WEB APPENDIX

Configuration $\{T C\}$

A second possible candidate for an equilibrium involves $\pi_{C} \geq t_{C}$ (where recall that $t_{C} \geq \pi_{2}^{*}$; since any $t_{C}<\pi_{2}^{*}$ is payoff-equivalent to $t_{C}=\pi_{2}^{*}$ for $\left.P_{I}\right)$. To obtain this candidate, we maximize $\hat{u}_{I}\left(\pi_{C} ; \hat{S}_{C} \pi_{C}\right.$; $\left.t_{C}\right)$), yielding

$$
\left[\pi_{C} \boldsymbol{\delta}-k_{P}-\hat{S}_{C}\left(\pi_{C} ; t_{C}\right)\right] f\left(\pi_{C}\right)+\hat{S}_{C}^{\prime}\left(\pi_{C} ; t_{C}\right)\left[1-F\left(\pi_{C}\right)\right]=0
$$

Substituting $\hat{S}_{C}\left(\pi_{C} ; t_{C}\right)=2\left[\pi_{C} \delta+k_{D}\right]-\gamma_{C}\left[t_{C} \delta+k_{D}\right]$ and $\hat{S}_{C}{ }^{\prime}\left(\pi_{C} ; t_{C}\right)=2 \delta$, and re-arranging implies that an interior optimum (if one exists) is defined implicitly by:

$$
h\left(\pi_{C}\right)=f\left(\pi_{C}\right) /\left[1-F\left(\pi_{C}\right)\right]=2 \delta /\left\{k+\pi_{C} \delta+k_{D}-\gamma_{C}\left[t_{C} \delta+k_{D}\right]\right\} .
$$

This equation implicitly describes P_{1} 's best response π_{C} to P_{2} 's belief t_{C}; to be an equilibrium, the marginal type, denoted $\hat{\pi}_{c}$, must be a best response to itself. Thus, a second candidate for an equilibrium is defined implicitly by

$$
h\left(\hat{\pi}_{C}\right)=f\left(\hat{\pi}_{C}\right) /\left[1-F\left(\hat{\pi}_{C}\right)\right]=2 \boldsymbol{\delta} /\left\{k+\left(1-\gamma_{C}\right)\left[\hat{\pi}_{C} \delta+k_{D}\right]\right\}
$$

Again, it is clear that $\hat{\pi}_{C}$ so-defined is less than $\bar{\pi}$ and Assumption 2 ' ensures that $\hat{\pi}_{C}>\underline{\pi}$. However,
notice that $\hat{\pi}_{C} \geq \pi_{2}^{*}$ (as required) if and only if $2 \delta /\left\{k+\left(1-\gamma_{C}\right)\left[\hat{\pi}_{C} \delta+k_{D}\right]\right\} \geq \delta / k$; that is, if and only if γ_{C} $\geq\left[\hat{\pi}_{C} \delta-k_{P}\right] /\left[\hat{\pi}_{C} \delta+k_{D}\right]$. This cannot hold under Assumption $3\left(\gamma_{C} \leq\left[\pi_{2}^{*} \delta-k_{P}\right] /\left[\pi_{2}^{*} \delta+k_{D}\right]\right)$, except possibly for $\hat{\pi}_{C}=\pi_{2}^{*}$, which is already dominated by $\pi_{C}{ }^{*}$ (see the proof in the paper's Appendix). Thus, under Assumption 3, there is a unique equilibrium involving confidential settlements, which is derived in the paper's Appendix.

If we relax Assumption 3, then this candidate $\left(\hat{\pi}_{c}\right)$ for an equilibrium will exist. However, it can be shown that (if P_{2} expects the marginal defendant type in the first stage to be $\hat{\pi}_{C}$), then P_{l} would do better by defecting to the marginal type $\pi_{C}{ }^{*}$. Thus, there can never be a pure strategy equilibrium involving $\hat{\pi}_{C}$.

To see this, notice that in the candidate for an equilibrium involving $\hat{\pi}_{C}, P_{1}$ demands $\hat{S}_{C}=$
(2- $\left.\gamma_{C}\right)\left[\hat{\pi}_{C} \delta+k_{D}\right]$, which is accepted by all defendant types with $\pi \geq \hat{\pi}_{C}$ and rejected by all defendant types with $\pi<\hat{\pi}_{C}$. This results in a payoff for P_{I} of $\hat{u}_{I}\left(\hat{\pi}_{C} ; \hat{S}_{C}\left(\hat{\pi}_{C} ; \hat{\pi}_{C}\right)\right.$. On the other hand, if P_{I} were to demand $S_{C}{ }^{*}$ rather than \hat{S}_{C}, then all types $\pi \in\left[\pi_{C}{ }^{*}, \bar{\pi}\right]$ would accept $S_{C}{ }^{*}$ rather than go to trial (given that P_{2} 's beliefs and behavior are unchanged by this unobservable defection, accepting $S_{C}{ }^{*}$ and continuing as before with P_{2} results in lower payments for all D types $\left.\pi \in\left(\pi_{C}{ }^{*}, \bar{\pi}\right]\right)$. This would result in P_{I} receiving the payoff $\tilde{u}_{I}\left(\pi_{C}{ }^{*}\right.$; $\left.\tilde{S}_{C}\left(\pi_{C}{ }^{*}\right)\right)>\tilde{u}_{I}\left(\hat{\pi}_{C} ; \tilde{S}_{C}\left(\hat{\pi}_{C}\right)\right)=\hat{u}_{I}\left(\hat{\pi}_{C} ; \hat{S}_{C}\left(\hat{\pi}_{C} ; \hat{\pi}_{C}\right)\right)$, where the inequality follows since π_{C}^{*} maximizes $\tilde{u}_{I}\left(\pi_{C} ;\right.$ $\widetilde{S}_{C}\left(\pi_{C}\right)$) and the equality follows from the continuity of $u_{I}\left(\pi_{C} ; t_{C}\right)$ at the point $\pi_{C}=t_{C}$. Thus, there can never be a pure strategy equilibrium involving $\hat{\pi}_{C}$. QED

Claims

Claim 1. A configuration of the form $\{O T\}$ or $\{C T\}$, wherein defendant types with relatively low values of π choose settlement, while those with relatively high values of π choose trial, cannot be an equilibrium configuration.

Proof. Consider a configuration such as $\{z T\}$, where $z=O, C$. In this case, upon observing z, P_{2} will infer that $\pi \in\left[\underline{\pi}, \pi_{z \mathrm{~T}}\right]$, and will make a demand $s^{\prime}(z)<\pi_{z \mathrm{~T}} \delta+k_{D}$. To see this, note that P_{2} will choose π_{2} to maximize

$$
w_{2}\left(\pi_{2} ; z\right)=\int_{A}\left(\pi \delta-k_{P}\right) f(\pi) \mathrm{d} \pi / F\left(\pi_{z T}\right)+\tilde{s}\left(\pi_{2}\right)\left[F\left(\pi_{z T}\right)-F\left(\pi_{2}\right)\right] / F\left(\pi_{z T}\right),
$$

where $A \equiv\left[\underline{\pi}, \tilde{\pi}_{2}\right]$ and $\tilde{s}\left(\pi_{2}\right)=\pi_{2} \delta+k_{D}$, subject to the constraint that $\pi_{2} \geq \underline{\pi}$. Differentiating and collecting terms implies that the optimal value of π_{2} is given by $\max \left\{\underline{\pi}, \pi_{2}{ }^{\prime}\right\}$, where $f\left(\pi_{2}{ }^{\prime}\right) /\left[F\left(\pi_{z T}\right)-F\left(\pi_{2}{ }^{\prime}\right)\right]=\delta / k$. Since $\pi_{2}{ }^{\prime}<\pi_{z T}, P_{2}$'s optimal demand is $s^{\prime}(z)=\max \left\{\underline{\pi}, \pi_{2}{ }^{\prime}\right\} \delta+k_{D}<\pi_{z T} \delta+k_{D}$. The marginal type $\pi_{z T}$ is indifferent between accepting P_{l} 's settlement demand and going to trial: $S_{z}^{\prime}+\gamma_{z} s^{\prime}(z)=2\left[\pi_{z T} \delta+k_{D}\right]$. However, it must be that the type $\pi_{z T}+\epsilon$ (at least weakly) prefers T. By accepting P_{l} 's settlement demand, $\pi_{z T}+\epsilon$ pays $S_{z}^{\prime}+\gamma_{z}^{\prime}(z)$; however, by choosing T this defendant type pays $2\left[\pi_{z T} \delta+\epsilon \delta+k_{D}\right]$, which is clearly worse, leading to a contradiction. QED.

Claim 2. Defendant types in $\left[\underline{\pi}, \pi_{C}^{*}\right]$ are indifferent between configurations $\{T C\}$ and $\{T O\}$, while defendant types in $\left(\pi_{C}{ }^{*}, \bar{\pi}\right]$ strictly prefer $\{T C\}$.

Proof. Let $V^{*}(\pi ; \gamma)$ denote the equilibrium payoff to the defendant of type π. For $\pi \in\left[\underline{\pi}, \pi_{C}{ }^{*}\right)$, the defendant of type π goes to trial against P_{l} (and then settles with P_{2}) in both the $\{T C\}$ and $\{T O\}$ configurations, so $V^{*}(\pi, \gamma)=2\left[\pi \delta+k_{D}\right]$, which is independent of γ. For $\pi \in\left[\pi_{C}{ }^{*}, \pi_{o}{ }^{*}\right)$, the defendant of type π settles with P_{1} and goes to trial with P_{2} in the $\{T C\}$ configuration, but goes to trial against P_{1} (and then settles with $\left.P_{2}\right)$ in the $\{T O\}$ configuration. Thus, $V^{*}\left(\pi ; \gamma_{C}\right)=\left(2-\gamma_{C}\right)\left[\pi_{C} * \delta+k_{D}\right]+\gamma_{C}\left[\pi \delta+k_{D}\right] \leq V^{*}(\pi$; $\left.\gamma_{o}\right)=2\left[\pi \delta+k_{D}\right]$, with equality only at $\pi=\pi_{C}{ }^{*}$. For $\pi \in\left[\pi_{0}{ }^{*}, \pi_{2}{ }^{*}\right)$, the defendant of type π settles with P_{I} and goes to trial with P_{2} in both configurations, so $V^{*}(\pi, \gamma)=(2-\gamma)\left[\pi^{*}(\gamma) \delta+k_{D}\right]+\gamma\left[\pi \delta+k_{D}\right]$, which is strictly increasing in γ for π in this range. Finally, for $\left[\pi_{2}{ }^{*}, \bar{\pi}\right]$, the defendant of type π settles with both plaintiffs in both configurations, so $V^{*}(\pi, \gamma)=(2-\gamma)\left[\pi^{*}(\gamma) \delta+k_{D}\right]+\gamma\left[\pi_{2}^{*} \delta+k_{D}\right]$, which is strictly increasing in γ for π in this range. Since D wants to minimize his loss, he prefers the configuration with the lower value of γ, which is $\{T C\}$. QED

Claim 3. The average plaintiff strictly prefers $\{T O\}$ to $\{T C\}$.
Proof. $\mathrm{d} U_{P}{ }^{*}(\gamma) / \mathrm{d} \gamma=\mathrm{d} U_{1}{ }^{*}(\gamma) / \mathrm{d} \gamma+\mathrm{d} U_{2}{ }^{*}(\gamma) / \mathrm{d} \gamma=-\left[\pi^{*}(\gamma) \delta+k_{D}\right]\left[1-F\left(\pi^{*}(\gamma)\right)\right]$

$$
\begin{aligned}
& +\left\{\left[\pi^{*}(\gamma) \delta+k_{D}\right]-\gamma\left[\pi^{*}(\gamma) \delta-k_{P}\right]\right\} f\left(\pi^{*}(\gamma)\right) \pi^{* \prime}(\gamma) \\
& +\int_{B}\left(\pi \delta-k_{P}\right) f(\pi) \mathrm{d} \pi+\left[1-F\left(\pi_{2}^{*}\right)\right]\left[\pi_{2}^{*} \delta+k_{D}\right],
\end{aligned}
$$

where $B \equiv\left[\pi^{*}(\gamma), \pi_{2}^{*}\right]$. The expression on the second line is positive. We collect the remaining terms and define the function $M(x) \equiv \int_{A}\left(\pi \delta-k_{P}\right) f(\pi) \mathrm{d} \pi+\left[1-F\left(\pi_{2}^{*}\right)\right]\left[\pi_{2}^{*} \delta+k_{D}\right]-\left[x \delta+k_{D}\right][1-F(x)]$, where $A \equiv[x$, $\left.\pi_{2}{ }^{*}\right]$. Notice that $M\left(\pi_{2}{ }^{*}\right)=0$ and $M^{\prime}(x)=k f(x)-(1-F(x)) \delta(>,=,<) 0$ as $x(>,=,<) \pi_{2}^{*}$. Thus $M^{\prime}(x)<0$ for $x<\pi_{2}^{*}$. Since $\pi^{*}(\gamma)<\pi_{2}^{*}$, it follows that $M\left(\pi^{*}(\gamma)\right)>0 ;$ a fortiori, $\mathrm{d} U_{P}{ }^{*}(\gamma) / \mathrm{d} \gamma>0$. QED

Claim 4. When P_{l} may offer a menu of settlement demands, the following configurations cannot be equilibrium configurations: $\{z T\}, z=O, C ;\{T O C\} ;\{O C\} ;\{T C O\}$ and $\{C O\}$.

Proof. Claim 1 above argued that configurations of the form $\{z T\}$ could not be equilibrium configurations. Next, consider configuration $\{T O C\}$. Suppose, to the contrary, that there were such an equilibrium. Let $\pi_{T O}$ denote the type which is (in equilibrium) indifferent between T and O, and let $\pi_{O C}$ denote the type which is indifferent between O and C. Let $S_{O}{ }^{\prime}$ and $S_{C}{ }^{\prime}$ denote the equilibrium demands by P_{1} which are associated with open and confidential settlements, respectively. Let $s^{\prime}(T), s^{\prime}(O)$ and $s^{\prime}(C)$ denote the equilibrium demands made P_{2} following the disposition of P_{I} 's suit. From our previous analysis, we know that $s^{\prime}(T)=\pi \delta+k_{D}$ and $s^{\prime}(C)=\max \left\{\pi_{2}{ }^{*}, \pi_{O C}\right\} \delta+k_{D}$. Upon observing $S_{O^{\prime}}, P_{2}$ believes that $\pi \in\left[\pi_{T O}, \pi_{O C}\right)$ and demands s to maximize:

$$
w_{2}\left(\pi_{2} ; O\right)=\int_{A}\left(\pi \delta-k_{P}\right) f(\pi) \mathrm{d} \pi /\left[F\left(\pi_{O C}\right)-F\left(\pi_{T O}\right)\right]+\tilde{s}\left(\pi_{2}\right)\left[F\left(\pi_{O C}\right)-F\left(\pi_{2}\right)\right] /\left[F\left(\pi_{O C}\right)-F\left(\pi_{T O}\right)\right],
$$

where $A \equiv\left[\pi_{T O}, \pi_{2}\right]$, subject to the constraint that $\pi_{2} \geq \pi_{T O}$; the other constraint, that $\pi_{2} \leq \pi_{O C}$, will never bind and is therefore omitted. The solution to this problem is either at the lower boundary, implying $s^{\prime}(O)$ $=\pi_{T O} \delta+k_{D}$, or it is interior, implying $s^{\prime}(O)=\pi_{2}^{\prime} \delta+k_{D}$, where π_{2}^{\prime} is defined by $f\left(\pi_{2}^{\prime}\right) /\left[F\left(\pi_{O C}\right)-F\left(\pi_{2}^{\prime}\right)\right]=\delta / k$. The crucial point is that $\pi_{2}^{\prime}<\pi_{O C}$. Thus, $s^{\prime}(O)<\pi_{O C} \delta+k_{D}$.

Consider the marginal type $\pi_{O C}$. If this type accepts the open settlement demand, then he pays $S_{O}{ }^{\prime}$ $+\gamma_{O} s^{\prime}(O)$. On the other hand, if he accepts the confidential settlement demand, then he pays $S_{C}{ }^{\prime}+\gamma_{C}\left[\pi_{O C} \delta\right.$ $\left.+k_{D}\right]$ (either because P_{2} settles with all defendants at $\pi_{O C} \delta+k_{D}$ following a confidential settlement with P_{l} or because P_{2} engages in further screening of these defendants, in which case the marginal type goes to trial against P_{2}). Thus, the defendant of type $\pi_{O C}$ must be indifferent between these two options: $S_{O}{ }^{\prime}+\gamma_{O}{ }^{\prime}(O)$ $=S_{C}{ }^{\prime}+\gamma_{C}\left[\pi_{O C} \delta+k_{D}\right]$. In order for $\{T O C\}$ to be an equilibrium, the type $\pi_{O C}-\epsilon$ must (at least weakly) prefer O to C. For sufficiently small ϵ, accepting the open settlement demand yields the same payoff $S_{O}{ }^{\prime}+\gamma_{O} s^{\prime}(O)$. However, accepting the confidential settlement demand yields the payoff $S_{C}{ }^{\prime}+\gamma_{C}\left[\pi_{O C} \delta-\epsilon \delta+k_{D}\right]$, since P_{2} demands more than this defendant type is willing to pay to settle, resulting in a trial. Comparing these two payoffs indicates that the defendant of type $\pi_{O C}-\epsilon$ strictly prefers to accept the confidential settlement demand, which is a contradiction.

The same argument works for the configuration $\{O C\}$ since we can simply set $\pi_{T O}=\underline{\pi}$ in the proof above. Straightforward modifications also cover the cases of $\{T C O\}$ and $\{C O\}$. In the case of $\{T C O\}$, there will be marginal types $\pi_{T C}$ and $\pi_{C O}$. P_{2} 's demands will be $s^{\prime}(C)<\pi_{C O} \delta+k_{D}$ and $s^{\prime}(O)=\max \left\{\pi_{C O}, \pi_{2}\right\} \delta+k_{D}$. The marginal type $\pi_{C O}$ is indifferent between accepting P_{l} 's open settlement demand (and then either being pooled by P_{2} at the demand $\pi_{C O} \delta+k_{D}$ or being asked to pay $\pi_{2} \delta+k_{D}$ and choosing trial instead) and P_{1} 's confidential settlement demand: $S_{O}{ }^{\prime}+\gamma_{o}\left[\pi_{C O} \delta+k_{D}\right]=S_{C}{ }^{\prime}+\gamma_{C} s^{\prime}(C)$. In order for $\{T C O\}$ to be an equilibrium, the defendant type $\pi_{C O}-\epsilon$ must (at least weakly) prefer to accept P_{l} 's confidential settlement demand. Accepting P_{l} 's confidential settlement demand yields the same payoff $S_{C}{ }^{\prime}+\gamma_{C} S^{\prime}(C)$. However, accepting $P_{1}{ }^{\prime}$'s open settlement demand yields the payoff $S_{O}{ }^{\prime}+\gamma_{o}\left[\pi_{C O} \boldsymbol{\delta}-\epsilon \delta+k_{D}\right]$, since P_{2} demands more than this defendant type is willing to pay to settle, resulting in a trial. Comparing these two payoffs indicates that a defendant of type $\pi_{C O}-\epsilon$ strictly prefers to accept P_{1} 's open settlement demand, which is a contradiction. QED

Analysis of Joinder

Suppose that joinder is modeled simply as handling the two cases simultaneously. Then each of the two plaintiffs makes a settlement demand (these will be the same since the plaintiffs' situations are symmetric) and, if the demand is rejected, each will go to trial. Each case is decided separately (though π is the same), and there may be small or no economies in trial costs, since each case involves case-specific attributes as well as some common ones.

Absent economies in trial costs, each plaintiff's expected payoff under joinder is the same as if she were the sole plaintiff against D. Let $U_{0}{ }^{*}$ be the optimized expected payoff to a single plaintiff. In this case, each plaintiff's optimal demand is given by $\pi_{2}{ }^{*} \delta+k_{D}$, which is accepted by defendant types with $\pi \geq \pi_{2}{ }^{*}$ and otherwise rejected. Thus,

$$
U_{0}^{*}=\int_{A}\left(\pi \delta-k_{P}\right) f(\pi) \mathrm{d} \pi+\left[\pi_{2}^{*} \delta+k_{D}\right]\left[1-F\left(\pi_{2}^{*}\right)\right] \text {, where } A \equiv\left[\underline{\pi}, \pi_{2}^{*}\right] .
$$

Consider the following variation on the previous model. P_{1} becomes aware of D 's potential liability and files suit. P_{I} can either bargain alone with D or identify and contact P_{2} (suppose this can be done at negligible cost) and join the cases. If P_{I} bargains alone, she receives $U_{1}{ }^{*}\left(\gamma_{C}\right)$, while if she contacts P_{2}, each plaintiff receives $U_{0}{ }^{*}$. Notice that $U_{0}{ }^{*}=U_{I}{ }^{*}(1)$; since $U_{I}{ }^{*}(\gamma)$ is decreasing in γ, it follows that $U_{1}{ }^{*}\left(\gamma_{C}\right)>$ $U_{0}{ }^{*}$. Thus, P_{1} would prefer to bargain alone rather than to contact P_{2} and join the cases (assuming that economies in trial costs are sufficiently small).

Similarly, would P_{2} desire joinder? That is, would P_{2} prefer that P_{1} bargain alone (recognizing that this will entail a probability $\gamma_{C}<1$ of P_{2} learning about D following a confidential settlement) or would P_{2} prefer that P_{1} identify and contact P_{2} so as to join the suits? It is clear that $U_{2}{ }^{*}(1)>U_{0}{ }^{*}$; thus, if P_{2} is sufficiently likely to discover D 's involvement following a confidential settlement between D and P_{l}, then P_{2} would also prefer that P_{1} bargain alone rather than identifying and contacting P_{2} so as to join the cases (again, assuming that economies in trial costs are sufficiently small). By waiting, P_{2} benefits from the learning effect generated by P_{l}. Thus, we find that the sequential model is actually robust to allowing endogenous joinder, at least for some parameter values (note that γ_{C} can be made as close to 1 as necessary by increasing δ subject to maintaining Assumption 3).

In fact, being P_{l} may (but need not) involve disadvantageous leadership. Clearly, if γ_{C} is relatively large then confidentiality is not worth much to D, and thus it is not worth much to P_{l}, while P_{2} gets a large spillover. This can be seen by considering the extreme case wherein $\gamma_{C}=1$. Here P_{l} goes to trial against all D types with $\pi<\pi_{2}{ }^{*}$, while P_{2} settles with these types following P_{1} 's trial (both P_{1} and P_{2} settle with all D types with $\pi \geq \pi_{2}{ }^{*}$). Thus, $U_{1}{ }^{*}(1)<U_{2}{ }^{*}(1)$. On the other hand, it is also straightforward to verify that $U_{1}{ }^{*}(\underline{\chi})>U_{2}^{*}(\underline{\chi})$ if and only if $2\left[\pi^{*}(\underline{\chi}) \delta+k_{D}\right]\left[1-F\left(\pi^{*}(\underline{\chi})\right)\right]>k F\left(\pi^{*}(\underline{\chi})\right)$. Since $\pi^{*}(\underline{\chi})$ can be made arbitrarily close to $\underline{\pi}$ by a judicious choice of parameters, and $F(\underline{\pi})=0$, this inequality can be made to hold, meaning that P_{l} can be better off than P_{2} if confidentiality is sufficiently effective in reducing the likelihood of a follow-on suit (relative to trial).

