WebApp 1

WEB APPENDIX

Configuration {*TC*}

A second possible candidate for an equilibrium involves $\pi_C \ge t_C$ (where recall that $t_C \ge \pi_2^*$; since any $t_C < \pi_2^*$ is payoff-equivalent to $t_C = \pi_2^*$ for P_I). To obtain this candidate, we maximize $\hat{u}_I(\pi_C; \hat{S}_C(\pi_C; t_C))$, yielding

$$[\pi_{C}\boldsymbol{\delta} - k_{P} - \hat{S}_{C}(\pi_{C}; t_{C})]f(\pi_{C}) + \hat{S}_{C}'(\pi_{C}; t_{C})[1 - F(\pi_{C})] = 0.$$

Substituting $\hat{S}_C(\pi_C; t_C) = 2[\pi_C \delta + k_D] - \gamma_C[t_C \delta + k_D]$ and $\hat{S}_C'(\pi_C; t_C) = 2\delta$, and re-arranging implies that an interior optimum (if one exists) is defined implicitly by:

$$h(\pi_{C}) = f(\pi_{C})/[1 - F(\pi_{C})] = 2\delta/\{k + \pi_{C}\delta + k_{D} - \gamma_{C}[t_{C}\delta + k_{D}]\}.$$

This equation implicitly describes P_1 's best response π_C to P_2 's belief t_C ; to be an equilibrium, the marginal type, denoted $\hat{\pi}_C$, must be a best response to itself. Thus, a second candidate for an equilibrium is defined implicitly by

$$h(\hat{\pi}_{C}) = f(\hat{\pi}_{C})/[1 - F(\hat{\pi}_{C})] = 2\delta/\{k + (1 - \gamma_{C})[\hat{\pi}_{C}\delta + k_{D}]\}.$$

Again, it is clear that $\hat{\pi}_{c}$ so-defined is less than $\overline{\pi}$ and Assumption 2' ensures that $\hat{\pi}_{c} > \underline{\pi}$. However,

notice that $\hat{\pi}_{c} \geq \pi_{2}^{*}$ (as required) if and only if $2\delta/\{k + (1 - \gamma_{c})[\hat{\pi}_{c}\delta + k_{D}]\} \geq \delta/k$; that is, if and only if $\gamma_{c} \geq [\hat{\pi}_{c}\delta - k_{P}]/[\hat{\pi}_{c}\delta + k_{D}]$. This cannot hold under Assumption 3 ($\gamma_{c} \leq [\pi_{2}^{*}\delta - k_{P}]/[\pi_{2}^{*}\delta + k_{D}]$), except possibly for $\hat{\pi}_{c} = \pi_{2}^{*}$, which is already dominated by π_{c}^{*} (see the proof in the paper's Appendix). Thus, under Assumption 3, there is a unique equilibrium involving confidential settlements, which is derived in the paper's Appendix.

If we relax Assumption 3, then this candidate $(\hat{\pi}_C)$ for an equilibrium will exist. However, it can be shown that (if P_2 expects the marginal defendant type in the first stage to be $\hat{\pi}_C$), then P_1 would do better by defecting to the marginal type π_C^* . Thus, there can never be a pure strategy equilibrium involving $\hat{\pi}_C$.

To see this, notice that in the candidate for an equilibrium involving $\hat{\pi}_{C}$, P_{I} demands \hat{S}_{C} =

 $(2 - \gamma_C)[\hat{\pi}_C \delta + k_D]$, which is accepted by all defendant types with $\pi \ge \hat{\pi}_C$ and rejected by all defendant types with $\pi < \hat{\pi}_C$. This results in a payoff for P_I of $\hat{u}_I(\hat{\pi}_C; \hat{S}_C(\hat{\pi}_C; \hat{\pi}_C))$. On the other hand, if P_I were to demand S_C^* rather than \hat{S}_C , then all types $\pi \in [\pi_C^*, \overline{\pi}]$ would accept S_C^* rather than go to trial (given that P_2 's beliefs and behavior are unchanged by this unobservable defection, accepting S_C^* and continuing as before with P_2 results in lower payments for all D types $\pi \in (\pi_C^*, \overline{\pi}]$). This would result in P_I receiving the payoff $\tilde{u}_I(\pi_C^*;$ $\tilde{S}_C(\pi_C^*)) \ge \tilde{u}_I(\hat{\pi}_C; \tilde{S}_C(\hat{\pi}_C)) = \hat{u}_I(\hat{\pi}_C; \hat{S}_C(\hat{\pi}_C; \hat{\pi}_C))$, where the inequality follows since π_C^* maximizes $\tilde{u}_I(\pi_C; \tilde{S}_C(\pi_C))$ and the equality follows from the continuity of $u_I(\pi_C; t_C)$ at the point $\pi_C = t_C$. Thus, there can never be a pure strategy equilibrium involving $\hat{\pi}_C$. QED

Claims

<u>Claim 1.</u> A configuration of the form $\{OT\}$ or $\{CT\}$, wherein defendant types with relatively low values of π choose settlement, while those with relatively high values of π choose trial, cannot be an equilibrium configuration.

<u>Proof.</u> Consider a configuration such as $\{zT\}$, where z = O, *C*. In this case, upon observing *z*, *P*₂ will infer that $\pi \in [\underline{\pi}, \pi_{zT}]$, and will make a demand $s'(z) < \pi_{zT}\delta + k_D$. To see this, note that *P*₂ will choose π_2 to maximize

$$w_2(\pi_2; z) = \int_A (\pi \delta - k_P) f(\pi) d\pi / F(\pi_{zT}) + \tilde{s}(\pi_2) [F(\pi_{zT}) - F(\pi_2)] / F(\pi_{zT}),$$

where $A \equiv [\underline{\pi}, \widetilde{\pi}_2]$ and $\widetilde{s}(\pi_2) = \pi_2 \delta + k_D$, subject to the constraint that $\pi_2 \ge \underline{\pi}$. Differentiating and collecting terms implies that the optimal value of π_2 is given by max $\{\underline{\pi}, \pi_2'\}$, where $f(\pi_2')/[F(\pi_{zT}) - F(\pi_2')] = \delta/k$. Since $\pi_2' < \pi_{zT}$, P_2 's optimal demand is $s'(z) = \max\{\underline{\pi}, \pi_2'\}\delta + k_D < \pi_{zT}\delta + k_D$. The marginal type π_{zT} is indifferent between accepting P_1 's settlement demand and going to trial: $S_z' + \gamma_z s'(z) = 2[\pi_{zT}\delta + k_D]$. However, it must be that the type $\pi_{zT} + \epsilon$ (at least weakly) prefers T. By accepting P_1 's settlement demand, $\pi_{zT} + \epsilon$ pays $S_z' + \gamma_z s'(z)$; however, by choosing T this defendant type pays $2[\pi_{zT}\delta + \epsilon\delta + k_D]$, which is clearly worse, leading to a contradiction. QED. <u>Claim 2</u>. Defendant types in $[\underline{\pi}, \pi_C^*]$ are indifferent between configurations $\{TC\}$ and $\{TO\}$, while defendant types in $(\pi_C^*, \overline{\pi}]$ strictly prefer $\{TC\}$.

Proof. Let $V^*(\pi; \gamma)$ denote the equilibrium payoff to the defendant of type π . For $\pi \in [\underline{\pi}, \pi_c^*)$, the defendant of type π goes to trial against P_1 (and then settles with P_2) in both the $\{TC\}$ and $\{TO\}$ configurations, so $V^*(\pi; \gamma) = 2[\pi\delta + k_D]$, which is independent of γ . For $\pi \in [\pi_c^*, \pi_o^*)$, the defendant of type π settles with P_1 and goes to trial with P_2 in the $\{TC\}$ configuration, but goes to trial against P_1 (and then settles with P_2) in the $\{TO\}$ configuration. Thus, $V^*(\pi; \gamma_c) = (2 - \gamma_c)[\pi_c^*\delta + k_D] + \gamma_c[\pi\delta + k_D] \leq V^*(\pi; \gamma_c) = 2[\pi\delta + k_D]$, with equality only at $\pi = \pi_c^*$. For $\pi \in [\pi_0^*, \pi_2^*)$, the defendant of type π settles with P_1 and goes to trial with P_2 in both configurations, so $V^*(\pi; \gamma) = (2 - \gamma)[\pi^*(\gamma)\delta + k_D] + \gamma[\pi\delta + k_D]$, which is strictly increasing in γ for π in this range. Finally, for $[\pi_2^*, \overline{\pi}]$, the defendant of type π settles with both plaintiffs in both configurations, so $V^*(\pi; \gamma) = (2 - \gamma)[\pi^*(\gamma)\delta + k_D] + \gamma[\pi_2^*\delta + k_D]$, which is strictly increasing in γ for π in this range. Since D wants to minimize his loss, he prefers the configuration with the lower value of γ , which is $\{TC\}$. QED

<u>Claim 3</u>. The average plaintiff strictly prefers $\{TO\}$ to $\{TC\}$. <u>Proof.</u> $dU_P^*(\gamma)/d\gamma = dU_I^*(\gamma)/d\gamma + dU_2^*(\gamma)/d\gamma = -[\pi^*(\gamma)\delta + k_D][1 - F(\pi^*(\gamma))]$ $+ \{[\pi^*(\gamma)\delta + k_D] - \gamma[\pi^*(\gamma)\delta - k_P]\}f(\pi^*(\gamma))\pi^{*'}(\gamma)$ $+ \int_B(\pi\delta - k_P)f(\pi)d\pi + [1 - F(\pi_2^*)][\pi_2^*\delta + k_D],$

where $B = [\pi^*(\gamma), \pi_2^*]$. The expression on the second line is positive. We collect the remaining terms and define the function $M(x) = \int_A (\pi \delta - k_P) f(\pi) d\pi + [1 - F(\pi_2^*)] [\pi_2^* \delta + k_D] - [x \delta + k_D] [1 - F(x)]$, where $A = [x, \pi_2^*]$. Notice that $M(\pi_2^*) = 0$ and $M'(x) = kf(x) - (1 - F(x))\delta(>,=,<)0$ as $x(>,=,<)\pi_2^*$. Thus M(x) < 0 for $x < \pi_2^*$. Since $\pi^*(\gamma) < \pi_2^*$, it follows that $M(\pi^*(\gamma)) > 0$; *a fortiori*, $dU_P^*(\gamma)/d\gamma > 0$. QED

<u>Claim 4</u>. When P_1 may offer a menu of settlement demands, the following configurations cannot be equilibrium configurations: $\{zT\}, z = O, C; \{TOC\}; \{OC\}; \{TCO\} \text{ and } \{CO\}.$

<u>Proof.</u> Claim 1 above argued that configurations of the form $\{zT\}$ could not be equilibrium configurations. Next, consider configuration $\{TOC\}$. Suppose, to the contrary, that there were such an equilibrium. Let π_{TO} denote the type which is (in equilibrium) indifferent between T and O, and let π_{OC} denote the type which is indifferent between O and C. Let S_O' and S_C' denote the equilibrium demands by P_I which are associated with open and confidential settlements, respectively. Let s'(T), s'(O) and s'(C) denote the equilibrium demands made P_2 following the disposition of P_I 's suit. From our previous analysis, we know that $s'(T) = \pi\delta + k_D$ and $s'(C) = \max\{\pi_2^*, \pi_{OC}\}\delta + k_D$. Upon observing S_O' , P_2 believes that $\pi \in [\pi_{TO}, \pi_{OC})$ and demands s to maximize:

$$w_2(\pi_2; O) = \int_A (\pi \delta - k_P) f(\pi) d\pi / [F(\pi_{OC}) - F(\pi_{TO})] + \tilde{s}(\pi_2) [F(\pi_{OC}) - F(\pi_2)] / [F(\pi_{OC}) - F(\pi_{TO})],$$

where $A \equiv [\pi_{TO}, \pi_2]$, subject to the constraint that $\pi_2 \ge \pi_{TO}$; the other constraint, that $\pi_2 \le \pi_{OC}$, will never bind and is therefore omitted. The solution to this problem is either at the lower boundary, implying $s'(O) = \pi_{TO}\delta + k_D$, or it is interior, implying $s'(O) = \pi_2'\delta + k_D$, where π_2' is defined by $f(\pi_2')/[F(\pi_{OC}) - F(\pi_2')] = \delta/k$. The crucial point is that $\pi_2' < \pi_{OC}$. Thus, $s'(O) < \pi_{OC}\delta + k_D$.

Consider the marginal type π_{oC} . If this type accepts the open settlement demand, then he pays $S_{c}' + \gamma_{c}[\pi_{oC}\delta + k_{D}]$ (of the other hand, if he accepts the confidential settlement demand, then he pays $S_{c}' + \gamma_{c}[\pi_{oC}\delta + k_{D}]$ (either because P_{2} settles with all defendants at $\pi_{oC}\delta + k_{D}$ following a confidential settlement with P_{I} or because P_{2} engages in further screening of these defendants, in which case the marginal type goes to trial against P_{2}). Thus, the defendant of type π_{oC} must be indifferent between these two options: $S_{O}' + \gamma_{O}s'(O) = S_{C}' + \gamma_{C}[\pi_{oC}\delta + k_{D}]$. In order for $\{TOC\}$ to be an equilibrium, the type $\pi_{oC} - \epsilon$ must (at least weakly) prefer O to C. For sufficiently small ϵ , accepting the open settlement demand yields the same payoff $S_{O}' + \gamma_{O}s'(O)$. However, accepting the confidential settlement demand yields the payoff $S_{C}' + \gamma_{C}[\pi_{oC}\delta - \epsilon\delta + k_{D}]$, since P_{2} demands more than this defendant type is willing to pay to settle, resulting in a trial. Comparing these two payoffs indicates that the defendant of type $\pi_{oC} - \epsilon$ strictly prefers to accept the confidential settlement demand, which is a contradiction.

The same argument works for the configuration {*OC*} since we can simply set $\pi_{TO} = \underline{\pi}$ in the proof above. Straightforward modifications also cover the cases of {*TCO*} and {*CO*}. In the case of {*TCO*}, there will be marginal types π_{TC} and π_{CO} . P_2 's demands will be $s'(C) < \pi_{CO}\delta + k_D$ and $s'(O) = \max{\{\pi_{CO}, \pi_2\}}\delta + k_D$. The marginal type π_{CO} is indifferent between accepting P_1 's open settlement demand (and then either being pooled by P_2 at the demand $\pi_{CO}\delta + k_D$ or being asked to pay $\pi_2\delta + k_D$ and choosing trial instead) and P_1 's confidential settlement demand: $S_O' + \gamma_O[\pi_{CO}\delta + k_D] = S_C' + \gamma_C s'(C)$. In order for {*TCO*} to be an equilibrium, the defendant type $\pi_{CO} - \epsilon$ must (at least weakly) prefer to accept P_1 's confidential settlement demand. Accepting P_1 's confidential settlement demand yields the same payoff $S_C' + \gamma_C s'(C)$. However, accepting P_1 's open settlement demand yields the payoff $S_O' + \gamma_O[\pi_{CO}\delta - \epsilon\delta + k_D]$, since P_2 demands more than this defendant type is willing to pay to settle, resulting in a trial. Comparing these two payoffs indicates that a defendant of type $\pi_{CO} - \epsilon$ strictly prefers to accept P_1 's open settlement demand, which is a contradiction. QED

Analysis of Joinder

Suppose that joinder is modeled simply as handling the two cases simultaneously. Then each of the two plaintiffs makes a settlement demand (these will be the same since the plaintiffs' situations are symmetric) and, if the demand is rejected, each will go to trial. Each case is decided separately (though π is the same), and there may be small or no economies in trial costs, since each case involves case-specific attributes as well as some common ones.

Absent economies in trial costs, each plaintiff's expected payoff under joinder is the same as if she were the sole plaintiff against *D*. Let U_0^* be the optimized expected payoff to a single plaintiff. In this case, each plaintiff's optimal demand is given by $\pi_2^* \delta + k_D$, which is accepted by defendant types with $\pi \ge \pi_2^*$ and otherwise rejected. Thus,

$$U_0^* = \int_A (\pi \delta - k_P) f(\pi) d\pi + [\pi_2^* \delta + k_D] [1 - F(\pi_2^*)], \text{ where } A \equiv [\pi, \pi_2^*].$$

Consider the following variation on the previous model. P_1 becomes aware of D's potential liability and files suit. P_1 can either bargain alone with D or identify and contact P_2 (suppose this can be done at negligible cost) and join the cases. If P_1 bargains alone, she receives $U_1^*(\gamma_c)$, while if she contacts P_2 , each plaintiff receives U_0^* . Notice that $U_0^* = U_1^*(1)$; since $U_1^*(\gamma)$ is decreasing in γ , it follows that $U_1^*(\gamma_c) > U_0^*$. Thus, P_1 would prefer to bargain alone rather than to contact P_2 and join the cases (assuming that economies in trial costs are sufficiently small).

Similarly, would P_2 desire joinder? That is, would P_2 prefer that P_1 bargain alone (recognizing that this will entail a probability $\gamma_c < 1$ of P_2 learning about D following a confidential settlement) or would P_2 prefer that P_1 identify and contact P_2 so as to join the suits? It is clear that $U_2^*(1) > U_0^*$; thus, if P_2 is sufficiently likely to discover D's involvement following a confidential settlement between D and P_1 , then P_2 would also prefer that P_1 bargain alone rather than identifying and contacting P_2 so as to join the cases (again, assuming that economies in trial costs are sufficiently small). By waiting, P_2 benefits from the learning effect generated by P_1 . Thus, we find that the sequential model is actually robust to allowing endogenous joinder, at least for some parameter values (note that γ_c can be made as close to 1 as necessary by increasing δ subject to maintaining Assumption 3).

In fact, being P_1 may (but need not) involve disadvantageous leadership. Clearly, if γ_c is relatively large then confidentiality is not worth much to D, and thus it is not worth much to P_1 , while P_2 gets a large spillover. This can be seen by considering the extreme case wherein $\gamma_c = 1$. Here P_1 goes to trial against all D types with $\pi < \pi_2^*$, while P_2 settles with these types following P_1 's trial (both P_1 and P_2 settle with all Dtypes with $\pi \ge \pi_2^*$). Thus, $U_1^*(1) < U_2^*(1)$. On the other hand, it is also straightforward to verify that $U_1^*(\underline{\gamma}) > U_2^*(\underline{\gamma})$ if and only if $2[\pi^*(\underline{\gamma})\delta + k_D][1 - F(\pi^*(\underline{\gamma}))] > kF(\pi^*(\underline{\gamma}))$. Since $\pi^*(\underline{\gamma})$ can be made arbitrarily close to $\underline{\pi}$ by a judicious choice of parameters, and $F(\underline{\pi}) = 0$, this inequality can be made to hold, meaning that P_1 can be better off than P_2 if confidentiality is sufficiently effective in reducing the likelihood of a follow-on suit (relative to trial).