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Technical Appendix, part A:  Monopoly Results for the Quadratic Harm Model

In what follows we assume that h(C) and c(C) are twice continuously differentiable functions.  This
implies that the welfare function and all profit functions are twice continuously differentiable.  In the text we
assumed that h(x)q2 is convex in (x, q); this implies that hO(x)h(x) - 2(hN(x))2 > 0 for all x.

Welfare Maximization.  The social welfare maximizing planner chooses q and x to maximize:

W(x, q) = αq - (β/2)q2 - h(x)q2 - c(x)q.

While W(x, q) is not globally-concave, it is still very well-behaved.  We first prove that any welfare-
maximizing solution is interior; that is, it is socially optimal to exert some care and produce some output.
To see this, first notice that W(x, 0) = 0 for all x.  Moreover (see equation A.2 below), Wq(x, q) < 0 for all
q > 0 if x > xG such that α = c(xG).  Thus, W(x, q) < 0 for all (x, q) such that x > xG and q > 0.  However, since

Wq(x, 0) > 0 for x 0 [0, xG), there exist values of (x, q) such that x 0 [0, xG) and q > 0 for which W(x, q) > 0.
Thus, any welfare-maximizing solution must be one of these (x, q) combinations.  To see that x = 0 cannot
be part of a welfare-maximizing solution, note that (see equation A.1 below) Wx(0, q) > 0 for all q > 0 since
hN(0) < 0 and cN(0) = 0.  Thus, any welfare-maximizing solution must involve (x, q) such that x 0 (0, xG) and
q > 0.

Let (x^ W, q^ W) denote a welfare-maximizing solution.  Then (x^ W, q^ W) must satisfy the first-order
conditions:

Wx = -hN(x)q2 - cN(x)q = 0; (A.1)
Wq = α - βq - 2h(x)q - c(x) = 0. (A.2)

We now argue that any interior solution to the first-order conditions (A.1)-(A.2) must be a strict local
maximum.  This follows from the fact that the matrix of second derivatives is negative definite at any interior
solution to (A.1)-(A.2).  To see this, we verify that Wxx < 0, Wqq < 0, and WxxWqq - (Wxq)

2 > 0 at any interior
solution to (A.1)-(A.2).  The relevant second derivatives are:

Wxx = -hO(x)q2 - cO(x)q < 0;
Wxq = -2hN(x)q - cN(x);
Wqq = - β - 2h(x) < 0.

Notice that (for q > 0) equation (A.1) implies that Wxq = -hN(x)q + (1/q)Wx = -hN(x)q > 0 everywhere along
the solution to (A.1).  Evaluating the expression WxxWqq - (Wxq)

2 yields:  
 

(hO(x)q2 + cO(x)q)(β + 2h(x)) - (hN(x)q)2 > [2hO(x)h(x) -  (hN(x))2]q2 > 0,
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where the first inequality follows from the fact that hO(x), cO(x), β, and q are positive, and the second
inequality follows from the convexity of expected harm in (x, q).  Thus, any interior solution to (A.1)-(A.2)
is a strict local maximum.  

Equation (A.1) defines implicitly the socially-optimal care level for any given level of output,
denoted xW(q); it is clear that xW(q) > 0 for all q > 0, and limq60 x

W(q) = 0.  Differentiating equation (A.1) with
respect to x and q and collecting terms yields dxW(q)/dq = Wxq/(- Wxx).  The denominator is positive, while
the numerator is also positive along xW(q) because equation (A.1) implies that Wxq = -hN(x)q + (1/q)Wx = -
hN(x)q > 0, since with q being treated as a parameter, Wx = 0 for each value of q.  Thus, xW(q) is strictly
increasing in q.  

Equation (A.2) defines the socially-optimal output level for any given level of output, denoted qW(x),
with qW(x) = (α - c(x))/(β + 2h(x)) > 0 for x < xG  and qW(xG) = 0.  Differentiating equation (A.2) with respect
to q and x and collecting terms implies that dqW(x)/dx = Wqx/(-Wqq).  While we don’t know the sign of this
in general, we know that Wqx > 0 at (x^ W, q^ W) (by the previous argument using equation (A.1)).  Thus, qW(x)
is strictly increasing in a neighborhood of (x^ W, q^ W), where equations (A.1) and (A.2) are satisfied
simultaneously.  

In (x, q) space, we are graphing the functions qW(x) and the inverse of xW(q), denoted q~W(x).  Both
of these are continuous functions.  To see that q~W(x) crosses qW(x) “from below,” first notice that q~W(0) = 0
< qW(0), but q~W(xG) > 0 = qW(xG); since both functions are continuous, they must cross at least once.  To see
that any crossing is “from below,” note that dq~W(x)/dx = 1/dxW(q)/dq = (-Wxx)/Wxq > Wxq/(-Wqq) = dqW(x)/dx,
where the inequality follows from the fact that WqqWxx - (Wxq)

2 > 0 at (x^ W, q^ W).

Finally, we can conclude that (x^ W, q^ W) is the unique interior solution to (A.1)-(A.2).  For if there were
another interior solution, then it would also have to be a strict local maximum; that is, the function q~W(x)
would have to cross the function qW(x) again “from below” at, say, x^ N.  But then there would have to be yet
another value of x (between x^ W and x^ N) at which the function q~W(x) would have to cross the function qW(x)
“from above.”  But such a location involves an (x, q)-pair that would also satisfy (A.1)-(A.2) and yet it could
not be a strict local maximum, which is a contradiction.  Thus, the welfare-maximizing solution (x^ W, q^ W) is
the unique interior solution to the first-order conditions (A.1)-(A.2).

Profit-Maximization under Strict Liability.  Under strict liability, the firm’s profit is given by:

ΠSL(x, q) = (α - βq)q - h(x)q2 - c(x)q.

While ΠSL(x, q) is not globally-concave, it is still very well-behaved.  It can be shown (using an argument
analogous to that used in the case of welfare-maximization) that any profit-maximizing solution is interior;
that is, it must involve (x, q) such that x 0 (0, xG) and q > 0.  Let (x^ SL, q^ SL) denote a profit-maximizing solution
under strict liability.  Then (x^ SL, q^ SL) must satisfy the first-order conditions:

ΠS
x
L  = -hN(x)q2 - cN(x)q = 0; (A.3)

ΠS
q
L  = α - 2βq - 2h(x)q - c(x) = 0. (A.4)

To see that  any interior solution to the first-order conditions (A.3)-(A.4) must be a strict local maximum, we
need only verify that  the matrix of second derivatives is negative definite at any interior solution to (A.3)-
(A.4).  The relevant second derivatives are:
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ΠS
xx
L = -hO(x)q2 - cO(x)q < 0;

ΠS
xq
L  = -2hN(x)q - cN(x);

ΠS
qq
L = - 2β - 2h(x) < 0.

Notice that (for q > 0) equation (A.3) implies that ΠS
xq
L = -hN(x)q + (1/q)ΠS

x
L = -hN(x)q > 0 everywhere along

the solution to (A.3).  Evaluating the expression ΠS
xx
LΠS

qq
L - (ΠS

xq
L)2 yields:

 
(hO(x)q2 + cO(x)q)(2β + 2h(x)) - (hN(x)q)2 > [2hO(x)h(x) -  (hN(x))2]q2 > 0,

where the first inequality follows from the fact that hO(x), cO(x), β, and q are positive, and the second
inequality follows from the convexity of expected harm in (x, q).  Thus, any interior solution to (A.3)-(A.4)
is a strict local maximum. 

Equation (A.3) defines implicitly the profit-maximizing care level for any given level of output,
denoted xSL(q); it is clear that xSL(q) > 0 for all q > 0, and limq60 x

SL(q) = 0.  Comparing equations (A.1) and
(A.3), it is clear that xSL(q) = xW(q) for all q.  Differentiating equation (A.3) with respect to x and q and
collecting terms implies that, along xSL(q), dxSL(q)/dq = ΠS

xq
L/(-ΠS

xx
L).  The denominator is positive, while the

numerator is also positive along xSL(q), since equation (A.3) implies that ΠS
xq
L = -hN(x)q + (1/q)ΠS

x
L = -hN(x)q

> 0, since with q being treated as a parameter, ΠS
x
L = 0 for each value of q.  Thus, xSL(q) is strictly increasing

in q.

Solving equation (A.4) for the profit-maximizing output level for any given level of care, denoted
qSL(x), we find that qSL(x) = (α - c(x))/2(β + h(x)) > 0 for x < xG and qSL(xG) = 0; moreover, for x < xG, qSL(x)
< qW(x) = (α - c(x))/(β + 2h(x)).  Differentiating equation (A.4) with respect to q and x and collecting terms
implies that dqSL(x)/dx = ΠS

qx
L/(-ΠS

qq
L).  While we don’t know the sign of this in general, we know that ΠS

qx
L >

0 at (x^ SL, q^ SL) (by the previous argument using equation (A.3)).  Thus, qSL(x) is strictly increasing in a
neighborhood of (x^ SL, q^ SL), where equations (A.3) and (A.4) are satisfied simultaneously.  

In (x, q) space, we are graphing the functions qSL(x) and the inverse of xSL(q), denoted q~SL(x).  These
are both continuous functions.  To see that q~SL(x) crosses qSL(x) “from below,” first notice that q~SL(0) = 0 <
qSL(0), but q~SL(xG) > 0 = qSL(xG); since both functions are continuous, they must cross at least once.  To see that
any crossing is “from below,” note that dq~SL(x)/dx = 1/dxSL(q)/dq = (-ΠS

xx
L)/ΠS

xq
L > ΠS

xq
L/(-ΠS

qq
L) = dqSL(x)/dx,

where the inequality follows from the fact that ΠS
xx
LΠS

qq
L - (ΠS

xq
L)2 > 0 at (x^ SL, q^ SL).  

We can conclude that (x^ SL, q^ SL) is the unique interior solution to (A.3)-(A.4) using an argument
similar to that used to establish the uniqueness of  (x^ W, q^ W).  Finally, since qSL(x) > qW(x) for all x, while
xSL(q) = xW(q) for all q, it is immediate that x^ SL < x^ W and q^ SL < q^ W.

Profit-Maximization under No Liability.  Finally, under no liability, the firm’s profit is given by:

ΠNL(x, q) = (α - βq - 2h(x)q)q - c(x)q.

While ΠNL(x, q) is not globally-concave, it is still very well-behaved.  It can be shown (using an argument
analogous to that used in the case of welfare-maximization) that any profit-maximizing solution is interior;
that is, it must involve (x, q) such that x 0 (0, xG) and q > 0.  Let (x^ NL, q^ NL) denote a profit-maximizing solution
under no liability.  Then (x^ NL, q^ NL) must satisfy the first-order conditions:

ΠN
x

L  = -2hN(x)q2 - cN(x)q = 0; (A.5)
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ΠN
q

L  = α - 2βq - 4h(x)q - c(x) = 0. (A.6)

To see that  any interior solution to the first-order conditions (A.5)-(A.6) must be a strict local maximum, we
need only verify that  the matrix of second derivatives is negative definite at any interior solution to (A.5)-
(A.6).  The relevant second derivatives are:

ΠN
x x

L = -2hO(x)q2 - cO(x)q < 0;
ΠN

x q
L = -4hN(x)q - cN(x);

ΠN
q q

L = - 2β - 4h(x) < 0.

Notice that (for q > 0) equation (A.5) implies that ΠN
x q

L = -2hN(x)q + (1/q)ΠN
x

L = -2hN(x)q > 0 everywhere along
the solution to (A.5).   Evaluating the expression ΠN

q q
LΠN

x x
L  - (ΠN

x q
L)2 yields:

 
(2hO(x)q2 + cO(x)q)(2β + 4h(x)) - (2hN(x)q)2 > [8hO(x)h(x) - 4(hN(x))2]q2 > 0,

where the first inequality follows from the fact that hO(x), cO(x), β, and q are positive, and the second
inequality follows from the convexity of expected harm in (x, q).  Thus, any interior solution to (A.5)-(A.6)
is a strict local maximum.  

Equation (A.5) defines implicitly the profit-maximizing care level for any given level of output,
denoted xNL(q); it is clear that xNL(q) > 0 for all q > 0, and limq60 x

NL(q) = 0.   Differentiating equation (A.5)
with respect to x and q and collecting terms implies that, along xNL(q), dxNL(q)/dq = ΠN

x q
L/(-ΠN

x x
L).  The

denominator is positive, while the numerator is also positive along xNL(q) because equation (A5) implies that
ΠN

x q
L = -2hN(x)q + (1/q)ΠN

x
L = -2hN(x)q > 0, since with q being treated as a parameter, ΠN

x
L = 0 for each value

of q.  Thus, xNL(q) is strictly increasing in q.  Comparing equations (A1) and (A5) implies that xNL(q) = xW(2q)
for all q.

Solving equation (A.6) for the profit-maximizing output level for any given level of care, denoted
qNL(x), we find that qNL(x) = (α - c(x))/2(β + 2h(x)) > 0 for x < xG and qNL(xG) = 0; moreover, qNL(x) =
(1/2)qW(x) < qSL(x).  Differentiating equation (A.6) with respect to q and x and collecting terms implies that
dqNL(x)/dx = ΠN

q x
L/(-ΠN

q q
L).  While we don’t know the sign of this in general, we know that ΠN

q x
L > 0 at (x^ SL, q^ SL)

(by the previous argument using equation (A.5)).  Thus, qNL(x) is strictly increasing in a neighborhood of (x^ NL,
q^ NL), where equations (A.5) and (A.6) are satisfied simultaneously.  

In (x, q) space, we are graphing the functions qNL(x) and the inverse of xNL(q), denoted q~NL(x).  Both
of these are continuous functions.  To see that q~NL(x) crosses qNL(x) “from below,” first notice that q~NL(0) =
0 < qNL(0), but q~NL(xG) > 0 = qNL(xG); since both functions are continuous, they must cross at least once.  To
see that any crossing is “from below,” note that dq~NL(x)/dx = 1/dxNL(q)/dq = (-ΠN

x x
L)/ΠN

x q
L > ΠN

x q
L/(-ΠN

q q
L) =

dqNL(x)/dx, where the inequality follows from the fact that ΠN
q q

LΠN
x x

L  - (ΠN
x q

L)2 > 0 at (x^ NL, q^ NL).

We can conclude that (x^ NL, q^ NL) is the unique interior solution to (A.5)-(A.6) using an argument
similar to that used to establish the uniqueness of  (x^ W, q^ W).  Finally, the facts that  qNL(x) = (1/2)qW(x) and
xNL(q) = xW(2q) for all q imply that x^ NL = x^ W and q^ NL = (1/2)q^ W.

Profit Maximization under Parametrized Liablity.  The parametrized profit function is given by:

Π(x, q; γ) = (α - βq)q - γh(x)q2 - c(x)q,
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where γ = 1 corresponds to strict liability and γ = 2 corresponds to no liability.  While Π(x, q; γ) is not
globally-concave, it is still very well-behaved.  It can be shown (using an argument analogous to that used
in the case of welfare-maximization) that any profit-maximizing solution is interior; that is, it must involve
(x, q) such that x 0 (0, xG) and q > 0.  Let  (x^ (γ), q^ (γ)) denote a profit-maximizing solution.  Then (x^ (γ), q^ (γ))
must satisfy the first-order conditions:

Πx = -γhN(x)q2 - cN(x)q = 0; (A.7)
Πq = α - 2βq - 2γh(x)q - c(x) = 0. (A.8)

To see that  any interior solution to the first-order conditions (A.7)-(A.8) must be a strict local maximum, we
need only verify that  the matrix of second derivatives is negative definite at any interior solution to (A.7)-
(A.8).  The relevant second derivatives are:

Πxx = -γhO(x)q2 - cO(x)q < 0;
Πxq = -2γhN(x)q - cN(x);
Πqq = - 2β - 2γh(x) < 0.

Notice that (for q > 0) equation (A.7) implies that Πxq = -γhN(x)q + (1/q)Πx = -γhN(x)q > 0 everywhere along
the solution to (A.7).  Evaluating the expression ΠqqΠxx - (Πxq)

2 yields:

(γhO(x)q2 + cO(x)q)(2β + 2γh(x)) - (γhN(x)q)2 > γ2 [2hO(x)h(x) - (hN(x))2]q2 > 0,

where the first inequality follows from the fact that hO(x), cO(x), β, and q are positive, and the second
inequality follows from the convexity of expected harm in (x, q).  Thus, any interior solution to (A.7)-(A.8)
is a strict local maximum.  We can conclude that there is a unique interior solution (x^ (γ), q^ (γ)) to (A.7)-(A.8)
using  arguments similar to those used to establish the existence and uniqueness of (x^ W, q^ W). 

Differentiating the system (A.7)-(A.8) in terms of x, q, and γ, and solving for dx^ (γ)/dγ and dq^ (γ)/dγ
yields:

dx^ (γ)/dγ = {ΠqqhN(x)q2 - Πxq2h(x)q}/{ΠxxΠqq - (Πxq)
2}

and

dq^ (γ)/dγ = {- ΠxqhN(x)q2 + Πxx2h(x)q}/{ΠxxΠqq - (Πxq)
2},

where all expressions are evaluated at the solution (x^ (γ), q^ (γ)).  The denominator is positive in both cases.
Consider the numerator in the expression for dx^ (γ)/dγ.  Upon substituting for Πqq and Πxq, and noting that
(A.7) implies that Πxq = -γhN(x)q, the numerator becomes {γhN(x)q2h(x)q - 2(β + γh(x))hN(x)q2} = -2βhN(x)q2

> 0.  Thus, dx^ (γ)/dγ > 0, which implies that x^ NL > x^ SL.  Now consider the numerator for the expression
dq^ (γ)/dγ.  Upon substituting for Πxx and Πxq =  -γhN(x)q, the numerator  becomes q2{γq[(hN(x))2 - 2h(x)hO(x)] -
2h(x)cO(x)}.  Since cO(x) > 0, a sufficient condition for this to be negative is that [(hN(x))2 - 2h(x)hO(x)] < 0.
But this inequality is implied by the convexity of expected harm in (x, q).  Thus, dq^ (γ)/dγ < 0, which implies
that q^ NL <  q^ SL.  

Proof that welfare, evaluated at the profit-maximizing (x, q), is decreasing in γ.  Recall that W(x^ (γ), q^ (γ)) =
αq^ (γ) - (β/2)(q^ (γ))2 - h(x^ (γ))( q^ (γ))2 - c(x^ (γ))q^ (γ).  Thus, dW/dγ = Wx(dx^ (γ)/dγ) + Wq(dq^ (γ)/dγ), where Wq and
Wx are evaluated at (x^ (γ), q^ (γ)).  Evaluating Wx (equation (1) in the main text) at the solution to equation
(A.1) implies that Wx(x

^ (γ), q^ (γ)) = (γ - 1)hN(x^ (γ))(q^ (γ))2 < 0 (= 0 at γ = 1).  Since dx^ (γ)/dγ > 0, it is clear that
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1  See Marino (1988a) and Spulber (1989) for derivations overlapping some portions of this Appendix.

Wx(dx^ (γ)/dγ) < 0 (= 0 at γ = 1).  Evaluating Wq (equation (2) in the main text) at the solution to equation (A.2)
implies that Wq(x

^ (γ), q^ (γ)) = βq^ (γ) + 2(γ - 1)h(x^ (γ))q^ (γ) > 0.  Since dq^ (γ)/dγ < 0, it is clear that Wq(dq^ (γ)/dγ)
< 0.  Combining the two terms implies that dW/dγ < 0; that is, strict liability is socially-preferred to no
liability.

Technical Appendix, part B:  Results for the Generalized Expected Harm Formulation Under Monopoly1

Initial considerations.
In this Appendix we re-formulate the monopoly model considered in the main text by allowing for

both a more general model of expected harm and a more general model of the representative consumer’s
utility (which leads to a more general model of demand for the product).  We first make some assumptions
on the elements of the model and then some further assumptions on the payoff functions so as to ensure that
the first order conditions for each optimization problem properly characterize the respective optimal solutions,
and that those solutions are in the interior (i.e., all relevant variables remain positive).  We then employ the
resulting models to show which results of the main text carry over to the more general environment and which
may require further restrictions.  As before, unless specified otherwise, x and q are assumed to be non-
negative, and γ = 1 if the liability regime is SL (strict liability) while γ = 2 if the liability regime is NL (no
liability); NEG (negligence) will be handled as a composite of the two regimes and will be more precisely
defined when needed.  For readability we will separately analyze the SL and NL settings, though we will
return to the parametrized version for the discussion of firm and social preferences over regimes.  In what
follows, the expected harm is denoted as H(x, q).

   Assumptions
B1)  The representative consumer’s utility function, U(q, z; x, γ) is quasilinear in form:

U(q, z; x, γ) = u(q) + z - (γ - 1)H(x, q)
where z is the consumer’s numeraire good and u(q) is the consumer’s direct utility for the good
of interest.  The consumer faces the budget constraint pq + z < I, where I > 0 is income and p
is the (positive) price of the q-good; I is assumed sufficient to guarantee that the consumer
always consumes positive amounts of the consumer’s decision variable, q and z, so that the
demand for q is independent of I.  Assumptions on u are that:

i) u(q) is twice continuously differentiable for all q > 0;
ii) u(q) > 0, uN(q) > 0, and uO(q) < 0 for all q > 0.

B2)  Expected Harm is modeled by the function H(x, q) which is thrice continuously differentiable
with the following properties:

i) H(x, 0) = 0 for all x > 0; H(x, q) > 0 for all x > 0, and all q > 0;
ii)  Hx(x, q) < 0 and Hq(x, q) > 0 for all (x, q) > 0; Hx(x, 0) = 0 for all x > 0;
iii)  H(x, q) is convex in (x, q) with strictly positive own-second partials:

Hxx(x, q) > 0; Hqq(x, q) > 0 for all (x, q) > 0;
iv) Hxq(q, x) <  0 for all (x, q) > 0;
v) MHqq(x, q)/Mx < 0 for all (x, q) > 0.

B3)  Production cost is modeled as in the main text: C(x, q) = c(x)q, with c(C) twice continuously
differentiable, c(x) > 0, cN(x) > 0, and cO(x) > 0 for all x > 0.

B4)  Optimization.  All optimization problems have a unique interior maximum and all the respective
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2  Assumption B2(iii), when applied to H(x, q) = h(x)q2, means that h(x) satisfies the side requirement that
hO(x)h(x) > 2(hN(x))2, which in turn implies the condition in the discussion of the sign of dq^/dγ in the main text.

payoff functions (U, W, ΠSL, and ΠNL) have second-order matrices that are negative definite in
 a sufficiently large neighborhood of these optima.

Assumption B1 concerns the representative consumer’s optimization problem.  The utility function,
u(q), is strictly increasing and concave, so the consumer’s (inverse) demand function for the q-good can be
written as:

p(q; x, γ) = max [uN(q) - (γ - 1)Hq(x, q), 0],

with derivative dp(q; x, γ)/dq = min [uO(q) - (γ - 1)Hqq(x, q), 0].  When γ = 1 this simplifies to:

pSL(q) = uN(q) > 0, for all q > 0,
and dpSL(q)/dq = uO(q) < 0 for all q > 0,

where both properties come from Assumption B1.  When γ = 2, under Assumption B1, the inverse demand
function and derivative simplify to:

 pNL(q; x) = max [uN(q) - Hq(x, q), 0] > 0,
and dpNL(q; x)/dq = uO(q) - Hqq(x, q) < 0 when pNL(q; x)  is positive.

The derivative dpNL(q; x)/dq is negative when pNL(q; x) is positive because of Assumptions B1(ii) and B2(iii).
In order to avoid the kink in the NL case (in the inverse demand function), and assure that the willingness to
pay is everywhere positive, we assume that uN(q) - Hq(x, q) > 0 over the relevant ranges of the x- and q-
variables.  This amounts to asserting that there are (x, q) combinations such that the product is socially
valuable, and that all of the optima satisfy this requirement.  Thus we take the inverse demand functions for
the SL and NL cases to be the following:

pSL(q) = uN(q) > 0, for all q > 0,
and pNL(q; x) = uN(q) - Hq(x, q) > 0 over the relevant range of (x, q).

Assumption B2 provides basic properties of the expected harm function; we have assumed that third
derivatives are continuous due to the need for property B2(v), which we discuss in more detail below.  Note
that this is an expected harm function, so it is reflects both the probability of harm taking on specific possible
values as well as those possible values.  Assumption B2(i) states that when the quantity consumed is zero then
the expected harm is zero, independent of the level of care taken; positive levels of use generate a positive
level of expected harm, for any given level of care.  Assumption B2(ii) states that the level of expected harm
is decreasing in the level of care taken but increasing in the amount consumed; it further asserts that when
usage (q) is zero, then as with total expected harm, the marginal effect of increasing x does not change the
level of expected harm.  Assumption B2(iii) states that expected harm is a convex function of x and q, and
that the own second partials are strictly positive.  Thus, increases in care have diminishing returns with
respect to care, but increases in usage increase marginal (with respect to usage) expected harm.  Note that
B2(iii) rules out expected harm models of the traditional form (h(x)q) but allows for the one considered in
the main text (h(x)q2) which focuses around cumulative expected harm.2  Assumption B2(iv) states that an
increase in the level of use (q) raises the marginal benefit (- Hx(x, q)) of care; alternatively put, the cross
derivative, Hxq, is negative; this, together with the fact that convexity implies that Hxx(x, q)Hqq(x, q) >
(Hxq(x, q))2 means that Hxq, while negative by assumption, is also restricted in magnitude.  Lastly, Assumption



Technical Appendix page 8

3  Marino (1988a) instead considers the case wherein Hxq(x, q) > Hx(x, q)/q for all (x, q) > 0.  This is not
consistent with our Assumption B2(v) which assumes that increasing care ameliorates the acceleration of harm arising
from increased use.

B2(v) reflects an intuitive understanding that an increase in the level of care ameliorates the acceleration
effect that usage has on expected harm (since Hqq is positive). 

The convexity of H (Assumption B2(iii)) also implies that, for positive levels of output, the marginal
expected harm exceeds the average expected harm: 
 

Hq(x, q) > H(x, q)/q for all (x, q) > 0.

To see this, observe that H(x, q) = I[0, q]Hq(x, t)dt,  since by Assumption B2(i), Hx(x, 0) = 0.  Since Hqq > 0,
Hq(x, t) is increasing in t.  Thus, the average of the area under the function Hq(x, t) as t ranges from 0 to q,
(1/q)I[0, q]Hq(x, t)dt, must be less than the upper end of that curve, Hq(x, q), yielding the desired result.  As will
be seen below, this plays an important role in the discussion of the firm’s preference for strict liability over
no liability.

Finally, Assumption B2(v) implies that:

Hxq(x, q) < Hx(x, q)/q for all (x, q) > 0.

To see this (keep in mind that, by assumption, both sides of the above inequality are negative), observe that
Hx(x, q) = I[0, q]Hxq(x, t)dt, since by Assumption B2(ii), Hx(x, 0) = 0.  Thus, Hx(x, q) - Hxq(x, q)q >

< 0 as
MHxq(x, q)/Mq <> 0.  While this last derivative is not particularly obvious, MHxq(x, q)/Mq = MHqq(x, q)/Mx, which
(by Assumption B2(v)) is negative.  Thus, we know that Hx(q, x) - Hxq(x, q)q > 0, as claimed.  We shall make
use of this property later, too.3

Assumption B3 uses the same production cost function, c(x)q, as in the main text.  We maintain the
same assumption here so as to highlight the effect of the expected harm function on social optimality and on
firm optimal choices of x and q.

Assumption B4 provides sufficient conditions that allow us to employ the first order conditions for
all of our maximization models to characterize an (interior) optimum.  Furthermore, the Assumption requires
that at the respective (unique) optima, the sufficient conditions hold for a large enough portion of the space
to allow for comparisons of the alternative equilibria and optimal outcomes.  

Comparison of SL and NL regimes with the Efficient Outcome.
First, consider the (x, q) combination that maximizes social welfare.  Denote social welfare as

W(x, q), so that:

W(x, q) = u(q) - H(x, q) - c(x)q.

Consider the result of solving the following single-variable problem, where we treat q as a parameter:

maxx W(x, q).

The optimal solution function for this problem, x(q), satisfies the first order condition - Hx(x, q) - cN(x)q =
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0; second order conditions are clearly satisfied, namely Wxx(x(q), q) < 0.  Totally differentiating the first order
condition yields the derivative:

dx(q)/dq = Wxq/(-Wxx), where Wxq(x(q), q) = - Hxq(x(q), q) - cN(x(q)).

Using the first-order condition to re-express Wxq(x(q), q), it is straightforward to find that:

Wxq(x(q), q) = - Hxq(x(q), q) + Hx(x(q), q)/q > 0

from the earlier discussion employing Assumption B2(v).  Thus, dx(q)/dq > 0 for the single-variable problem.

Now let us turn to the full optimization problem, namely:

max(x,q) W(x, q).

Under Assumption B4, the first-order-conditions characterize the social optimum in (x, q):

Wx = - Hx(x, q) - cN(x)q = 0; (B.1)
and Wq = uN(q) - Hq(x, q) - c(x) = 0. (B.2)

Solving the equation (B.1), Wx = 0, yields (for arbitrary q) the socially-optimal level of care as a
function of the level of output, denoted again as xW(q).  However, this is exactly the same as that derived in
the single-variable problem analysis above, so we immediately know that xW(q) is increasing in q:  dxW(q)/dq
= Wxq(x, q)/(-Wxx(x, q)) > 0.  This, in turn, means that Wxq(x, q) > 0 along the entire path xW(q).  Notice also
that Wxq > 0 means that q and x are complements along the path xW(q)  in the sense that increasing q raises
the marginal contribution of x to welfare.

Solving the second first-order condition (Wq = 0) yields, for arbitrary x, the level of socially-optimal
output as a function of the level of care, denoted as qW(x), and in a similar manner one finds that dqW(x)/dx
= Wxq/(-Wqq).  Unfortunately, the same trick as used for the x-variable cannot be used for the q-variable:  in
general, Wxq(x, q) can change sign along the path qW(x).  However, since negative definiteness (and the
assumption of interiority of the solution) means that the solution occurs where the xW- and qW-functions cross,
denoted as (x^ W, q^ W), Wxq(x, q) must be positive at least in a neighborhood of the optimum, so that the slope
of qW(x), dqW(x)/dx = Wxq(x, q)/(-Wqq(x, q)), is positive (at least in a neighborhood of the social optimum).

Thus, when graphed in (x, q)-space, the slope of the curve xW(q) is given by 1/(dxW(q)/dq), so that
the issue of the relative position of this curve and that of the curve qW(x) is given by whether 1/(dxW(q)/dq) ><
dqW(x)/dx; that is, by whether (-Wxx)/Wxq 

>
< Wxq/(-Wqq).   Since at the optimum the determinant of the second-

order terms of W is positive, then WxxWqq > (Wxq)
2, independent of the sign of Wxq.  However since (locally)

Wxq > 0 then both curves are upward-sloping and the curve xW(q) cuts the curve qW(x) from below, as was
illustrated in the main text.

Next, consider the strict-liability regime.  The firm’s profit function under strict liability is:

ΠSL(x, q) = pSL(q)q - H(x, q) - c(x)q.

Assumption B4 guarantees a unique (interior) optimum for the firm’s decision problem in (x, q) which is
characterized by the first-order conditions for the firm:
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ΠS
x
L = - Hx(x, q) - cN(x)q = 0; (B.3)

and ΠS
q
L = uN(q) + uO(q)q - Hq(x, q) - c(x) = 0. (B.4)

Note that the first-order condition for care, equation (B.3), is the same as that for maximizing welfare,
equation (B.1), so that it is immediate that the optimal level-of-care function under strict liability (for an
arbitrary level of q), xSL(q), equals that for maximizing welfare; that is, xSL(q) = xW(q) for all q.  Moreover,
applying Assumption B2(v) again, equation (B.3) yields that ΠS

xq
L(x, q) > 0 along xSL(q).  The optimal quantity

function, qSL(x), however is not the same as qW(x), as becomes clear since the second term in the first-order
condition for quantity, equation (B.4), does not appear in the first-order condition for quantity in the welfare
conditions, equation (B.2).  Evaluating  ΠS

q
L(x, q) at qW(x) shows that ΠS

q
L(x, qW(x)) = uO(qW(x))qW(x) < 0 from

Assumption B1(ii); that is, the SL-firm would want to reduce output at any given level of x.  Thus, qSL(x) <
qW(x) for all x:  in (x, q)-space, the curve for qSL(x) is everywhere below that for qW(x).  This immediately
tells us that the solution to the first-order conditions for the firm under strict liability is “south-and-west” of
that for welfare maximization:  (x^ SL, q^ SL) < (x^ W, q^ W), and (as illustrated in the main text) any policy that
worked to increase the quantity provided by the firm would result (under strict liability) in a higher level of
care provided.  Moreover, if the quantity was increased to force q^ SL to equal q^ W, then the firm would provide
the associated socially-optimal level of care, x^ W, as movements will be along xW(q).  As with qW(x), the slope
of qSL(x) in a neighborhood of (x^ SL, q^ SL) must be positive, but this need not hold over the entire space.

The slope of xSL(q), dxSL(q)/dq, is readily seen to be ΠS
xq
L(x, q)/(-Πxx(x, q)); since xSL(q) = xW(q) and

ΠS
xx
L(x, q) < 0, then this means that ΠS

xq
L(x, q) > 0 everywhere along xSL(q).  In (x, q) space, the slope of the

curve xSL(q) slope is given 1/ dxSL(q)/dq = (- ΠS
xx
L(x, q))/ ΠS

xq
L(x, q).  On the other hand, while the slope of the

curve qSL(x), dqSL(x)/dx, is readily found to be ΠS
xq
L(x, q)/(- ΠS

qq
L(x, q)), the sign of ΠS

xq
L(x, q) is only guaranteed

to be positive in a neighborhood of where the two curves cross.  Again, employing Assumption B4 we know
that ΠS

xx
L ΠS

qq
L > (ΠS

xq
L)2, so the curve xSL(q) cuts the curve qSL(x) from below.

Finally, we consider the no-liability regime.  Here the consumer does not ignore the cost of expected
harm since she will not be compensated and, as shown earlier, demand is now conditioned on the level of care
chosen, so the inverse demand function is pNL(q; x) as derived earlier.
Therefore the firm’s payoff function is:

ΠNL(x, q) = (uN(q) - Hq(x, q))q - c(x)q.

Again, Assumption B4 guarantees a unique (interior) optimum for the firm’s decision problem in (x, q),
which is characterized by the first-order conditions for the firm:

ΠN
x

L = - Hxq(x, q)q - cN(x)q   = 0; (B.5)
and ΠN

q
L = uN(q) + uO(q)q - Hqq(x, q)q - Hq(x, q) - c(x) = 0. (B.6)

Comparing equation (B.5) with equation (B.1) allows us to locate the firms’s choice-of-care function under
no liability, xNL(q), relative to the socially optimal level, xW(q).  Once again, recalling the result that Hxq(x, q)
< Hx(x, q)/q for all (x, q) > 0, and evaluating ΠN

x
L(x, q) at xW(q), one finds that ΠN

x
L(xW(q), q) > 0 for each

value of q.  Thus, xNL(q) > xW(q) for each q: the NL firm over-supplies (in comparison with the socially-
efficient level) care when q is given.  Note, as we will see below, this does not address the level of care
provided in equilibrium, as the quantities of output may differ.  Thus we know that:

xNL(q) > xW(q) = xSL(q) for all q.

Turning to the issue of the NL-firm’s choice of output given an arbitrary level of care, x, compare
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equation (B.6) with equation (B.4); we make this comparison because both the SL-firm and the NL-firm
exploit their market power in choosing the level of output to produce.  Evaluating ΠN

q
L(x, q) at the function

that solves equation (B.4), qSL(x), yields ΠN
q

L(x, qSL(x)) = - Hqq(x, qSL(x))qSL(x) < 0 by Assumption B2(iii).
Thus, given any level x, the NL-firm would reduce output from that which the SL-firm would choose; that
is, qNL(x) < qSL(x).  Bringing this together with the welfare-maximization results yields:

qW(x) > qSL(x) > qNL(x) for all x.

Again, we consider how the sets of curves are related, at least at the equilibrium solutions.
Differentiating ΠN

x
L(x, q) yields ΠN

x q
L(x, q) = - Hxq(x, q) - Hxqq(x,q)q - cN(x).  Substituting from ΠN

x
L(x, q) = 0

yields ΠN
x q

L(x, q) = - Hxqq(x,q)q, so employing Assumption B2(v) means that ΠN
x q

L(x, q) > 0 for all (x, q) along
xNL(q).  This implies that:

dxNL(q)/dq = ΠN
x q

L(x, q)/(-ΠN
x x

L(x, q)) > 0.

As with the other q-functions, it is not possible to sign ΠN
x q

L(x, q) along qNL(x) except in a
neighborhood of the optimal solution for the NL-firm, in which case it must be positive, yielding:

dqNL(x)/dx = ΠN
x q

L(x, q)/(-ΠN
q q

L(x, q)) > 0 in a neighborhood of the maximum, (x^ NL, q^ NL).

Thus, both these curves are upward-sloping near the maximum profit for the NL-firm.  As earlier, when
viewed in (x, q)-space we need to invert the derivatives for the x-curves, when comparing them with the q-
curves, and second order conditions for the profit function under no liability guarantee that xNL(q) crosses
qNL(x) from below.

Given the earlier results about the relationship between the q-curves and the result that xNL(q) >xW(q),
the NL-equilibrium is not directly comparable to the SL-equilibrium, nor is it comparable to the welfare-
optimum; that is; in general (x^ NL, q^ NL) … (x^ W, q^ W).  As was shown in the main text, when H(x, q) = h(x)q2, then
x^ NL = x^ W (but q^ NL < q^ W).  However, this result (that under no liability the firm provides the socially optimal
level of care) is due to employing a specific functional form; to see this simply modify the expected harm
function again.  We can (in general) show that  q^ NL < q^ W whenever x^ NL < x^ W, simply by reference to the earlier
results on qNL(x) versus qW(x).  Also, evaluating ΠN

x
L(x, q) at (x^ W, q^ W) yields ΠN

x
L(x^ W, q^ W) > 0, so at q = q^ W,

the NL-firm would wish to expand the level of care above x^ W:  the NL-firm is inefficient in its choice of care
if forced (or induced) to choose output at the socially-efficient level.

Firm Preferences over Strict vs No Liability
For convenience, recall that the profit function for a firm under strict liability is:

ΠSL(x, q) = pSL(q)q - H(x, q) - c(x)q,

while that for a firm under no liability is:

ΠNL(x, q) =  pNL(q; x)q - c(x)q = (pSL(q) - Hq(x, q))q - c(x)q.

In a parallel manner to the main text, we now introduce a parametrized version of the profit function,
Π(x, q; γ), where γ = 1 corresponds to SL and γ = 2 corresponds to NL:

Π(x, q; γ) = (pSL(q) - (γ - 1)Hq(x, q))q - (2 - γ)H(x, q) - c(x)q.
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Under Assumption B4, for all γ in the interval [1, 2], the first order conditions:

Πx(x, q; γ) = - (γ - 1)Hxq(x, q)q - (2 - γ)Hx(x, q) - cN(x)q = 0 (B.7)
and Πq(x, q; γ) = uN(q) + uO(q)q - (γ - 1){Hqq(x, q)q + Hq(x, q)} - (2 - γ)Hq(x, q) - c(x) = 0 (B.8)

 yield the (continuous and continuously differentiable) solution functions denoted as (x^ (γ), q^ (γ)).  Then using
the envelope theorem,

dΠ(x^ (γ), q^ (γ); γ)/dγ = - Hq(x
^ (γ), q^ (γ))q^ (γ) + H(x^ (γ), q^ (γ)).

From the discussion concerning the implications of the convexity of H earlier in this Appendix, we know that
the marginal expected harm exceeds the average expected harm, so this means that the above derivative is
negative:  the firm prefers SL to NL, since increasing γ lowers optimized profits.

As in the main text and Appendix A, we can totally differentiate the first order conditions for
Π(x, q; γ) and obtain the following results for the signs of dx^ (γ)/dγ and dq^ (γ)/dγ:

sign(dx^ (γ)/dγ) = sign(Πqq(Hxqq - Hx) - ΠxqHqqq);

sign(dq^ (γ)/dγ) = sign(Πxq(Hx - Hxqq) + ΠxxHqqq).

These sign conditions are due to the negative definiteness of ΠSL and ΠNL (and thus of  Π(x, q; γ)) with respect
to (x, q) from assumption B4.  With the more general expected harm function employed in this Appendix,
while elements of the right-hand-sides of the above equations can be signed, the entire expression cannot be
signed for all possible values.  However, one can show that it is not possible for q^  to be increasing in γ
simultaneously with x^  decreasing in γ; such a sign pattern is mutually exclusive.  In other words, in moving
from SL to NL, the firm would not choose to reduce the level of care and simultaneously try to sell more
output.  This is because as the firm is moving from SL to NL demand is falling since consumers expect to
have to cover their own expected harm, forcing a lower price; increasing output simply forces a yet further
lower price. All other sign patterns are possible and we summarize the results as follows:

dq^ (γ)/dγ > 0 implies dx^ (γ)/dγ > 0;
dx^ (γ)/dγ < 0 implies dq^ (γ)/dγ < 0;
dx^ (γ)/dγ > 0 and dq^ (γ)/dγ < 0 can occur;
dx^ (γ)/dγ < 0 and dq^ (γ)/dγ > 0 cannot occur.

Recall from the main text that when H(x, q) = h(x)q2 is a convex function, then we can show that dx^ (γ)/dγ
> 0 and dq^ (γ)/dγ < 0 for all γ in the interval [1, 2]:  the shift from SL to NL results in an increase in care
provided but a fall in output provided to the market.  In the more general expected harm model, at γ = 1,
dq^ (γ)/dγ < 0 and dx^ (γ)/dγ > 0, but the result is limited to γ = 1 (i.e, is local).

On the Instability of Negligence as a Policy
Again, the implication for negligence, wherein the firm is not liable if x > x^ W, but is otherwise fully

liable, is that since the consumer can observe the chosen level of care, the firm will “signal” the consumer
that the firm will be fully liable for harm by choosing x = x^ SL.  This holds since if x^ NL > x^ W, then if compliant
with negligence, the firm meets (or more than meets) the standard, but since the firm prefers SL to NL, it will
choose to violate the standard and instead produce the outcome (x^ SL, q^ SL).  On the other hand, should it be that
x^ NL < x^ W, the firm will again wish to switch regimes to SL, and it again will choose (x^ SL, q^ SL).   Since in either
possibility, upon observing x^ SL the consumer knows that perfect compensation will obtain, the consumer’s
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demand function becomes that under strict liability, pSL(q), which is what the firm desires to have happen.
Thus, once again, negligence is unstable as a policy.

The discussion in the main text about unobservable care levels carries over to the more general
expected harm function as well.  Under strict liability the consumer expects to be fully compensated and so
need not observe the level of care, while under no liability the consumer must conjecture about the level of
care taken, which in equilibrium results in x = 0 (so as to minimize production cost).

Welfare Preferences over Strict vs No Liability
Since W(x^ (γ), q^ (γ)) = u(x^ (γ), q^ (γ)) - H(x^ (γ), q^ (γ)) - c(x^ (γ))q^ (γ), then:

 dW(x^ (γ), q^ (γ))/dγ = (Wx(x
^ (γ), q^ (γ)))(dx^ (γ)/dγ) + (Wq(x

^ (γ), q^ (γ)))(dq^ (γ)/dγ).

Evaluating Πx(x, q; γ) = 0 (equation B.7) at (x^ (γ), q^ (γ)) and substituting into equation (B.1) via the cN(x)q term
yields:

Wx(x
^ (γ), q^ (γ)) = (γ - 1){Hxq(x

^ (γ), q^ (γ))q^ (γ) - Hx(x
^ (γ), q^ (γ))} < 0 for γ > 1.

Notice that at γ = 1, Wx(x
^ (γ), q^ (γ)) = 0 (as it should, since the SL-firm’s first-order care-choice condition is

the same as that for welfare maximization, equation B.1).  Evaluating Πq(x, q; γ) = 0 (equation B.8) at
(x^ (γ), q^ (γ)) and substituting into equation (B.2) via the term c(x) - uN(q), we obtain:

Wq(x
^ (γ), q^ (γ)) = - uO(q^ (γ))q^ (γ) + (γ - 1)Hqq(x

^ (γ), q^ (γ)) > 0 for all γ.

Thus, there are two “simple” settings wherein the effect of shifting regime on welfare can be predicted:

1) for γ = 1, since Wx(x
^ (γ), q^ (γ)) = 0 and dq^ (γ)/dγ < 0, then dW(x^ (γ), q^ (γ))/dγ < 0;

and 2)  for γ > 1, if for all γ dx^ (γ)/dγ > 0 occurs jointly with dq^ (γ)/dγ < 0, then dW(x^ (γ), q^ (γ))/dγ < 0.

For the two other possible combinations (dq^ (γ)/dγ > 0, which implies dx^ (γ)/dγ > 0, and dx^ (γ)/dγ < 0 which
implies that dq^ (γ)/dγ < 0 for γ > 1), then the effect on welfare is determined by the relative magnitudes of the
two terms in dW(x^ (γ), q^ (γ))/dγ and cannot be signed ex ante.

Summary of Results from this Appendix

Conditional on the restrictions placed on the expected harm function and the need for concavity of
welfare and profit functions, many of the primary results obtained in the main text for a specific expected
harm function extend to a more general version:

1)  xSL(q) = xW(q) < xNL(q); all are upward sloping functions;

2)  qW(x) > qSL(x) > qNL(x); all are upward sloping at the respective W, SL, NL optima, all are cut
from below by the respective x-functions at the respective optima;

3)  (x^ SL, q^ SL) < (x^ W, q^ W); (x^ NL, q^ NL) … (x^ W, q^ W);

4)  if the NL firm is forced to produce q = q^ W then xNL(q^ W) > x^ W;
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5)  firms prefer SL to NL;

6)  negligence without employing extra penalties for not employing the socially-efficient level of
care is unstable: if care is observable, the firm will choose to provide (x^ SL, q^ SL) instead.

7)  Society’s preferences are more difficult to characterize in the more general expected harm case.
 If dx^ (γ)/dγ > 0 occurs jointly with dq^ (γ)/dγ < 0, then dW(x^ (γ), q^ (γ))/dγ < 0 for all γ; at γ =
1, dW(x^ (γ), q^ (γ))/dγ < 0, but this latter result is very local.  However, once again, even if,
from an initial position, NL was more efficient than SL, an exogenous increase in output
level (e.g., due to a regulator of market performance) would increase the level of care so that
the SL-outcome would eventually be more efficient than the corresponding NL-outcome.

8)  SL provides a resilient policy regime in that:
a) increases in q will lead to increases in x converging in the direction of  (x^ W, q^ W);
b) this means that eventually SL is more efficient than NL, even if (x^ SL, q^ SL) < (x^ W, q^ W), since

the xNL(q)-path does not lead to the social optimum; 
c) firms will endeavor to undermine negligence; 
d)  unobservability of the level of care does not undermine SL while it does undermine NL.

Technical Appendix, part C:  Material for Oligopoly Analysis of Quadratic Cumulative Harm Model

In the interests of brevity, we derive only the equations necessary to characterize the symmetric
equilibria.  Our maintained assumptions (e.g., the convexity of expected harm in (x, q)) are sufficient to imply
that the matrix of second partial derivatives is negative definite at the associated solution.

Independent Cumulative Harm
Strict Liability.  Firm i’s profits are given by Π i

SL(xi, qi; n) = (α - βQ)qi - h(xi)(qi)
2 - c(xi)qi.  The first-

order conditions are:

Π i
S

x
L  = -hN(xi)(qi)

2 - cN(xi)qi = 0;
Π i

L
q
S  = α - 2βqi - βQ-i - 2h(xi)qi - c(xi) = 0,

where Q-i / Q - qi is the aggregate output of all other firms.  At a symmetric equilibrium, all firms will choose
the same output and care levels; incorporating this symmetry yields equations (9)-(10) from the text.

No Liability.  Firm i’s profits under no liability are given by Π i
NL(xi, qi; n) = (α - βQ - 2h(xi)qi)qi -

c(xi)qi. The first-order conditions are:

Π i
N

x
L  = -2hN(xi)(qi)

2 - cN(xi)qi = 0;
Π i

N
q
L  = α - 2βqi - βQ-i - 4h(xi)qi - c(xi) = 0.

At a symmetric equilibrium, all firms will choose the same output and care levels; incorporating this
symmetry yields equations (11)-(12) from the text.

Joint Cumulative Harm
Strict Liability.  Using the pure market share approach (wherein firm i is responsible for the share

μ(xi)qi/M  of the expected harm), firm i’s profits are given by π i
JSL(xi, qi; n) = (α - βQ)qi - λμ(xi)qiM - c(xi)qi.

The use of the lower-case π distinguishes this from the “adjusted” profit function that will be used in the main
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text.  It will be convenient to define the total contribution to exposure for all firms except firm i:  M-i = M -
μ(xi)qi.  The first-order conditions are:

π i
J
x
SL  = -λ[2μ(xi)μN(xi)(qi)

2 + μN(xi)qiM-i] - cN(xi)qi = 0;
π i

J
q
SL  = α - 2βqi - βQ-i - λ[2(μ(xi))

2qi + μ(xi)M-i] - c(xi) = 0.

Using symmetry, we can find a system of equations that characterizes the symmetric equilibrium care and
output levels: 

-λ(n + 1)μ(x)μN(x)q2 - cN(x)q = 0; (C.1)
α - (n + 1)βq - λ(n + 1)(μ(x))2q - c(x) = 0. (C.2)

Notice that equations (13) and (C.1) are not the same; that is, for n > 2, noncooperative firms will provide less
care than would be socially-optimal, for a given level of output, q, and number of firms, n.

Next, consider the “adjusted” profit function, wherein firm i’s liability for harm is given by the share
(2n/(n + 1))μ(xi)qi/M.  In this case, profit is Π i

JSL(xi, qi; n) = (α - βQ)qi - (2n/(n + 1))λμ(xi)qiM - c(xi)qi. The
first-order conditions are:

Π i
J
x
SL = -λ(2n/(n + 1))[2μ(xi)μN(xi)(qi)

2 + μN(xi)qi M-i] - cN(xi)qi = 0;
Π i

JL  = α - 2βqi - βQ-i - λ(2n/(n + 1))[2(μ(xi))
2qi + μ(xi)M-i] - c(xi) = 0.

At a symmetric equilibrium, all firms will choose the same output and care levels; incorporating this
symmetry yields equations (15)-(16) from the text.

No Liability.  Firm i’s profits are given by Π i
JNL(xi, qi; n) = (α - βQ - 2λMμ(xi))qi - c(xi)qi.  The first-

order conditions are:

Π i
J
x
NL  = -2λ[2μ(xi)μN(xi)(qi)

2 + μN(xi)qi M-i] - cN(xi)qi = 0;
Π i

J
q
NL  = α - 2βqi - βQ-i - 2λ[2(μ(xi))

2qi + μ(xi)M-i] - c(xi) = 0.

At a symmetric equilibrium, all firms will choose the same output and care levels, yielding equations (17)-
(18) from the text.

Remark.  It was claimed in the text that under joint cumulative harm the optimal level of care and the
equilibrium level of care under no liability are (1) invariant to the number of firms; and (2)  equal to each
other.

Proof of (1).  To see that the functions qJW(x; n) and xJW(q; n) cross at the same x value for all n, first solve
equation (13) for q~JW(x; n) = cN(x)/(-2λnμ(x)μN(x)) and solve equation (14) for qJW(x; n) = (α - c(x))/n[β +
2λ(μ(x))2].  Then, setting these two functions equal to each other yields an equation for x that is independent
of n:  cN(x)/(-2λμ(x)μN(x)) = (α - c(x))/[β + 2λ(μ(x))2].

To see that the functions qJNL(x; n) and xJNL(q; n) cross at the same value for all n, first solve equation (17)
for q~JNL(x; n) = cN(x)/(-2λ(n + 1)μ(x)μN(x)) and solve equation (18) for qJW(x; n) = (α - c(x))/(n + 1)[β +
2λ(μ(x))2].  Then, setting these two functions equal to each other yields an equation for x that is independent
of n:  cN(x)/(-2λμ(x)μN(x)) = (α - c(x))/[β + 2λ(μ(x))2].

Proof of (2).  Simply note that the equations defining x are the same for case JW and for case JNL.



Technical Appendix page 16


