequence is per-capita bounded if there is a constant K 
such that, for all r and for all equal-treatment payoffs x in Vr(A,), we have 
x”rjK l2 - . 

Theorem 1. Let (A,, I/l)$I be a sequence of superadditive, per-capita bounded 
replica games where Vr(A,) is convex for all r. Then, given E > 0. there is an r* 
such that, for all rzr*, the s-core of (A,, V,) is non-empty. 

When a sequence of replica games satisfies the condition of Theorem 1, 
and, in addition, the games are comprehensive, we have equal-treatment 
payoffs in the s-core (where E>O) for all sufficiently large replications. Our 
next theorem provides a stronger result concerning equal-treatment payoffs 
in the E-cores. 

Theorem 2. Let (A,, V,)F= 1 be a sequence of replica games satisfying the 
conditions of Theorem 1 and, in addition, assume the games are comprehensive. 
Then, given E >O, there is a X=(X,, . . . , XT) E RT, such that x, is in the s-core of 
(A,, V,) for all suflciently large r, where x, is defined by its coordinates xLq =Xt 
for each (t, q) E A,. 

Part of the strategy of the proof of Theorems 1 and 2 is to construct other 
sequences of games with additional properties and to approximate the games 
in the original sequence by the constructed games. Since games having these 
additional properties are of some interest themselves, we introduce these 
properties here and state an additional result. 

We first review the concepts of balancedness and the balanced cover of 
a game. Let (A, V) be a game. Consider a family /3 subsets of A and let 
/Ii = {SE/I: iES). A family fl of subsets of A is balanced if there exist positive 
‘balanced weights’ ws for S in /3 with ‘&EBi ws= 1 for all ie A. Let R(A) 
denote the collection of all balanced families of subsets of A. Define 

p(A)= u n V(S). 
BE44 SEtJ 

Define 

P(S)= V(S) for all SC A with S# A. 

Then P maps subsets of A into RA and is called the balanced cover of V. The 

“We note that the per-capita boundedness assumption does not rule out the possibility that 
the sequence (V,(A,))z 1 is unbounded from above. 
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game (A, t) is called the balanced cover of (A, V). If the game (A, V) has the 
property that v(A) = V(A), the game (A, V) is balanced, and from Scarf’s 
theorem (1967) the core of the game is non-empty. 

A game (A, V) satisfies the assumption of quasi-transferable utility, QTU, if, 
given any subset S of A, when ~$0 and x is in the boundary of I/‘(S), then 

This is called the assumption of quasi-transferable utility because it has the 
implication that for any x %O, if x E VP(S) for some subset S and x’ E V’(S) 
where x’ > x, then there is an x” E VP(S) where x” B x - a property of games 
with transferable utility. The QTU assumption is equivalent to assuming that 
no segment of the boundary of VP(S) in RS, is parallel to the coordinate axes. 

Given a game (A, v) and any positive number 6, let (A, V’) be a game with 
the QTU property where, for all non-empty subsets S of A, we have 
V(S)c V’(S) and the Hausdorff distance (with respect to the sup norm) 
between V(S) and V”(S) is less than 6. l3 Then (A, V”) is called a &QTU cover 
of (A, V). In the appendix, we show that if (A, V) is a comprehensive game, 
then there is a comprehensive 6-QTU cover of (A, V). 

Let (A,, V,)F= 1 be a sequence of replica games, and let S be a non-empty 
subset of A, for some r. Define the vector SERB by the coordinates 
st=ISn[tlrI for each tE{l,..., T}; the vector s is called the profile of S. Define 
p(S) = s so p( .) maps subsets into their profiles. 

A sequence of replica games (A,, V,)z, is said to satisfy the assumption of 
minimum efficient scale (for coalitions), MES, if there is an r* such that, for 
all rlr*, given x E t(A,), there is a balanced collection b of subsets of A, 
with the properties that: (1) p(S) sp(A,,) for all SET and (2) XE &., I/(S). 
We call r* an MES bound. Informally, a sequence of games satisfies the MES 
property if all ‘increasing returns to coalition size’ are eventually exhausted. 

Theorem 3. Let (A,, I$):=, be a sequence of superadditive replica games 
satisfying the assumptions of QTU and MES with MES bound 9. For any 
r>r*, the core of the game (A,, t) is non-empty and, if x is a payoff in the 
core, then x has the equal treatment property. 

The non-emptiness of the core of the game (A,, F) is Scarf’s result (1967). 
It is well-known that for games with side-payments the core is non-empty if 
and only if it contains a payoff with the equal-treatment property. The result 
that the MES and QTU properties ensure that all payoffs in the core of a 

13The definition of the Hausdorff distance can be found in Hildenbrand (1974, p. 16). 
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balanced game have the equal-treatment property is new. We remark that if 
y is a payoff in the core of the game (A,, V,) for r>r*, then y will also have 

the equal-treatment property. 

4. An introduction to the proofs 

The purpose of this section is to provide an overall view of the strategy of 
the proofs and provide a preview of how the several lemmas will be used. 
Also, we introduce a number of definitions and notation used in the proofs. 

Neither the proofs of the lemmas nor of the theorems involve particularly 
sophisticated mathematical techniques; it is the length and complexity of the 
totality of the arguments that may make it difficult to perceive how the 

arguments ‘work’. Consequently, this section seems warranted. 
Throughout this and the following sections, we let (A,, V,)F=r denote a 

sequence of superadditive replica games with T types of players and let 
(A,, E):!r be the associated sequence of balanced cover games. We continue 
to let 1 denote the vector of ones, and the reader is to infer from the context 
the dimension of the space in which 1 is contained. Given I and a positive 
integer n, we write (A,,, V,,) for the game (A,., V,..) where r’=nr. 

Given a payoff x for the rth game, (A,, V,), when we write y = nl= 1 x it is 
to be understood that the coordinates of y are superscripted so that y is a 
payoff for the nrth game. The same remark applies to the Cartesian product 
of sets, so, for example, when we write nl= r Vr(S) c 1/,,(S’) the coordinates of 
y E nl= 1 I/,(S) are to be appropriately superscripted. More generally, given a 
vector x E RrT, when we write x E I/,(S) for some r and S, again it is to be 
understood that the coordinates of x are appropriately superscripted (or re- 
superscripted). 

To avoid constant repetition of ‘non-empty’, given any Sc.4, it is to be 
understood that S is non-empty. 

We begin by discussing Theorem 3 since this theorem is used in the proof 
of the other theorems. For games with side-payments - especially ones with 

only one type of player - the proof of Theorem 3 is obvious and the same 
ideas are used in the general case. Assume x is a payoff in the core of the rth 

game where r> r*, the MES bound. Suppose some player, say (t’, q’) is being 
treated worse than another player of the same type, say (t’, q”), i.e., x*‘~’ <x”q”. 
The MES assumption and the fact that players of the same type are 
substitutes ensure that there is a coalition S containing (t’,q’) and not (P,q”) 

and an x’ in I/,(S), such that x”~ 2~‘~ for all (t, q) in S and x’~‘~’ > x”~‘. From 
the QTU property, it follows that there is an x” in 1/,(S) such that xfrfq >xrq 
for all (t,q) in S. Consequently, x must have the equal-treatment property; 
otherwise we have a contradiction to the assumption that x is in the core. 

Recall that E(r) and E.(r) represent the equal-treatment payoffs in V,(A,) 
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and vr(A,), respectively. Formally, we define 

E(r)= xeRT: fi XE F(A,) , 
i=l 1 

and 

E(r)= XER’:~~~XE~(A~)}. 
i 

The equal-treatment payoffs of a sequence of balanced replica games have 
nice properties; in particular, E(r) c E(r + 1) for all r and the closed limit of 
the sequence (E(r)), denoted by L(E), exists. The relationship E(r) c&r+ 1) 
follows from the fact that, given a balanced family /I of subsets of A,, we can 
construct a related balanced family of subsets of A,, 1 which yields the same 
equal-treatment payoffs as /I. The existence of the closed limit follows from 
the inclusion relationship and the per-capita boundedness assumption. 

A key step in proving Theorems 1 and 2 is to construct a sequence of 
comprehensive games with the QTU property from the original sequence. 
The sequence of games is also constructed so that, informally, the MES 
property is satisfied by the (r+ 1)th game with MES bound r. We then 
consider the sequence of balanced covers of these games. 

Given r, r’, and SC A,, let P(S; r’) denote the collection of partitions of S, 
where, given P in P(S; r’), for each S’ E P, we have p(Y) 5 p(A,.). We define the 
rth truncation of V, by the correspondence V,( .; r’), where, for each subset S 
of A,, we have 

K(S;r’)= (J n T/(S). 
PeP(S;r) S'EP 

It is easily verified that (A,, V,(.;r’)),“=, is a sequence of superadditive replica 
games and satisfies the MES property with MES bound r’. Let (A,, E(.; r’)) 
be the balanced cover of (A,, V,(*;r’)). 

Given E >O, select a positive number 6 such that 6 <c/4. Let 
I + 1, vf+ 1( .; r)) be the balanced cover of a comprehensive, 6-QTU cover of 
I + 1, V, + 1( *; r)) for each r. Let 

r+1 

E’(r+l;r)= xeRT: n xEv’,6+1(A,+1;r) . 

i=l 

From Theorem 3, each game (A, + 1, vf+ 1(*; r)) has an equal-treatment 
payoff in its core; let y’ E E’(r + 1; r) represent such a payoff. From per-capita 
boundedness and the assumption that c({(t,q))) contains a strictly positive 
element, (y’) has a convergent subsequence. Let j denote the limit of some 
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such subsequence. It is shown that given .s>O, for all I sufficiently large 
J-(&/2)1 represents an equal-treatment payoff in the s-core of (A,, Pp+,(*;r)). 
The remainder of the proof of Theorem 2 involves showing that for all r 
sufficiently large, E(r) is ‘close’ to _f?(r+ 1; r) so (j-cl) is in E(r) and 
represents an equal-treatment payoff in the c-core of (A,, V,). For Theorem 1, 
we then use the fact that j-d represents an equal-treatment payoff in the 
comprehensive cover of (A,, V,) and ‘uncover’ a payoff y, in V,(A,) where, for 
each t and all 4, y:” 2 jt -E for each r; this payoff is in the s-core of (A,, V,). 

For Theorem 2, three lemmas play key roles in showing that, for 
sufficiently large r, there are payoffs in E(r) close to j. The first is that, given 
any r and any positive integer n, we have E(r) cE(nr); this follows from 
superadditivity - A,, can be partitioned into n subsets with the same profile 
as A,. The second is that given any r’ there is an integer n such that 
E(J) c E(nr); this follows from properties of ‘minimal’ balanced families - in 
particular, they have rational weights - and superadditivity. Since the 

relevant weights are all rational, we can select n so that each weight times n 

is an integer; given x in E(r’), this allows us to construct a partition P of A,, 
so that n;ll x is in n sEP V”‘,,(S). The third key result, the only one using 
convexity, enables us to show that, given any r’, there is an r” such that for 

all r >= r” we have E(r’) c E(r). Since the closed limit J!,(E) exists, E(r) c E(r + 1) 
and E(r) cE(r), for all rzr”, we have E(r’) cE(r) cE(r) CL(E) which yields 

the desired result. 

5. Proofs of the theorems 

We first prove a number of lemmas. The first three lemmas are results of 

superadditivity and the fact that players of the same type are substitutes for 
each other. 

Lemma 1. Given r, let YE v(S) for some SC A,, where y has the equal- 

treatment property. Let s’ c A,, where s’ has the same profile as S. Then 

YE V(s’). 

Proof: Since S and s’ have the same profile we can define a one to one 
mapping, say $, of S onto S’ such that, if $((t,q))=(t’,q’), then t = t’. Since for 
each player (t,q) in S, the player Il/((t,q)) is a substitute for (t,q), the payoff y’ 
is in I/,(S’), where y’ is constructed from y by permuting the values of the 
coordinates of y associated with (t,q) and $((t,q)) for each (t,q) in S. Since y 
has the equal treatment property, y’ = y and, since y’ is in 1/,(S), we have y in 
I/,(S). Q.E.D. 

Lemma 2. Given r and a positive integer n, let S c A, and let SC A,,, where, 
for some jE{l,. . . , n>, we have S’ = {(t, q) E A,,:for some (t’, q’) ES, t = t’ and 
q=(j-l)r+q’]. Then nlzI ~(,(s)~~~(s’). 
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Proof: Let Bj={(t,q)~A,,,:t=l,...,T and (j-l)r<qsjr}. 

Let X’E JJE1 V,(S) and let x denote the projection of x’ on the coordinates 
associated with members of Bj. Observe that nl= i x E T/,,(S) since 
V:(S) c VfJS) and from (ii) of the definition of a game. Let y=nl=, x. From 

the construction of y, given any (t, 4’) in A,, we have yfq =ytq’ where 4= 
(j- l)r+ 4’; therefore a[y; (t, q’), (t, q)] =y. Since each player (t, 9’) in A, is a 
substitute for the player (t,q) in A,, it follows that ye V”‘,,(S). Since yfq =xlfq 
for all (t, q) in S’, we have x’ E I&(S) from (ii) of the definition of a game. 

Therefore, n;= 1 I/,(S) c I/,,(Y). Q.E.D. 

Lemma 3. Given any r and any positive integer n, we have 

I-I:= 1 I/,(4) c WA”,). 

Proof GivenjE{l,..., n},letBj={(t,q)EA,,: t=l,..., Tand(j-l)r<qsjr}. 
From Lemma 2, nl= I T/,(A,) c T/,,(Bj) for each j= 1,. . . , n; therefore, 
nlC1 K(A,) c njn= 1 I/,,(Bj). Since {Bj: j= 1,. . . , n} is a partition of A,,, from 

superadditivity n;= i Vn’,,(Bj) c I/,,(A,,). Q.E.D. 

It is immediate from Lemma 3 that, given any r and any positive integer n, 
we have E(r) c E(nr). 

Given a finite set A, a balanced family B of subsets of A is a minimal 
balanced family of subsets if no proper subset of /I is balanced. Our next 
lemma is a restatement and an easy extension of a result due to Shapley 
(1967, corollary to lemma 2) and is stated without proof. 

Lemma 4. Let A denote a finite set and let B denote the collection of all 
balanced families of subsets of A. Let (a’, . . . , /?I,. . . ,)“} denote the minimal 
balanced families of subsets of A. Then: (1) /I E B if and only if for some subset 
L’c{l,..., L}, we have P=UtEL,bt, and (2) for each 1, there is a unique set of 
balancing weights, w’s for SET’, and each wb is a rational number. 

The next lemma is a key lemma since it relates payoff sets of the balanced 
cover games to the payoff sets of members of the underlying sequence of 
games. It is an immediate consequence of this lemma that given x~E(r), 
there is a positive integer n such that x~E(nr). 

Lemma 5. Given any r, there is a positive integer n such that if x E F(A,), then 

nl= I x E KrkLJ 

Proof: Given r, let {/I’, . . . ,/?I,. . . , p”> be the set of all minimal balanced 
families of subsets of A,. From Lemma 4, for each 1 there is a unique set of 
balancing weights, w$ for S E /I’, and each w& is a rational number. Since all 
the weights w$ are rational we can choose a positive integer n such that nwk 
is an integer for each SE/Z? and for all 1. We claim that this n satisfies the 
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requirements of the lemma. More specifically, we claim that given any 1, there 
is a partition of A,,, 

I& XET\ 

say P, such that given any XE nsEBl y(S), we have 

sEp V,,(S). We next prove this claim. 

Given 1, let /?‘={SI ,..., S, ,..., S,} and, for ease in notation, for each k let 

wk denote the associated (rational) balancing weights for &E/Y. We now 
construct a partition P of A,, such that P contains nwk members with the 

same profile as S, for each S, EP’. For each (t,q) E A,, let [(t, 4); n] 
= {(t’,q’) E A,,: t’= t and, for some jE(l,..., n), q’=(j-l)r+q}. Observe that 
[(t,q); n] contains n players, all of whom are substitutes for each other. For 
each k, choose nwk subsets, say D:, . . . , Dp,. . . , D;““, such that 

(1) for each m, if (t,q)ES,, then /Drn[(t,q);n]l=l, and if (t,q)$S,, then 

(2) for each k’, each m’ 5 nwkv, and each rnz nwL, we have 0: n 0:’ = #J 
whenever k # k’ or m # m’ (or both). 

Less formally, the sets DF are selected so that each set DF contains one 
and only one member of [(t, q); n] for each (t, q) ES, and no player appears in 
any two of the sets {Dr: 15 ksK, 1 5rn Znwk}. We observe that from (1) 
each set 0;: has the same profile as S,. We are now going to show this 
selection is possible. For each (t,q) EA,, let K(t,q) c (I,. . , K) be such that 
kEK(t,q) if and only if (t,q)ES,. Observe that 

Since 8’ is balanced, &‘EK(f,q) wk’ = 1, and we have 

n- c nwkf = n c Wk,. 

k’ck k’tk 
k’eK(t, 4) k’sWf.q) 

It follows that it is possible to select subsets D:,. .., DEwk satisfying the 
requirements (1) and (2), i.e., for each k and each (t, q) ES~, there are enough 
players in [(t,q);n] and not in U:,:lI Uiw&; D& so that nwk players can be 
selected from those remaining players who have not previously been selected. 
Moreover, since n - xk E Kcf, 4j nwk =0 for each (t, q) E A,, ali agents in each set 
[(t,q);n] are eventually taken in the construction of the sets Dr. Therefore 
the collection P = (Dr: 15 k 5 K, 15 m 5 nwk} is a partition of A,,. 

Given p’ = {S 
y=fl;=, x. 

1,. . . ,&.. . . ,S,} and P as above, let XE n&r K(S,). Define 
Observe that ~“4’ = ~‘4 for all (t’, q’) E [(t, q); n] for each 

(t,q)EA,. For each Dr, the fact that DI: consists of one member of [(t,q);n] 
for each (t, q) E Sk defines a one-to-one mapping, say 4, of the set of agents in 
Sk onto the set of agents in D: such that tj((t,q)) =(t,q’) for some (t,q’) in 0;: 
and yIq =yzq’. Since for each player (t, q) in Sk the player t+b((t, q)) is a 
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substitute for (t,& the payoff y’ is in V”/,,(&‘), where y’ is constructed from y 
by permuting the values for the coordinates of y associated with (t, 4) and 
$((t, 4)) for each (t,q) ES, However, since yfq =ytq’ when $((t, 4)) =(t,q’), we 
have y’ =y. Therefore y E I/,,(D;). From superadditivity, since P = {Dr} is a 
partition, y E YnrjA,,). 

We have shown in the above that given any minimal balanced family of 

subsets oj A,, sa;y p”, 2 xense,~ Y,tS), &z nT= 1 ~~~~~~ Y,,(S) 207 some 
partition P of A,,. From superadditivity, nl= 1 x E %‘,,(A,,). Now let /3 be any 
balanced family of subsets of A, and let XE nsEB I/,(S). From Lemma 4, for 

some subset L’ c { 1,. . . , L}, we have b= U[ ELI 8’. Therefore x E nsss T/,(S) 

=nlsL, n SEP~ Vr(s) SO, for MEL’, xEn sEPl Vr(S). From the above result, 
fly= 1 XE I/,,(A,,). Q.E.D. 

We remark that none of the preceding lemmas required comprehensiveness 
and therefore can be applied to not-necessarily-comprehensive games. 

Define E+(r)=RTnE(r) and E+(r)=RTn&r). 

We remark that when (A,, V,) is comprehensive and, consequently, E(r) is 

comprehensive, the set E(r) + E{ I} used in the following lemma is the 

e-neighborhood of _@,l; i.e.,. @,I + E{ l;$ = {x E RT: for some y E E(r& :1:1x --$]_1s>. 

Lemma 6. Suppose V,( A,.) is a convex and comprehensive set for all r. Then, given 
any E > 0 and any r’, there is an r* such thatfor all r 2 r*, we have E(r’) c E(r) + ~(1). 

ProoJ: Let r’ and E>O be given. 

The following observations will be relevant. From Lemma 5, we can select 
a positive integer n’ such that E(J) c E(n’r’). Let r” = n’r’. From Lemma 3, for 
any positive integer n, we have E(r”)cE(nr”); therefore .&r’)cE(nr”) for all 
positive integers n. Given any r>r”, let n and j be non-negative integers such 
that r=nr”+j wherejE{l,...,r”}. 

Since T/,(S) is closed and bounded relative to RS, for all S, we have 
t(A,) n R’,? compact. It follows that E+(r’) is compact. Therefore there are a 
finite number of points, say x1,. . . ,x1,. . . ,xL, in E+(r)) such that 
~+(r’)cU~=1{~~RT:~~~-xXI~(<e/2}. A b’t r 1 rarily select ZE V,(A,). Now given 
r” an& r = nf ‘tj as &Dove, $v en aq-9 ‘1 +*I. . , ,, . ‘42, we ‘nave $x$5_, 9,. yL$=*, 4) 
E V,(A,) from superadditivity. Since players of the same type are substitutes, 
it follows ihat any vector with nr” components jin Ii’) eqnaS to x’ anb any j 
components (also in RT) equal to z is also in VJA,), and there are C such 
vectors where C =(n-r” f j)!/(nr”)? jr. $n this collE&m of vecfors, given 

PE{l,..., nr” + j}, we have x in the pth position in (nr”/(nr”+ j))C of the 
vectors and z in the pth position in (j/(nr” + j))C of the vectors. From the 
convexity assumption, a convex combination of these vectors is in I/(A,). In 
particular, the convex combination formed by taking the sum of these 
vectors times l/C is in V,(A,). The vector thus formed has the equal- 



M. Holtz Wooders, Epsilon core of a large replica game 293 

treatment property and each component (in RT) of the vector is (nr”x’/(nr” 
+j))+(jz/(nr”+j)). Let ~,~(n)=(nr”x’/(nr”+j))+(jz/(nr”+j)). It follows that 
zlj(n) is in E(r). Also, it is obvious that given any je { 1,. . . , r”}, zlj(n) 
converges to xl as n becomes large. Since j5 r” for all n, we can select I, and 
therefore n, sufficiently large so that Ilzlj(n) -xf 1) < 42. Let n* be sufficiently 
large so that for all 1, all j, and all n 2 n*, we have ((zIj(n) -x’(I <c/2. Suppose 
r > n*r” so n 2 n*, where, as above, r = nr” +j for some j E { 1,. . . , r”}. Let x be 
an arbitrary element of E+(r’). Then there is an x1 such that Ilx’-xII<~/2. 
Since n 2 n*, IIZ~j(n)-xfII<@T so IIz,j(n)-xll<c. Therefore i?+(r’)c{xERT: 
for some x’~E(r), [lx-x’//~E)=E(~)+E{~) 
definition of a game’gnd comprehensiveness, 

‘and from property (iv) of the 
E(r’)cE(r)+E{l). Q.E.D. 

Lemma 7. For all r, we have E(r) c E(r + 1). 

Proo$ Given any r, let XE E(r). Let p be a 
such that n;= 1 x E ns., v(S). 

balanced family of subsets of A, 

Let fl={S, ,..., S,,.. .,S,} and let wk denote the weights for S, E /?. Given 
4+..., r+l}, let B,={(t,q)EA,+l: t=l,..., T}. Given 1E{l,..., r+l}, 
we construct a balanced family of K subsets of u;Zi,,+l B,, 
say 8’ = {S\, . . . , S:, . . . , Sk}, where (t, q) ES: if and only if: (a) (t,q) E S, with 
q# 1, or (b) q =r+ 1 and (t, I) E&. Informally, /? and /3’ are the same when 
Zs r except that, for each type t, each player (t, r) is replaced by (t, r + 1) and 
/?‘+I =p. Note that the weights wk for S:E/? balance B’ i.e., 

r+1 
c 

(k:(f,q)ES:) 
wk = 1 for each (t,q)E u B,.. 

q’= 1 
q’#l 

In this manner we construct r + 1 balanced families, p’, . . . , p + I, of subsets of 
U;+=‘2B4,...,U;= 1 B,, respectively. Let p* = UT’: /?I. We claim that this is a 
balanced family of subsets of A, + 1. Clearly, 

r+1 K 
A r+l~r(llk~lS:=su*S. 

Note that given (t,q)EA,+l, there are r members of {Ui?>l,,,+l B,,: 
I= 1,. . . ,r+ l} containing (t,q). Since, if (t,q)E U’,?Il,,s+l II,., the sum of 
the weights 1 (k .(t, &S;) wk is 0% we have 1 ck, l :ct, qjES;I wk = r and the weights 

wk/r for SL EP* balance p*. From the definition of a sequence of replica 
games, n;Z:x~V,+,(s,) for each k=l,...,K. From Lemma 1, 
niZ:x~ V,+,(S:) for all k and 1, so 

rfl 

ip~~filkfjl v,+l(S:)=S?p*Y+m. 
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Since /3* is balanced, we have 

n x~~+i(A,+i) and, therefore, xEE(r+l). Q.E.D. 
i=l 

In the following, we use the concept of the closed limit of a sequence of 
sets. A definition of this concept and some properties can be found in 

Hildenbrand (1974, pp. 15-18). We also employ the theorem that a sequence 
of subsets (F,) of a compact metric space converges to a subset F with 
respect to the Hausdorff distance if and only if the closed limit of the 

sequence exists and equals F [see Hildenbrand (1974, p. 17)]. The closed 
limits, which we will show exist, of (E(r)) and (E(r)) are denoted by L(E) and 
L(E), respectively. We denote the Hausdorff distance between two sets, say F 
and G (with respect to the sup norm metric) by IIF, G11.14 

Lemma 8. Assume that (A,, V,)r== is per-capita bounded and that I/,(A,) is 
convex and comprehensive for all r. Then the closed limits L(E) and L(E) exist 
and are equal and II&r), E(r)11 converges to zero as r goes to infinity. 

Proof Since B(r) cE(r + 1) for all r and from the per-capita boundedness 
assumption, it can easily be shown that the closed limit, L(E), exists. Also, 

from the per-capita boundedness assumption there is a compact set, say -X, 
such that B+(r) CX for all r. It follows that, given E >O, there is an r’ 
sufficiently large so that for all rzr’, IIE+(r), ~(I?+.)11 ~42. From property (iv) 
of a game and comprehensiveness, we have II&r), L(E)/1 <e/2 for all r Iv’. 

Given s>O, let r’ be sufficiently large so that, for all r >r’, IIE(r), 
L(QII c&/2. From Lemma 6, there is an r* zr’ so that, for all r zr*, 
_!?(r’)cE(r)+(&/2){1}. Since E(r)c.k?(r), for all rzr*, we have 

Since IlE(r’),L(@<e/2, it follows that IIB(r), E(r)ll<e for all rzr*. [We’ve 
squeezed E(r) and E(r) between E(r’) and L(@+(s/2){1}.] It follows that 
L(E) = L(E). Q.E.D. 

We remark that nothing we have done so far depends on the assumptions 
of QTU and MES. Therefore it is possible to use these lemmas in situations 
where some or all of these assumptions are not made. 

The theorems are now proven - in reverse order to their statements since 
each proof uses the preceding one. 

“We’ve used II.I/ to denote the sup norm and I/‘, 11 t o d enote the Hausdorff distance. This 
should create no confusion, however, since in the first case the variable is a vector and, in the 
second, two sets. 
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Proof of Theorem 3 

Select Y >r* and let x be a payoff in the core of (A,, t); from Scarf’s 
theorem there is such a payoff. Note that ~$0 from the assumption that x is 
in the core and (i) of the definition of a game. Let /? be a balanced family of 
subsets of A, such that x E n SEB K(S) and such that p(S)sp(A,,) for all SE/I; 
from the MES assumption such a balanced family /3 exists. Suppose x does 
not treat all players of type t equally, i.e., for some q’ and q”, we have 
Xfq’ # Xtq”. We consider two cases which cover all possibilities and in both 
cases obtain a contradiction. 

Case 1: Suppose for some S’ in p we have (t, q’) ES’ and (t,q”) $S’. Since /? 
is balanced, it follows that there must be an S” in /? such that (t,q”)~S” 

and (t,q’) $ S”; otherwise p could not be a balanced family since no set 
of ‘balancing’ weights could sum to one over both these members of the 
family containing (t, q’) and those containing (t, 4”). Suppose xfq’ >xtqu. Let 
S* =(S’- {(t, 4’)))~ {(t,q”)). Then, since (t,q’) and (t, q”) are substitutes, the 
payoff x’= o[x; (t, q’), (t, q”)] is in V,(S*). Since x”‘~ 2~“~ for all (t’, q) in S* 
and _$“l” > xtq”, from the QTU assumption there is a payoff x” in 1/,(S*) 
where x” %-x. This contradicts the assumption that x is in the core. Suppose 
~‘4’ < xtq”. However, since (t, q”) ES” and (t, q’) $ S”, by reasoning as above, we 
can again obtain a contradiction to the assumption that x is in the core. 
Therefore, for Case 1, we have the result that xfq’ =xtq”. 

Case 2: Suppose for some S in /? we have both (t,q’) and (t, q”) in S. Since 
lSn[t],.lZr* there is a player of type t, say (t,q), not in S. From Case 1, we 
have xfq = xfq’ and x’q = xtq”, so x*q’ = Xtq”. Q.E.D. 

Recall the definition in the preceding section of the r’th truncation of 
(A,, V,), denoted by (A,, V,(., r’)), that (A, + 1, vr+ r(.; r)) denotes the balanced 
cover of the rth truncation of (A, + 1, V, + J, and 

r+l 

B(r+l;r)= XGR~: n xEF+,(A,+,;r) . 

i=l 

Observe that E(r) cE(r+ 1; r); this is an application of Lemma 7. It is 

immediate that E(r) c E(r + 1; r) and E(r + 1; r) c ,?(r + 1). 
We note that from Theorem 4 in the appendix, given 6 > 0 and a sequence 

of comprehensive replica games (A,, V,)T= 1, we can select a sequence of 
comprehensive games (A,, Vp)lm,, where each game (A,, Vf) is a &QTU cover 

of (A,, v,). 
For ease in exposition, since comprehensiveness is assumed for Theorem 2, 

we use the fact that a feasible payoff x is in the a-core of a comprehensive 
game (A, V) if and only if x + ~1 q! int V(S) for all S c A. 
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Proof u$ Theorem 2 

Given ~93, s&c< a pk<++~ number 6 SY& t&at 6 <z//4. Let 

IA” 
r+ 19 vf+ r( a; r)) be the balanced cover of a comprehensive, &QTU cover of 
,+r,V,+,(.;r)) for each r. Let ~d(r+l;r)={x~RT:~;~~x~~~+l(A,+l;r)} 

and let L(_@) denote the closed limit of the sequence (,!?(r+ l;r)); from 
Lemma 8 &is limit exisk It is easily verified &at jjE+r(A,+ r;r}, 

v;+ I(A ,+ I;r)ll -CC/~ for each r, so lE(r+ 1; r), E’(r+ l;r)ll <s/4 for each r, 
and lIL(E’),L(E)jj <s/4. S ince L(E) =L(E) from Lemma 8, we have 
~I~(~),~(~:6)~~<s/4. 

From Theorem 3, for each r we can select y’ E ,!?(r + 1; r) such that n; L : y’ 
is in the core of (A, +1, p’fi+l(.;r)). Since n;Z: y’ is in the core and from (i) of 
the definition of a game, y’ > 0, and, since L(E’) n RT, is compact, (y’) has a 
convergent subsequence. Let J denote the limit of some such subsequence. 
Define X=(j-(s/2)1). 

We now show that for all r sufficiently large niz: X is in the s-core of 

(A ,+ 1, Pp+r(.;r)). Since P(r+ 1;r) converges to L(P), for all r sufficiently 
large, say r zr*, %~,!?(r + 1; r). Therefore, if n;‘=i’ X is not in the s-core of 

(A r’+lY v’p,+r(.;r’)) for some r’zr*, for some SC A,,+1 we have n;‘Trr%+ 
.slEint V” II + 1(S; r’). Consequently, ni’:t (j + (&/2)1 E int Vf, + ,(S; r’). Select 
a member of the sequence (y’), say y”‘, such that r”zr’ and such that 
/j-~“‘11 <s/2. F rom (b) of the definition of a sequence of replica games, 
and since 1) j-y”‘/] <s/2 and n;Y: (y+(s/2)l)~int @+, (S;r’), we have 
nil’rl y”’ E int t,“,, + ,(S; 1”). This is a contradiction. 

Now select r sufficiently large, say r**, such that r** zr* and, for all 
r zr**, x~E(r). From comprehensiveness, the fact that E(r) cE’(r+ 1;r) and 

is immediate that there is such an r**. Then for all 
x~E(r). Suppose for some 

n;=rieint Vr(S)-s(l). But then 
r zr** and some SC A,, we have 

r+l 

JJl 2Ek-d R+, (S;r)--E{l}Cint Vf+,(S;r)--s(l), 

which is a contradiction to the result of the preceding paragraph. Therefore 
n; = I x: is in the ~-core of (A,, &;) for ah sufficiently kirge r. Q. ED. 

Our final result is now easy. 

Proof of Theorem I 

Let (A,, V:) denote the ‘comprehensive cover’ of each game (A,, V,) in the 
sequence, i.e., V:(S) = { XE RAr: for some ye V,(S), xzy}. Note that since V,(A,) 
is convex, V:(A,) is convex. From Theorem 2, given a>O, we can select r* 
such that, for all rzr*, the s-core of (A,, vf) is non-empty. Given r>r* and 
a payoff x in the s-core of (A,, Vt), let x’ E V,(A,) where x’zx; from the 
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definition of the comprehensive cover, there is such an x’. Since x is in the 
s-core of (A,, Vf), it is immediate that for all S CA,, there does not exist an 
X”E T/(S) where x”%x+E~. Therefore x’ is in the s-core of (A,, V,). Q.E.D. 

6. Conclusions 

In this paper, we have shown that quite simple conditions - convexity of 
the payoff set for the entire set of players, superadditivity, and per-capita 
boundedness - ensure that large replica games have non-empty approximate 
cores. Of these conditions, we view the superadditivity and per-capita 
boundedness ones as particularly non-restrictive. We view the convexity 
assumption as more troublesome. As Shapley (1973) has pointed out, 
although convexity of the sets V(S) often arises in application, convexity is 
not an ordinal concept since it depends on the topological structure of R”. 

Moreover, it is easy to generate examples of economic models whose derived 
games do not satisfy the convexity requirement; cf. Shapley and Scarf (1974). 
On the other hand, the notion of an approximate core used in this paper is 
quite restrictive. To illustrate this, observe that from the proof of Theorem 2 
it follows that, given any a>O, there is an r sufficiently large so that for some 
equal-treatment imputation x* in the s-core of the balanced cover game there 
is a feasible payoff x for the game, such that xfq = x*~~ for all players (t, 4). An 
obvious choice for an approximate core concept is one where some feasible 
payoff x is in the approximate core if for ‘most’ agents, for some x* in the 
E-core of the balanced cover game xfq =x*~~. In Shubik and Wooders 
(1982a, b), such an approximate core concept is introduced and it is shown 
that non-emptiness of the approximate core obtains for all sufficiently large 
replications. It would be of interest, however, to determine less restrictive 
conditions than convexity under which the approximate core concept 
considered in this paper is non-empty; at this point we have no results of this 
nature for sequences of games (except for ones derived from sequences of 
economies) but we conjecture that a certain degree of ‘side-paymentness’ or 
quasi-transferable utility would suffice. 

In conclusion, we remark that since this paper was completed, Wooders 
and Zame (1983) have obtained results analogous to the ones herein for large 
games with side-payments but without the restriction to replica games. 

Appendix 

From the following theorem it is immediate that given any 6 > 0 and any 
comprehensive game (A, V), there is a comprehensive &QTU cover of the 
game. 

Theorem 4. Let KC R: be compact and comprehensive in R”,, i.e., if x E K, 
then ~EK for all PER”, with y sx. Then there is a compact, comprehensive 
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subset Kc R’!+ such that Kc K’, IIK, K’I1<6, and K’ satisfies the property that 
if x is in the boundary of the set (y E R”: for some z E K’, y 5 z} and x %- 0, then 

K’n{x’:x’zx}={x}. 

In other words, the upper boundary of K’ contains no line segments parallel to 
the coordinate axis. 

Proof: There is no loss of generality in assuming that K is a subset of the 
unit ball in R”. Let f be any continuous, real-valued function on K such that 

l<f(x)<1+6 for all XEK, 

where x>O and x<y*f(x)>f(y). 

[For example, we could use the function f(x) = 1 + (d/2)/( 1 + cy= 1 Xi).] Define 
T: K -+R’!+ by T(x) =f(x)x; this is continuous, so T(K) is compact. Let 
K’= T(K). Since II{x}, T(x)ll<S f or x E K (because we have assumed K is a 
subset of the unit ball), we have IIK, ~‘11~ 6. 

We note that for x E K, T(x) lies on the ray from 0 through x and (unless 
x = 0) is further out than x. Thus T maps each ray to itself, continuously. 

To see that K’ is comprehensive, it suffices (because K is comprehensive) 
to prcove >*I> ‘5 x EX anh fiEfrg_, vSnere a cT>&, kbtn ‘Ihere is a p in K,, ,Y tx, 
with T(y) =a. To see this, write T(x) =f(x)x and set z=(l/f(x))a. Then 
ZE R; and z<x, so ZE K andf(z) >f(x). Hence T(z)=f(z)z>f(x)z=a; since 
the points 0, a, and T(z) all lie on the same ray, and in that order, we can 
apply the Intermediate Value theorem to T on this ray to conclude that 
there is a y on the ray with T(y) = a and y < z < x, as desired. 

It remains to prove the assertion about the boundary of K’. If there were a 
line segment in the boundary of K’ parallel to a coordinate axis and not 
lying in a coordinate plane, its endpoints, say a and b, would give two points 
in K’, with> say bta and na coordinate of a equal to zero. Since we can 
replace i5 kj <+ti ri&@& & <kk s~gz~fi~it, C++C ‘hss&mfi a& that m ~~0w&kak 
of b is equal to zero. Let x E K such that a= T(x); use (*) to find YE K such 
that r<v,C= ti and,v CC. 

Case 1: y<x but y#x; that is, some coordinate of y is equal to the 
corres~&& 7~37 + InaCC CC X, ?Zij ‘Li=xi. T&n 6i=~~j~ji,$++i=ai, 
since f(y) >f(x) and no coordinate of a is zero (so no coordinate of x is 
zero). This is a contradiction. 

Case 2. y@x. On the ray from zero through y there is a unique point w 
with wlx but w#x; this is the first point on the ray with some coordinate 
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equal to the corresponding coordinate of x; say Wi =xi. If in fact w = x, then 
y and x lie on the same ray, so b and a lie on this ray with b <a which 
guarantees b < a. But then b belongs to the open set {x’ E R: : x’ <u} which is 
in K’ (since ae K’ and K’ is comprehensive); hence b would not be in the 
boundary of K’. Therefore we may assume w # x. Thus f(w) >f(x); set 
C= T(W) SO, as in Case 1, ci =f(w)wi >f(X)q =q 2 bi. Since c and b lie on 
the same ray, we conclude that b 4 c so b lies in the open set {X’G R: : x’@ c>, 

which, again, lies in K’, contradicting our assumption that b is in the 
boundary of K’. Q.E.D. 
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